7 Nov 2012 Deformation Theory and Rational Homotopy Type

Total Page:16

File Type:pdf, Size:1020Kb

7 Nov 2012 Deformation Theory and Rational Homotopy Type 1 Deformation Theory and Rational Homotopy Type 2 Mike Schlessinger and Jim Stasheff 3 November 8, 2012 4 Abstract 5 We regard the classification of rational homotopy types as a problem in algebraic de- 6 formation theory: any space with given cohomology is a perturbation, or deformation, 7 of the “formal” space with that cohomology. The classifying space is then a “moduli” 8 space — a certain quotient of an algebraic variety of perturbations. The description 9 we give of this moduli space links it with corresponding structures in homotopy theory, p 10 especially the classification of fibres spaces F → E → B with fixed fibre F in terms 11 of homotopy classes of maps of the base B into a classifying space constructed from 12 Aut(F ), the monoid of homotopy equivalences of F to itself. We adopt the philosophy, 13 later promoted by Deligne in response to Goldman and Millson, that any problem in 14 deformation theory is “controlled” by a differential graded Lie algebra, unique up to 15 homology equivalence (quasi-isomorphism) of dg Lie algebras. Here we extend this 16 philosophy further to control by L∞ -algebras. In memory of Dan Quillen who established the foundation on which this work rests. 17 Contents arXiv:1211.1647v1 [math.QA] 7 Nov 2012 18 1 Introduction 3 19 1.1 Background .................................... 3 20 1.2 ControlbyDGLAs ................................ 4 21 1.3 Applications.................................... 7 22 1.4 Outline....................................... 8 23 2 Models of homotopy types 10 24 2.1 The Tate–Jozefiak resolution in characteristic zero . ..... 10 25 2.2 TheHalperin–Stashefforfilteredmodel . 11 26 3 Differential graded Lie algebras, models and perturbations 14 27 3.1 Differential graded commutative coalgebras and dg Lie algebras . ..... 15 28 3.2 ThetensoralgebraandfreeLiealgebra . 15 29 3.3 ThetensorcoalgebraandfreeLiecoalgebra . ... 17 1 Deformation Theory and Rational Homotopy Type November 8, 2012 2 30 3.4 The standard construction C(L) ........................ 18 31 3.5 The Quillen and Milnor/Moore et al spectral sequences [51, 44, 45]..... 19 32 3.6 The standard construction A(L) ........................ 20 33 3.7 Comparison of Der L and Der C(L) ...................... 21 34 3.8 A(L(H))andfilteredmodels .......................... 22 35 4 Classifying maps of perturbations and homotopies: The Main Homotopy 36 Theorem. 25 37 4.1 Homotopyofcoalgebramaps .......................... 25 38 4.2 ProofoftheMainHomotopyTheorem . 28 39 5 Homotopy invariance of the space of homotopy types 31 40 6 Control by L∞-algebras. 35 41 6.1 Quasi-isomorphisms and homotopy inverses . ... 35 42 6.2 L∞-structure on H(L) .............................. 36 43 7 The Miniversal Deformation 38 44 7.1 Introduction.................................... 38 45 7.2 Varietiesandschemes............................... 39 46 7.3 Versaldeformations................................ 40 47 7.4 Theminiversaldeformation ........................... 41 48 7.5 Gauge equivalence for nilpotent L∞-algebras.................. 44 49 7.6 Summary ..................................... 45 50 8 Examples and computations 47 51 8.1 Shallowspaces................................... 47 52 8.2 CellstructuresandMasseyproducts . ... 48 53 8.3 Moderatelyshallowspaces............................ 49 54 8.4 Moremoderatelyshallowspaces . .. .. 50 55 8.5 Obstructions ................................... 51 56 8.6 Morecomplicatedobstructions. 55 57 8.7 Othercomputations................................ 56 58 9 Classification of rational fibre spaces 57 59 9.1 Algebraicmodelofafibration .......................... 57 60 9.2 Classificationtheorem .............................. 59 61 9.3 Examples ..................................... 61 62 9.4 Openquestions.................................. 64 63 10 Postscript 64 Deformation Theory and Rational Homotopy Type November 8, 2012 3 64 1 Introduction 65 In this paper, we regard the classification of rational homotopy types as a problem in algebraic 66 deformation theory: any space with given cohomology is a perturbation, or deformation, of 67 the “formal” space with that cohomology. The classifying space is then a “moduli” space 68 — a certain quotient of an algebraic variety of perturbations. The description we give of 69 this moduli space links it with others which occur in algebra and topology, for example, 70 the moduli spaces of algebras or complex manifolds. On the other hand, our dual vision 71 emphasizes the analogy with corresponding structures in homotopy theory, especially the p 72 classification of fibres spaces F → E → B with fixed fibre F in terms of homotopy classes 73 of maps of the base B into a classifying space constructed from Aut(F ), the monoid of 74 homotopy equivalences of F to itself. In particular, the moduli space of rational homotopy 75 types with fixed cohomology algebra can be identified with the space of “path components” 76 of a certain differential graded coalgebra. 77 Although the majority of this paper is concerned with constructing and verifying the 78 relevant machinery, the final sections are devoted to a variety of examples, which should 79 be accessible without much of the machinery and might provide motivation for reading the 80 technical details of the earlier sections. 81 Portions of our work first appeared in print in [56, 57] and then in ‘samizdat’ versions over 82 the intervening decades (!), partly due to some consequences of the mixture of languages. 83 Some of those versions have worked there way into work of other researchers; we have tried 84 to maintain much of the flavor of our early work while taking advantage of progress made 85 by others. 86 Crucially, throughout this paper, the ground field is the rational numbers, Q (character- 87 istic 0 is really the relevant algebraic fact), although parts of it make sense even over the 88 integers. 89 1.1 Background 90 Rational homotopy theory regards rational homotopy equivalence of two simply con- 91 nected spaces as the equivalence relation generated by the existence of a map f : X → Y ∗ ∗ ∗ 92 inducing an isomorphism f : H (Y ; Q) → H (X, Q). Here we are much closer to a complete 93 classification than in the ordinary (integral) homotopy category. An obvious invariant is the ∗ 94 cohomology algebra H (X; Q). Halperin and Stasheff [20] showed that all simply connected 95 spaces X with fixed cohomology algebra H of finite type over Q can be described (up to 96 rational homotopy type) as follows: (Henceforth ‘space’ shall mean ‘simply connected space 97 of finite type’ unless otherwise specified.) 98 Resolve H by a d(ifferential) g(raded) c(ommutative) a(lgebra) (SZ,d) which is con- 99 nected and free as a graded commutative algebra with a map (SZ,d) → H of dgcas inducing 100 H(SZ,d) ≃ H. Here S denotes graded symmetric algebra. (See section 2.1 for details, espe- 101 cially in re: the various gradings involved.) The notation Λ instead of S is often used within 102 rational homotopy theory, where it is a historical accident derived from de Rham theory. Deformation Theory and Rational Homotopy Type November 8, 2012 4 ∗ 103 Let A (X) denote a differential graded commutative algebra of “differential forms over the 104 rationals” for the space X, e.g. Sullivan’s version of the deRham complex [63, 6]). Given ≃ ∗ 105 an isomorphism i : H → H (X), there is a perturbation p (a derivation of SZ of degree 2 106 1 which lowers resolution degree by at least 2 such that (d + p) = 0) and a map of dga’s ∗ 107 (SZ,d + p) → A (X) inducing an isomorphism of rational cohomology. If X and Y have 108 the same rational homotopy type, the perturbations pX and pY must be related in a certain 109 way, spelled out in §2.2. This is one of several ways (cf. [36, 13]) it can be seen that 110 Main Theorem 1.1. For fixed H, the set of homotopy types of pairs (X, i : H ≃ H(X)) 111 can be represented as the quotient V/G of a (perhaps infinite dimensional) conical rational 112 algebraic variety V modulo a pro-unipotent (algebraic) group action G. 113 Corollary 1.2. The set of rational homotopy types with fixed cohomology H can be repre- 114 sented as a quotient Aut H\V/G. 115 1.2 Control by DGLAs 116 The variety and the group can be expressed in the following terms: let Der SZ denote 117 the graded Lie algebra of graded derivations of SZ, which is itself a dg Lie algebra (see 118 Definition 3.1) with the commutator bracket and the differential induced by the internal 119 differential on SZ. Let L ⊂ DerSZ be the sub–Lie algebra of derivations that decrease 1 120 the sum of the total degree plus the resolution degree. The variety V ⊂ L is precisely 1 2 121 V = {p ∈ L |(d + p) =0}. In fact, V is the cone on a projective variety (of possibly infinite 122 dimension) §2.3 The pro-unipotent group G is exp L, which acts via the adjoint action of L 123 on d + p. 124 We said above that we regard our problem as one of deformation theory in the (homolog- 125 ical) algebra sense. A commutative algebra H has a Tate resolution which is an almost free 126 commutative dga SZ, that is, free as graded commutative algebra, ignoring the differential. 127 A deformation of H corresponds to a change in differential d → d + p on SZ. Instead of 128 L ⊂ DerSZ as above, the sub-dg Lie algebra L¯ ⊂ DerSZ of nonpositive resolution degree 129 is used. 130 As far as we know, deformation theory arose with work on families of complex structures. 131 Early on, these were expressed in terms of a moduli space [53, 69]. This began with Riemann, 132 who first introduced the term ”moduli”. He proved that the number of moduli of a surface 133 of genus 0 was 0. 1 for genus 1 and 3g − 3 for g > 1. These are the same as the numbers 134 of quadratic differentials on the surface, which was perhaps the impetus for Teichmueller’s 135 work identifying these as ”infinitesimal deformations”.
Recommended publications
  • An Introduction to Some Novel Applications of Lie Algebra
    FTUV/98-4 IFIC/98-4 January, 1998 An introduction to some novel applications of Lie algebra cohomology in mathematics and physics∗ J. A. de Azc´arraga†, J. M. Izquierdo‡ and J. C. P´erez Bueno† † Departamento de F´ısica Te´orica, Univ. de Valencia and IFIC, Centro Mixto Univ. de Valencia-CSIC, E–46100 Burjassot (Valencia), Spain. ‡ Departamento de F´ısica Te´orica, Universidad de Valladolid E–47011, Valladolid, Spain Abstract After a self-contained introduction to Lie algebra cohomology, we present some recent applications in mathematics and in physics. Contents 1 Preliminaries: LX , iX , d ........................... 1 2 Elementary differential geometryon Lie groups . ..... 3 3 Liealgebracohomology: abriefintroduction . ..... 4 4 Symmetric polynomials and higher order cocycles . ...... 7 5 HigherordersimpleandSHLiealgebras. .. 11 6 Higher order generalizedPoissonstructures . ...... 20 7 Relative cohomology, coset spaces and effective WZW actions ....... 23 1 Preliminaries: LX, iX , d Let us briefly recall here some basic definitions and formulae which will be useful later. Consider a uniparametric group of diffeomorphisms of a manifold M, eX : M → M, which takes a point x ∈ M of local coordinates {xi} to x′i ≃ xi + ǫi(x) (= xi + Xi(x)). Scalars and (covariant, say) tensors tq (q = 0, 1, 2,...) transform as follows j j j ′ ′ ′ ′ ∂x ′ ′ ∂x 1 ∂x 2 φ (x )= φ(x) , t i(x )= tj(x) , t i i (x )= tj j (x) ... (1.1) ∂x′i 1 2 1 2 ∂x′i1 ∂x′i2 arXiv:physics/9803046v1 [math-ph] 30 Mar 1998 In physics it is customary to define ‘local’ variations, which compare the transformed and original tensors at the same point x: ′ ′ δφ(x) ≡ φ (x) − φ(x) , δti(x) ≡ t i(x) − ti(x) , ..
    [Show full text]
  • And Hausdorff (1906)
    BOOK REVIEWS 325 REFERENCES [C] A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sei. U.S.A. 74 (1977), 1324-1327. [CMM] R. R. Coifman, A. Mclntosh and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), 361-388. [Dl] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sei. École Norm. Sup. (4) 17 (1984), 157-189. [D2] _, Opérateurs d'intégrale singulière sur les surfaces régulières, Ann. Sei. École Norm. Sup. (4)21 (1988), 225-258. [DS] G. David and S. Semmes, Singular integrals and rectifiable sets in M" : au-delà des graphes lipschitziens, Astérisque 193 (1991), 1-145. [D] J. R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), 21-31. [F] K. J. Falconer, Geometry of fractal sets, Cambridge Univ. Press, Cambridge, 1985. [Fe] H. Fédérer, Geometric measure theory, Springer-Verlag, Berlin and New York, 1969. [J] P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 ( 1990), 1-15. [M] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, Cambridge, 1995 (to appear). [S] S. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), 501-513. [SI] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. [S2] _, Harmonic analysis : Real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993. Pertti Mattila University of Jyvaskyla E-mail address : PMATTILAOJYLK.
    [Show full text]
  • Fubini-Griffiths-Harris Rigidity and Lie Algebra Cohomology∗
    ASIAN J. MATH. c 2012 International Press Vol. 16, No. 4, pp. 561–586, December 2012 001 FUBINI-GRIFFITHS-HARRIS RIGIDITY AND LIE ALGEBRA COHOMOLOGY∗ JOSEPH M. LANDSBERG† AND COLLEEN ROBLES† Abstract. We prove a rigidity theorem for represented semi-simple Lie groups. The theorem is used to show that the adjoint variety of a complex simple Lie algebra g (the unique minimal G orbit in Pg) is extrinsically rigid to third order (with the exception of g = a1). 1 n In contrast, we show that the adjoint variety of SL3C and the Segre product Seg(P × P ) are flexible at order two. In the SL3C example we discuss the relationship between the extrinsic projective geometry and the intrinsic path geometry. We extend machinery developed by Hwang and Yamaguchi, Se-ashi, Tanaka and others to reduce the proof of the general theorem to a Lie algebra cohomology calculation. The proofs of the flexibility statements use exterior differential systems techniques. Key words. Exterior differential systems, Lie algebra cohomology, projective rigidity, rational homogeneous varieties. AMS subject classifications. 14M15, 14M17, 53C24, 53C30, 58A15. 1. Introduction. 1.1. History and statement of the motivating problem. This paper in- troduces new machinery to the study of exterior differential systems with symmetry. Our main result (Theorem 6.12) was motivated by the following question. The problem of determining the projective (or extrinsic) rigidity of varieties X ⊂ CPN = PN dates back to Monge and has been studied by Fubini [8], Griffiths and Harris [9] and others. The problem may be stated informally as follows: given a homogeneous variety Z = G/P ⊂ PU = PN and an unknown variety Y ⊂ PW = PM , how many derivatives do we need to take at a general point of Y to determine whether or not Y is projectively equivalent to Z? More precisely, there is a sequence of relative differential invariants of a projective variety X ⊂ PN , defined at a smooth point x ∈ X (the Fubini forms, see §3.1) that encode the extrinsic geometric information of X.
    [Show full text]
  • Free Lie Algebras
    Last revised 3:11 p.m. April 10, 2020 Free Lie algebras Bill Casselman University of British Columbia [email protected] The purpose of this essay is to give an introduction to free Lie algebras and a few of their applications. My principal references are [Serre:1965], [Reutenauer:1993], and [de Graaf:2000]. My interest in free Lie algebras has been motivated by the well known conjecture that Kac•Moody algebras can be defined by generators and relations analogous to those introduced by Serre for finite•dimensional semi•simple Lie algebras. I have had this idea for a long time, but it was coming across the short note [de Graaf:1999] that acted as catalyst for this (alas! so far unfinished) project. Fix throughout this essay a commutative ring R. I recall that a Lie algebra over R is an R•module g together with a Poisson bracket [x, y] such that [x, x]=0 [x, [y,z]] + [y, [z, x]] + [z, [x, y]]=0 Since [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y,y], the first condition implies that [x, y] = [y, x]. The − second condition is called the Jacobi identity. In a later version of this essay, I’ll discuss the Baker•Campbell•Hausdorff Theorem (in the form due to Dynkin). Contents 1. Magmas........................................... ................................ 1 2. ThefreeLiealgebra ................................ ................................ 3 3. Poincare•Birkhoff•Witt´ .................................... ......................... 5 4. FreeLiealgebrasandtensorproducts ................. .............................. 8 5. Hallsets—motivation
    [Show full text]
  • 1. Simplicial Enrichment of Chain Complexes 1.1
    M.SC. RESEARCH PROJECTS MARTIN FRANKLAND 1. Simplicial enrichment of chain complexes 1.1. Background. Notation 1.1. Let R be a ring and let Ch≥0(R) denote the category of non-negatively graded chain complexes of (left) R-modules. Let sModR denote the category of simplicial R-modules. One would think that there is an \obvious" enrichment of Ch≥0(R) in simplicial sets via the Dold{Kan correspondence, but there there are two such constructions. (a) Use Dold{Kan locally. Use the mapping chain complexes in Ch≥0(R) | i.e., the fact that Ch≥0(R) is enriched in Ch(R) | to produce the mapping spaces via Dold{Kan, as explained in [Lur17, Construction 1.3.1.13]. (b) Use Dold{Kan globally. Transport the simplicial enrichment from sModR via the equivalence of categories N : sModR Ch≥0(R):Γ; as explained in [nLa17, Remark 2.8]. 1.2. Project. The project encompasses three aspects. (1) Show that the two simplicial enrichments on Ch≥0(R) are not the same. Show that they are related by a natural map. Study the properties of that comparison map. (2) Study how the two enrichments interact with the projective model structure on Ch≥0(R). Understand why the enrichment (b) makes Ch≥0(R) into a simplicial model category. Check whether the enrichment (a) does. (3) Work out a formula for the tensoring of Ch≥0(R) over simplicial sets based on the combinatorics of ∆n viewed as a simplicial complex (as opposed to a simplicial set). 1.3.
    [Show full text]
  • The Anomalous Nambu-Goldstone Theorem in Relativistic
    The Anomalous Nambu-Goldstone Theorem in Relativistic/Nonrelativistic Quantum Field Theory Tadafumi Ohsaku today In der Welt habt ihr Angst; aber seid getrost, ich habe die Welt ¨uberwunden. ( Johannes, Kapitel 16 ) It always seems impossible until it is done. ( Nelson Mandela ) This Paper is Dedicated for Our Brave Fighters and Super-Heroes for the Fundamental Human Rights Around the World. Abstract: The anomalous Nambu-Goldstone ( NG ) theorem which is found as a violation of counting law of the number of NG bosons of the standard ( normal ) NG theorem in nonrelativistic and Lorentz-symmetry- violated relativistic theories is studied in detail, with emphasis on its math- ematical aspect from Lie algebras, geometry to number theory. The basis of counting law of NG bosons in the anomalous NG theorem is examined by Lie algebras ( local ) and Lie groups ( global ). A quasi-Heisenberg algebra is found generically in various symmetry breaking schema of the anoma- arXiv:1312.0916v1 [physics.gen-ph] 1 Dec 2013 lous NG theorem, and it indicates that it causes a violation/modification of the Heisenberg uncertainty relation in an NG sector which can be ex- perimentally confirmed. This fact implies that we might need a framework ”beyond” quantum mechanical apparatus to describe quantum fluctuations in the phenomena of the anomalous NG theorem which might affect forma- tions of orderings in quantum critical phenomena. The formalism of effective potential is presented for understanding the mechanism of anomalous NG theorem with the aid of our result of Lie algebras. After an investigation 1 on a bosonic kaon condensation model with a finite chemical potential as an explicit Lorentz-symmetry-breaking parameter, a model Lagrangian ap- proach on the anomalous NG theorem is given for our general discussion.
    [Show full text]
  • On Free Conformal and Vertex Algebras
    Journal of Algebra 217, 496᎐527Ž. 1999 Article ID jabr.1998.7834, available online at http:rrwww.idealibrary.com on On Free Conformal and Vertex Algebras Michael Roitman* CORE Department of Mathematics, Yale Uni¨ersity, New Ha¨en, Connecticut 06520 Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector E-mail: [email protected] Communicated by Efim Zelmano¨ Received April 1, 1998 Vertex algebras and conformal algebras have recently attracted a lot of attention due to their connections with physics and Moonshine representa- tions of the Monster. See, for example,wx 6, 10, 17, 15, 19 . In this paper we describe bases of free conformal and free vertex algebrasŽ as introduced inwx 6 ; see also w 20 x. All linear spaces are over a field މ- of characteristic 0. Throughout this paper ޚq will stand for the set of non-negative integers. In Sections 1 and 2 we give a review of conformal and vertex algebra theory. All statements in these sections are either inwx 9, 17, 16, 15, 18, 20 or easily follow from results therein. In Section 3 we investigate free conformal and vertex algebras. 1. CONFORMAL ALGEBRAS 1.1. Definition of Conformal Algebras We first recall some basic definitions and constructions; seew 16, 15, 18, 20x . The main object of investigation is defined as follows: DEFINITION 1.1. A conformal algebra is a linear space C endowed with a linear operator D: C ª C and a sequence of bilinear products"n : C m C ª C, n g ޚq, such that for any a, b g C one has * Partially supported by NSF Grant DMS-9704132.
    [Show full text]
  • Combinatorics of Hall Trees and Hall Words
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF COMBINATORIAL THEORY, Series A 59, 285-308 (1992) Combinatorics of Hall Trees and Hall Words GUY MELANCON DPpartemenr de Mathkmatiques et d’lnformatique, UniversitP du Quebec ci Montr&al, C.P. 8888 WCC. A, Montrkal, Qukbec. Canada H3C3P8 Communicated by Gian-Carlo Rota Received May 30, 1990 We present combinatorial properties of Hall trees and Hall words. We give new proofs of the unique factorisation of w.ords into decreasing products of Hall words. An order cH on the free monoid is then constructed upon the unique factorisation of words. When the Hall set is the set of Lyndon words, the order cH coincides with the lexicographical order (with which Lyndon words are defined). Motivated by this fact, we give combinatorial properties of Hall words, related to the order c,,, which generalize known properties of Lyndon words to Hall words. 0 1992 Academic Press, Inc. INTRODUCTION Bases of the free Lie algebra appeared for the first time in an article by M. Hall [4], although they were implicit in the work of P. Hall [6] and Magnus [9] on the commutator calculus in free groups. Known as “Hall bases,” they inspired many authors and led to many generalizations: Meier-Wunderli [lo], Schiitzenberger [ 121, Shirshov [ 141, Gorchakov [3], and Ward [16]. Lyndon [8] introduced bases which were originally thought to be different. Viennot gave a generalization of all these constructions and showed that, in a sense, it was optimal [ 15, Theorem 1.21. He also showed that this generalization was equivalent to Lazard’s elimination process.
    [Show full text]
  • A Cocycle Model for Topological and Lie Group Cohomology
    A Cocycle Model for Topological and Lie Group Cohomology Friedrich Wagemann Christoph Wockel [email protected] [email protected] February 14, 2013 Abstract We propose a unified framework in which the different constructions of cohomology groups for topo- logical and Lie groups can all be treated on equal footings. In particular, we show that the cohomology of \locally continuous" cochains (respectively \locally smooth" in the case of Lie groups) fits into this framework, which provides an easily accessible cocycle model for topological and Lie group cohomology. We illustrate the use of this unified framework and the relation between the different models in various applications. This includes the construction of cohomology classes characterizing the string group and a direct connection to Lie algebra cohomology. MSC: 22E41 (primary), 57T10, 20J06 (secondary) Keywords: cohomology for topological groups, cohomology for Lie groups, abelian extension, crossed module, Lie algebra cohomology, string group Introduction It is a common pattern in mathematics that things that are easy to define are hard to compute and things that are hard to define come with lots of machinery to compute them1. On the other hand, mathematics can be very enjoyable if these different definitions can be shown to yield isomorphic objects. In the present article we want to promote such a perspective towards topological group cohomology, along with its specialization to Lie group cohomology. It has become clear in the last decade that concretely accessible cocycle models for cohomology theories (understood in a broader sense) are as important as abstract constructions. Examples for this are differential cohomology theories (cocycle models come for instance from (bundle) gerbes, an important concept in topo- logical and conformal field theory), elliptic cohomology (where cocycle models are yet conjectural but have nevertheless already been quite influential) and Chas-Sullivan's string topology operations (which are subject to certain well behaved representing cocycles).
    [Show full text]
  • Lie Algebra Cohomology
    Lie algebra cohomology November 16, 2018 1 History Citing [1]: In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Elie´ Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg (1948) to coefficients in an arbitrary Lie module. 2 Objects in Lie theory We begin and define Lie algebras, Lie groups and enveloping algebras. Their relation is given by: Lie algebras appear as . • tangent spaces at 1 of Lie groups and • by \unenveloping" associative algebras. We then continue to define representations (ie. modules) of such objects. 2.1 Lie algebras A Lie algebra over a field k1 is a vector space g with a binary operation [·; ·]: g × g ! g (called the Lie bracket) satisfying bilinearity, alternativity and the Jacobi identity. One should think of a Lie algebra as a (non-unitary) ring with [·; ·] being multiplication, although it need not be associative (or commutative). For ex- ample one defines a derivation on g as a linear map δ : g ! g satisfying Leibniz law: δ[x; y] = [δx; y] + [x; δy]: (1) 1The definition for Lie algebra makes sense for any ring k. However, we will mainly discuss the case k 2 fR; Cg, namely when g is the Lie algebra for a Lie group G (real) or its complexification gC. 1 Also the notions of homomorphism, subalgebra, ideal, direct sum and quotient algebra extend to Lie algebras.
    [Show full text]
  • The Topological Group Cohomology of Lie Groups
    ZMP-HH/14-1 Hamburger Beitr¨age zur Mathematik Nr. 498 Topological group cohomology of Lie groups and Chern-Weil theory for compact symmetric spaces Christoph Wockel January 7, 2014 Abstract In this paper we analyse the topological group cohomology of finite-dimensional Lie groups. We intro- duce a technique for computing it (as abelian groups) for torus coefficients by the naturally associated long exact sequence. The upshot in there is that certain morphisms in this long exact coefficient sequence can be accessed (at least for semi-simple Lie groups) very conveniently by the Chern-Weil homomorphism of the naturally associated compact dual symmetric space. Since the latter is very well-known, this gives the possibility to compute the topological group cohomology of the classical simple Lie groups. In addition, we establish a relation to characteristic classes of flat bundles. Keywords: Topological group, group cohomology, classifying space, symmetric space, compact dual, sub- algebra non-cohomologous to zero, Chern-Weil homomorphism, flat characteristic class, bounded continuous cohomology MSC: 22E41 (primary); 20J06, 17B56, 57T15 (secondary) Contents 1 A recap of topological group cohomology 3 2 The long exact sequence and the characteristic morphisms 7 3 The relation to relative Lie algebra cohomology 11 4 Subalgebras non-cohomologous to zero 16 arXiv:1401.1037v1 [math.AT] 6 Jan 2014 5 Semi-simple Lie groups 18 6 Examples 20 Introduction Topological group cohomology is the cohomology theory for topological groups that incorporates both, the algebraic and the topological structure of a topological group G with coefficients in some topological G-module A. There are two obvious guesses for this, which already capture parts of the theory in special cases.
    [Show full text]
  • Minimal Surfaces and Quasi-Fuchsian Structures
    Minimal surfaces and quasi-Fuchsian structures Brice Loustau Abstract These are the notes written after my talk in the workshop Higgs bundles and harmonic maps that was held in Asheville, NC in Januray 2015, organized by Brian Collier, Qiongling Li and Andy Sanders and supported by the NSF GEAR Network. We review aspects of the theory of minimal surfaces in hyperbolic 3-manifolds and their importance in the study of representations of surface groups into PSL2¹Cº and related deformation spaces, such as the deformation space of quasi-Fuchsian structures QF ¹Sº, Taubes’ moduli space of minimal hyperbolic germs H and the moduli space of Higgs bundles M. Contents Introduction 2 1 Minimal surfaces2 1.1 Harmonic and minimal maps between Riemannian manifolds...............2 1.2 Minimal hypersurfaces...................................4 1.3 Minimal surfaces......................................4 1.4 Minimal surfaces in hyperbolic 3-manifolds........................5 2 Quasi-Fuchsian and almost-Fuchsian structures7 2.1 Quasi-Fuchsian structures..................................7 2.2 Minimal surfaces in quasi-Fuchsian 3-manifolds...................... 10 2.3 Almost-Fuchsian structures................................. 11 2.4 Taubes moduli space.................................... 13 3 Higgs bundles and minimal surfaces 15 3.1 SL2¹Cº-Higgs bundles and the non-abelian Hodge correspondence............ 15 3.2 Minimal surfaces and Higgs bundles............................ 18 3.3 Explicit Higgs bundles associated to minimal germs.................... 20 4 Symplectic reduction and moduli spaces 22 A Hyperkähler structures 22 B Symplectic reduction 33 References 43 Introduction In preparation. 1 Minimal surfaces In this section we review some basics of the theory of minimal surfaces. We start from the general set- ting of harmonic maps between Riemannian manifolds and gradually specialize to minimal surfaces in hyperbolic 3-manifolds, highlighting the specific features that appear in the process.
    [Show full text]