The Ontology of Spacetime

Total Page:16

File Type:pdf, Size:1020Kb

The Ontology of Spacetime The Ontology of Spacetime i Philosophy and Foundations of Physics Series Editors: Dennis Dieks and Miklos Redei In this series: Vol. 1: The Ontology of Spacetime Edited by Dennis Dieks ii The Ontology of Spacetime Edited by Dennis Dieks History and Foundations of Science, Utrecht University, Utrecht, The Netherlands Amsterdam – Boston – Heidelberg – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo iii Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2006 Copyright r 2006 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN-13: 978-0-444-52768-4 ISBN-10: 0-444-52768-0 ISSN: 1871-1774 For information on all Elsevier publications visit our website at books.elsevier.com Printed and bound in The Netherlands 060708091010987654321 iv Contents List of Contributors . ............................. vii Introduction ..................................... ix PART I: THE ONTOLOGY OF SPACETIME 1. The Implications of General Covariance for the Ontology and Ideology of Spacetime by John Earman . ................ 3 2. The Disappearance of Space and Time by Carlo Rovelli . 25 3. Spacetime Structuralism by Jonathan Bain . ............ 37 4. Minkowski Space-Time: A Glorious Non-Entity by Harvey R. Brown, Oliver Pooley . .................... 67 PART II: TIME, BECOMING AND RELATIVITY: COMPATIBILIST POSITIONS 5. The Irrelevance of the Presentist/Eternalist Debate for the Ontology of Minkowski Spacetime by Mauro Dorato . ....... 93 6. Presentism and Eternalism in Perspective by Steven F. Savitt . 111 7. Minkowski Spacetime and the Dimensions of the Present by Richard T.W. Arthur . ......................... 129 8. Becoming, Relativity and Locality by Dennis Dieks . ....... 157 9. How to Square A Non-localized Present with Special Relativity by Yuval Dolev . ............................. 177 v vi Contents 10. Philosophical Consequences of the Twins Paradox by Storrs McCall . ............................ 191 PART III: TIME, BECOMING AND RELATIVITY: INCOMPATIBILIST VOICES 11. Is There an Alternative to the Block Universe View? by Vesselin Petkov . ............................ 207 12. Special Relativity, Time, Probabilism and Ultimate Reality by Nicholas Maxwell . ............................ 229 13. Temporal Presentness and the Dynamics of Spacetime by Kent A. Peacock . ............................ 247 14. Presentism and Quantum Gravity by Bradley Monton . ...... 263 Author Index. .................................... 281 Subject Index. .................................... 285 List of Contributors R.T.W. Arthur, Department of Philosophy, McMaster University Hamilton, Canada J. Bain, Humanities and Social Sciences, Polytechnic University, Brooklyn, USA H.R. Brown, Faculty of Philosophy, University of Oxford, Oxford, UK D. Dieks, History and Foundations of Science, Utrecht University, Utrecht, The Netherlands Y. Dolev, Department of Philosophy, Bar Ilan University, Ramat-Gan, Israel M. Dorato, Department of Philosophy, University of Rome Three, Rome, Italy J. Earman, Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, USA N. Maxwell, Department of Science and Technology Studies, University College London, London, UK S. McCall, Department of Philosophy, McGill University, Montreal, Canada B. Monton, Department of Philosophy, University of Kentucky, Lexington, USA K.A. Peacock, Department of Philosophy, University of Lethbridge, Lethbridge, Canada V. Petkov, Philosophy Department, Concordia University, Montreal, Canada O. Pooley, Oriel College, University of Oxford, Oxford, UK C. Rovelli, Centre de Physique Theorique de Luminy, Universite´ de la Me´diterrane´e, Marseille, France S.F. Savitt, Department of Philosophy, The University of British Columbia, Vancouver, Canada, V6T 1Z1. vii This page intentionally left blank viii Introduction The nature of space and time is a traditional philosophical subject. Whether space is an independently existing ‘‘substance’’ or not, and whether time is a measure of change in material processes or rather something that exists and ‘‘flows’’ even if there are no material processes going on, are questions that go back to the very beginnings of natural philosophy. But in spite of this longevity no consensus has been reached, and these issues are still exercising the minds of both scientists and philosophers. The last few decades have even seen an upsurge of interest. This is due to a number of factors. Among these figures prominently the revival of the substantivalism versus relationalism debate as a consequence of recent foundational studies of general relativity, especially the renewed attention for Einstein’s notorious ‘‘hole argument’’. Indeed, the di- ffeomorphism invariance of the equations of general relativity appears to in- dicate that prima facie different models of the theory that are related to each other by diffeomorphisms, actually represent the same physical situation. In- deed, the only difference between any two such models is in the manifold points where events take place: the contents of the events, their mutual relations, and the laws that apply are the same. If the verdict of physical sameness is accepted, the implication is that only physical objects and fields, and their coincidence relations, are relevant for the specification of the state of the universe. The identity of the spacetime points at which events take place plays no role. This suggests that it may be unnecessary at all to accept these points as independent parts of the ontological furniture of the world. Arguably, this would be a vin- dication of relationalism, since only structural properties of particles and fields, and their coincidence relations, remain as physically significant. It is possible not to go along with this conclusion, for example because one has qualms about accepting the metrical field as a physical object on the same footing as matter fields, or because of the suspicion that the spacetime points are still there, hiding in the structure of the fields in disguised form. But even so, it is clear that new light has been shed on the discussion about the ontology of spacetime. Another reason for the interest in spacetime questions is the awareness that the global temporal structures exhibited by solutions of the general relativistic field equations are very relevant to debates about the nature of time. In par- ticular, the notorious question of whether it makes sense to say that there is ix x D. Dieks ‘‘becoming’’, or that ‘‘time is flowing’’, has received a new impetus from this direction. In the 1940s, Go¨del published a number of seminal papers in which he demonstrated the existence of solutions of the Einstein equations in which closed time-like curves occur (Go¨del, 1949). He concluded from this that the doctrine according to which time is ‘‘objectively lapsing’’ is incompatible with general relativity. In the 1960s, Rietdijk and Putnam rekindled the older theme that special relativity, even more clearly than general relativity, rules out that the history of the universe can be regarded as a unique continuous succession of three-dimensional worlds (Rietdijk, 1966). At least at first sight these observa- tions seem to provide a justification for looking upon the universe as one four-dimensional, ‘‘static’’, whole; a ‘‘block universe’’ (actually a squarely pre- relativistic notion: the term seems to originate with William James (1979), in his essay ‘‘The Dilemma of Determinism’’). These relativistic considerations inject new life into the famous McTaggart A versus B series discussion, with many arguing that only the B series is a viable option. Remarkably, in connection with recent work on quantum gravity the opposite opinion can also be heard. This is because in some approaches to the quantization of general relativity, it must be assumed that there exists a global time parameter, corresponding to a priv- ileged foliation of spacetime — this would reinstate the notion that the universe’s history consists in a succession of three-dimensional worlds. This may be interpreted as being congenial to the A-like doctrine of ‘‘presentism’’. The surge of interest in questions of this kind has made the need felt for a permanent international platform
Recommended publications
  • Cape Canaveral Air Force Station Support to Commercial Space Launch
    The Space Congress® Proceedings 2019 (46th) Light the Fire Jun 4th, 3:30 PM Cape Canaveral Air Force Station Support to Commercial Space Launch Thomas Ste. Marie Vice Commander, 45th Space Wing Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ste. Marie, Thomas, "Cape Canaveral Air Force Station Support to Commercial Space Launch" (2019). The Space Congress® Proceedings. 31. https://commons.erau.edu/space-congress-proceedings/proceedings-2019-46th/presentations/31 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Cape Canaveral Air Force Station Support to Commercial Space Launch Colonel Thomas Ste. Marie Vice Commander, 45th Space Wing CCAFS Launch Customers: 2013 Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; Blue text – in work; * – sub-orbital CCAFS Launch Customers: 2013 Complex 39B: NASA SLS Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy NASA Space Launch System Launch Complex 39B February 4, 2013 Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs;
    [Show full text]
  • BEYOND SPACE and TIME the Secret Network of the Universe: How Quantum Geometry Might Complete Einstein’S Dream
    BEYOND SPACE AND TIME The secret network of the universe: How quantum geometry might complete Einstein’s dream By Rüdiger Vaas With the help of a few innocuous - albeit subtle and potent - equations, Abhay Ashtekar can escape the realm of ordinary space and time. The mathematics developed specifically for this purpose makes it possible to look behind the scenes of the apparent stage of all events - or better yet: to shed light on the very foundation of reality. What sounds like black magic, is actually incredibly hard physics. Were Albert Einstein alive today, it would have given him great pleasure. For the goal is to fulfil the big dream of a unified theory of gravity and the quantum world. With the new branch of science of quantum geometry, also called loop quantum gravity, Ashtekar has come close to fulfilling this dream - and tries thereby, in addition, to answer the ultimate questions of physics: the mysteries of the big bang and black holes. "On the Planck scale there is a precise, rich, and discrete structure,” says Ashtekar, professor of physics and Director of the Center for Gravitational Physics and Geometry at Pennsylvania State University. The Planck scale is the smallest possible length scale with units of the order of 10-33 centimeters. That is 20 orders of magnitude smaller than what the world’s best particle accelerators can detect. At this scale, Einstein’s theory of general relativity fails. Its subject is the connection between space, time, matter and energy. But on the Planck scale it gives unreasonable values - absurd infinities and singularities.
    [Show full text]
  • Small Satellite Launchers
    SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT
    [Show full text]
  • Physics Needs Philosophy. Philosophy Needs Physics. Carlo Rovelli
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PhilSci Archive Physics needs philosophy. Philosophy needs physics. Carlo Rovelli Extended version of a keynote talk at the XVIII UK-European Conference on the Foundation of Physics, given at the London School of Economics the 16 July 2016 Published on Foundations of Physics, 48, 481-491, 2018 Abstract Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method. 1. Against Philosophy is the title of a chapter of a book by one of the great physicists of the last generation: Steven Weinberg, Nobel Prize winner and one of the architects of the Standard Model of elementary particle physicsi. Weinberg argues eloquently that philosophy is more damaging than helpful for physics—although it might provide some good ideas at times, it is often a straightjacket that physicists have to free themselves from. More radically, Stephen Hawking famously wrote that “philosophy is dead” because the big questions that used to be discussed by philosophers are now in the hands of physicistsii.
    [Show full text]
  • Space Coast Is Getting Busy: 6 New Rockets Coming to Cape Canaveral, KSC
    4/16/2019 Space Coast is getting busy: 6 new rockets coming to Cape Canaveral, KSC Space Coast is getting busy: 6 new rockets coming to Cape Canaveral, Kennedy Space Center Emre Kelly, Florida Today Published 4:04 p.m. ET April 11, 2019 | Updated 7:53 a.m. ET April 12, 2019 COLORADO SPRINGS, Colo. – If schedules hold, the Space Coast will live up to its name over the next two years as a half-dozen new rockets target launches from sites peppered across the Eastern Range. Company, government and military officials here at the 35th Space Symposium, an annual space conference, have reaffirmed their plans to launch rockets ranging from more traditional heavy-lift behemoths to smaller vehicles that take advantage of new manufacturing technologies. Even if some of these schedules slip, at least one thing is apparent to several spaceflight experts here: The Eastern Range is seeing an unprecedented growth in commercial space companies and efforts. Space Launch System: 2020 NASA's Space Launch System rocket launches from Kennedy Space Center's pad 39B in this rendering by the agency. (Photo: NASA) NASA's long-awaited SLS, a multibillion-dollar rocket announced in 2011, is slated to become the most powerful launch vehicle in history if it can meet a stringent late 2020 deadline. The 322-foot-tall rocket is expected to launch on its first flight – Exploration Mission 1 – from Kennedy Space Center with an uncrewed Orion capsule for a mission around the moon, which fits in with the agency's wider goal of putting humans on the surface by 2024.
    [Show full text]
  • Loop Quantum Gravity: the First 25 Years Carlo Rovelli
    Loop quantum gravity: the first 25 years Carlo Rovelli To cite this version: Carlo Rovelli. Loop quantum gravity: the first 25 years. Classical and Quantum Gravity, IOP Publishing, 2011, 28 (15), pp.153002. 10.1088/0264-9381/28/15/153002. hal-00723006 HAL Id: hal-00723006 https://hal.archives-ouvertes.fr/hal-00723006 Submitted on 7 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Loop quantum gravity: the first twenty five years Carlo Rovelli Centre de Physique Th´eorique de Luminy∗, Case 907, F-13288 Marseille, EU (Dated: January 27, 2011) I give a synthetic presentation of loop quantum gravity. I spell-out the aims of the theory and compare the results obtained with the initial hopes that motivated the early interest in this research direction. I give my own perspective on the status of the program and attempt of a critical evaluation of its successes and limits. I. INTRODUCTION The history of quantum gravity is full of great hopes later disappointed. I remember as a young student sitting in a major conference where a world-renowned physicists Loop gravity is not quite twenty-five years old, but announced that the final theory of quantum gravity and is getting close to such a venerable age: several basic everything had finally been found.
    [Show full text]
  • Towards an Ontology of Space for GFO
    Formal Ontology in Information Systems 53 R. Ferrario and W. Kuhn (Eds.) © 2016 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-660-6-53 Towards an Ontology of Space for GFO Ringo BAUMANN a, Frank LOEBE a,1 and Heinrich HERRE b a Computer Science Institute, University of Leipzig, Germany b IMISE, University of Leipzig, Germany Abstract. Space and time are basic categories of any top-level ontology. They ac- count for fundamental assumptions of the modes of existence of those individuals that are said to be in space and time. The present paper is devoted to GFO-Space, the ontology of space in the General Formal Ontology (GFO). This ontology is in- troduced by a set of axioms formalized in first-order logic and further elucidated by consequences of the axiomatization. The theory is based on four primitives: the category of space regions, the rela- tions of being a spatial part and being a spatial boundary, as well as the relation of spatial coincidence. The presence of boundaries and the notion of coincidence witness an inspiration of the ontology by well-motivated ideas of Franz Brentano on space, time and the continuum. Taking up a line of prior investigations of his ap- proach, the present work contributes a further step in establishing a corresponding ontology of space, employing rigorous logical methods. Keywords. top-level ontology, theory of space, theory of boundaries 1.
    [Show full text]
  • Opening up Bodyspace: Perspectives from Posthuman and Feminist Theory Xenia Kokoula
    11 Opening up Bodyspace: Perspectives from Posthuman and Feminist Theory Xenia Kokoula Introduction bodily formations, entanglements and alliances The field of architecture has long been dominated by are we confronted with? As our powers of shaping the human body as the measure of things.1 Situated and transforming all spatial scales – from the scale in the single room, the home, the neighborhood, of the body to that of the planet – become clear the city and moving on to larger and larger scales, in what has been called the Anthropocene, these the human body takes centre stage in the design questions become all the more urgent even if they process. Αs several scholars have critically noted, far exceed the scope of this essay.5 this is the normalised and normative white male body, as exemplified in Le Corbusier’s Modulor or Confronted with emerging spatio-corporeal para- in Ernst Neufert’s still routinely used handbook.2 digms, architects can no longer solely rely on a It is a whole and closed body surrounded by and theoretical canon that has historically ‘been defi- enclosed in spatial spheres that are firmly placed in cient in the very tools of self-criticism’.6 They must a pre-existing Cartesian universe. therefore seek inspiration in related discourses in the humanities and social sciences. The main Recent theoretical discussions have questioned purpose of this essay is, thus, to suggest possible this implicit understanding of the body as a closed starting points, and speculatively explore a range and impenetrable unity, along with the wider rejec- of conceptual paradigms and their implications for tion of anthropocentricism, and the role and limits design.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory ..................................................................................
    [Show full text]
  • The Right Rocket for the Job: Small Launch Providers Target Small Satellites
    The Right Rocket for the Job: Small Launch Providers Target Small Satellites An STS Research Paper presented to the faculty of the School of Engineering and Applied Science University of Virginia by Gabriel Norris May 11, 2020 On my honor as a University student, I have neither given nor received unauthorized aid on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments. Signed: _________________________________________________ Approved: _______________________________________ Date ________________________ Peter Norton, Department of Engineering and Society 2 The University of Virginia Department of Mechanical and Aerospace Engineering has its first satellite, Libertas, now in orbit and plans to launch two more within the next three years. This sudden activity is representative of the vastly increased smallsat1 launch cadence by a variety of groups around the world. The trend is facilitated by the reduced cost and relative ease of assembly conferred by CubeSats, which collectively make up 70 percent of satellites launched today (Halt & Wieger, 2019). Startups, underdeveloped countries, and universities that, just ten years ago, would have been incapable of any kind of space mission are now launching several. From 2012 to 2019, 663 CubeSats were manufactured by private companies, nearly 300 by governments or militaries, and 371 by academic institutions. Yearly satellite launches have increased six-fold in this time (Halt & Wieger, 2019; fig. 1). This marked increase in customers underscores a sociotechnical problem in the rocketry industry: most rockets are fairly large and cater primarily to large satellites, leaving behind a large number of customers in the smallsat domain. Satellites broadly fall within four categories of use: remote sensing, communication, technology demonstration, and scientific investigation.
    [Show full text]
  • The Aethereal Universe
    TThhee AAeetthheerreeaall UUnniivveerrssee Andrew Holster Sept. 2014 Minor revisions Sept. 2015 CCoonntteennttss INTRODUCTION TO THE AETHEREAL UNIVERSE. ............ 4 PART 1. THE PHYSICS OF TAU ................................................. 20 1. The Aethereal Universe, starting from particle physics. .................................. 21 1.1 Overview 1: TAU on the cosmic scale. ......................................................... 22 1.2 Overview 2. TAU on the microscopic scale. ................................................. 23 1.3 Overview 3. TAU on the inside. .................................................................... 24 2. STR from extra circular dimensions. ............................................................... 26 2.1 STR from simple maths. ................................................................................ 27 3. QM from extra circular dimensions. ................................................................ 30 3.1 QM from simple maths. ................................................................................. 31 4. The Torus ......................................................................................................... 32 5. Particle strings. ................................................................................................. 33 5.1 Quantum entanglement. ................................................................................. 34 5.2 Quantum Entanglement mechanisms. ............................................................ 35 5.3 Quantum entanglement
    [Show full text]
  • Loop Quantum Gravity
    QUANTUM GRAVITY Loop gravity combines general relativity and quantum theory but it leaves no room for space as we know it – only networks of loops that turn space–time into spinfoam Loop quantum gravity Carlo Rovelli GENERAL relativity and quantum the- ture – as a sort of “stage” on which mat- ory have profoundly changed our view ter moves independently. This way of of the world. Furthermore, both theo- understanding space is not, however, as ries have been verified to extraordinary old as you might think; it was introduced accuracy in the last several decades. by Isaac Newton in the 17th century. Loop quantum gravity takes this novel Indeed, the dominant view of space that view of the world seriously,by incorpo- was held from the time of Aristotle to rating the notions of space and time that of Descartes was that there is no from general relativity directly into space without matter. Space was an quantum field theory. The theory that abstraction of the fact that some parts of results is radically different from con- matter can be in touch with others. ventional quantum field theory. Not Newton introduced the idea of physi- only does it provide a precise mathemat- cal space as an independent entity ical picture of quantum space and time, because he needed it for his dynamical but it also offers a solution to long-stand- theory. In order for his second law of ing problems such as the thermodynam- motion to make any sense, acceleration ics of black holes and the physics of the must make sense.
    [Show full text]