Picard-Fuchs Systems Arising from Toric and Flag Varieties

Total Page:16

File Type:pdf, Size:1020Kb

Picard-Fuchs Systems Arising from Toric and Flag Varieties Picard-Fuchs Systems Arising From Toric and Flag Varieties The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050104 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Picard-Fuchs systems arising from toric and flag varieties A dissertation presented by Chenglong Yu to The Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Mathematics Harvard University Cambridge, Massachusetts March 2018 © 2018 Chenglong Yu All rights reserved. Dissertation Advisor: Professor Shing-Tung Yau Author: Chenglong Yu Picard-Fuchs systems arising from toric and flag varieties Abstract This thesis studies the Picard-Fuchs systems for families arising as vector bundles zero loci in toric or partial flag varieties, including Riemann-Hilbert type theorems and arith- metic properties of the differential systems. The theory of tautological systems is proposed by Lian, Song and Yau in [51, 52]. These Picard-Fuchs type differential systems arise from the variation of Hodge structures of complete intersections in variety X with large symmetries, generalizing Gel'fand-Kapranov- Zelevinski systems for toric varieties [25]. The form of tautological systems makes it natural to introduces the powerful tool of D-modules into the study of hypersurface family in X. Following this direction, Riemann-Hilbert type theorems are obtained by Bloch, Huang, Lian, Srinivas, Yau and Zhu in [6, 34, 35], including solution rank formula, completeness and geometric interpretation of solution sheaves. In the first part of this thesis, we generalize these results in two aspects, one is the construction of tautological systems for vector bundles, the other is Riemann-Hilbert type theorems in this case. In the second part of the thesis, we examine an explicit description of Jacobian rings for homogenous vector bundles. This can be viewed as a description of the graded quotients of tautological systems with respect to the natural filtered D-module structure. We consider a set of cohomological vanishing conditions that imply such a description, and we verify these iii conditions for some new cases. We also observe that the method can be directly extended to log homogeneous varieties. We apply the Jacobian ring to study the null varieties of period integrals and their derivatives, generalizing a result in [16] for projective spaces. As an additional application, we prove the Hodge conjecture for very generic hypersurfaces in certain generalized flag varieties. The last part is devoted to the arithmetric properties of fundamental periods near large complex structure limit. Motivated by the work of Candelas, de la Ossa and Rodriguez- Villegas [14], we study the relations between Hasse-Witt matrices and period integrals of Calabi-Yau hypersurfaces in both toric varieties and partial flag varieties. We prove a conjecture by Vlasenko [67] on higher Hasse-Witt matrices for toric hypersurfaces following Katz's method of local expansion [38, 39]. The higher Hasse-Witt matrices also have close relation with period integrals. The proof gives a way to pass from Katz's congruence relations in terms of expansion coefficients [39] to Dwork's congruence relations [21] about periods. iv Contents 1 Introduction 1 1.1 Tautological systems for homogeneous vector bundles . .3 1.2 Jacobian ring for homogenous bundles . .4 1.3 Hasse-Witt matrices, unit roots and period integrals . .5 1.4 Notations . .8 2 Tautological systems for homogenous vector bundles 8 2.1 Period integrals for zero loci of vector bundles . .8 2.1.1 Calabi-Yau bundles and adjunction formulas . 10 2.1.2 Tautological systems . 13 2.1.3 Examples . 18 2.2 Global residue on P(E_)............................ 19 2.3 Solution rank . 20 2.3.1 Lie algebra homology description . 20 2.3.2 Perverse sheaves description . 21 2.3.3 Irreducible homogeneous vector bundles . 23 2.3.4 Complete intersections . 24 2.4 Chain integrals in log homogenous varieties . 25 3 Jaobian ring for homogenous vector bundles 26 3.1 Line bundles . 26 3.2 Vanishing conditions . 33 3.3 An application to differential zeros of period integrals . 38 3.4 Zero loci of vector bundle sections . 41 v 3.5 Hypersurfaces in log homogenous varieties . 46 3.6 Hodge conjecture for very generic hypersurfaces . 48 4 Arithmetic properties of period integrals 49 4.1 Introduction . 49 4.1.1 Notations . 50 4.1.2 Statement of the theorem . 52 4.2 Local expansions and Hasse-Witt matrices . 54 4.3 Generalized flag vareities . 62 4.4 Complete intersections . 68 4.5 Frobenius matrices of toric hypersurfaces . 70 4.6 Unit root of toric Calabi-Yau hypersurfaces and periods . 79 4.7 Frobenius matrices for Calabi-Yau hypersurfaces . 81 4.7.1 Unit root of Calabi-Yau hypersurfaces in G=P ............ 82 vi Acknowledgements First and foremost I would like to thank my advisor Professor Shing-Tung Yau, for his careful guidance, inspiring discussions, constant support and encouragement. Without his generosity in sharing ideas and his invaluable support I would not be able to finish my thesis work. I would like to thank Professor Bong Lian for sharing his ideas and discussions of all kinds of interesting topics. I thank Professor An Huang for many discussions on our collaborations. I thank Professor Wilfried Schmid for his advises and encouragement. I thank Professor Joe Harris for serving on my thesis committee. I also thank Professor Matt Kerr, Professor Colleen Robles, Professor Mao Sheng and Professor Charles Doran for their interests in my thesis work and helpful conversations. I would also like to thank Professor Gerard van der Geer for his guidance during my last year in Tsinghua and the invitation to Amsterdam, which was a memorable experience for me. I also want to thank Dr. Yu Zhou for encouraging me to switch from chemistry to mathematics. Yau's students seminar opened my eyes to many interesting topics and has been a great source for me to learn mathematics. I owe a lot to the participants, my colleagues and friends Peter Smillie, Jie Zhou, Teng Fei, Yu-Wei Fan, Jonathan Zhu, Baosen Wu, Tristan Collins, Yi Xie, Takahashi Ryosuke, Dingxin Zhang, Zijian Yao, Meng Guo, Boyu Zhang, Ziliang Che, Yusheng Luo, Eduard Duryev, Koji Shimizu, Zhiwei Zheng for helpful and enjoyable discussions on mathematics. Most computation for the last part of this thesis was done in Xiaolin Shi and Yixiang Mao's living room. I appreciate their warm and heartfelt hospitality. My thanks also go to the stuff members in the department and Bok center. I really vii appreciate the help from Jameel Al-Aidroos, Janet Chen, Robin Gottlieb, Yu-Wen Hsu, Oliver Knill, Pamela Pollock and Kate Penner on teaching calculus. I benefited a lot from the support of the teaching team at Harvard. Without the apprentice and coaching system, I would not overcome the language problems and have the confidence to stand in front of my students. I am also grateful for the help from Maureen Armstrong, Pam Brentana, Diana Chen, Susan Gilbert, Larissa Kennedy, Anna Kreslavskaya, Sarah LaBauve, Gaby Leon-Guerrero and Irene Minder. Last but not the least I would like to thank my family for their love. Without their understanding and unconditional support, I would not have the courage to pursue my dream and academic career. I also want to thank Wenyu for all the great memories together. This thesis is dedicated to them. viii 1 Introduction Period integrals connect Hodge theory, number theory, mirror symmetry, and many other important areas of math. The study of periods has a long history dating back to Euler, Legendre, Gauss, Abel, Jacobi and Picard in the form of special functions, which are periods of curves. Period integrals first appears in the form of hypergeometric functions. The name hypergeometric functions first appeared in the book Arithmetica Infinitorum (1655) by John Wallis. Legendre first made the connection to geometry of the hypergeometric functions through the theory of elliptic integrals. On the other hand, Euler studied the Euler-Gauss hypergeometric equations. In special case, it is the Picard-Fuchs equation for the Legendre family of elliptic curves. Euler obtained the power series solutions to the Euler-Gauss equations and also wrote then in terms of period integrals. He introduced the important idea that instead of considering at one elliptic integral alone, one should look at the family of the integrals and consider the corresponding differential equations. This is the first example of variation of Hodge structures and Picard-Fuchs systems. The theory of deformations of higher dimensional complex varieties was pioneered by Kodaira and Spencer [42, 41, 43]. The modern study of variation of Hodge structures starts from the work of Griffiths [29], and continues by Deligne [17, 18, 19] and Schmid [60]. In particular, the periods of hypersurfaces in Pn is studied in [29] from the point of view of variation of Hodge structures. Thanks to the relations between pole order filtrations and Hodge filtrations, there is a reduction of pole method to compute the Picard-Fuchs systems for hypersurfaces in Pn. Two natural generalizations of Pn are toric varieties and homogenous Fano varieties. For toric varieties, Gel'fand, Kapranov and Zelevinski [25] found a hypergeometric sys- tem that annihilates periods of toric hypersurfaces. More recently, Lian, Song, and Yau 1 [51, 52] established a holonomic differential system called the tautological system for vari- eties with large symmetry, which generalizes Gel'fand-Kapranov-Zelevinski systems.
Recommended publications
  • An Introduction to Some Novel Applications of Lie Algebra
    FTUV/98-4 IFIC/98-4 January, 1998 An introduction to some novel applications of Lie algebra cohomology in mathematics and physics∗ J. A. de Azc´arraga†, J. M. Izquierdo‡ and J. C. P´erez Bueno† † Departamento de F´ısica Te´orica, Univ. de Valencia and IFIC, Centro Mixto Univ. de Valencia-CSIC, E–46100 Burjassot (Valencia), Spain. ‡ Departamento de F´ısica Te´orica, Universidad de Valladolid E–47011, Valladolid, Spain Abstract After a self-contained introduction to Lie algebra cohomology, we present some recent applications in mathematics and in physics. Contents 1 Preliminaries: LX , iX , d ........................... 1 2 Elementary differential geometryon Lie groups . ..... 3 3 Liealgebracohomology: abriefintroduction . ..... 4 4 Symmetric polynomials and higher order cocycles . ...... 7 5 HigherordersimpleandSHLiealgebras. .. 11 6 Higher order generalizedPoissonstructures . ...... 20 7 Relative cohomology, coset spaces and effective WZW actions ....... 23 1 Preliminaries: LX, iX , d Let us briefly recall here some basic definitions and formulae which will be useful later. Consider a uniparametric group of diffeomorphisms of a manifold M, eX : M → M, which takes a point x ∈ M of local coordinates {xi} to x′i ≃ xi + ǫi(x) (= xi + Xi(x)). Scalars and (covariant, say) tensors tq (q = 0, 1, 2,...) transform as follows j j j ′ ′ ′ ′ ∂x ′ ′ ∂x 1 ∂x 2 φ (x )= φ(x) , t i(x )= tj(x) , t i i (x )= tj j (x) ... (1.1) ∂x′i 1 2 1 2 ∂x′i1 ∂x′i2 arXiv:physics/9803046v1 [math-ph] 30 Mar 1998 In physics it is customary to define ‘local’ variations, which compare the transformed and original tensors at the same point x: ′ ′ δφ(x) ≡ φ (x) − φ(x) , δti(x) ≡ t i(x) − ti(x) , ..
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Arithmetic Geometry
    Mathematisches Forschungsinstitut Oberwolfach Report No. 38/2016 DOI: 10.4171/OWR/2016/38 Arithmetic Geometry Organised by Gerd Faltings, Bonn Johan de Jong, New York Peter Scholze, Bonn 7 August – 13 August 2016 Abstract. Arithmetic geometry is at the interface between algebraic geom- etry and number theory, and studies schemes over the ring of integers of number fields, or their p-adic completions. An emphasis of the workshop was on p-adic techniques, but various other aspects including Hodge theory, Arakelov theory and global questions were discussed. Mathematics Subject Classification (2010): 11G99. Introduction by the Organisers The workshop Arithmetic Geometry was well attended by over 50 participants from various backgrounds. It covered a wide range of topics in algebraic geometry and number theory, with some focus on p-adic questions. Using the theory of perfectoid spaces and related techniques, a number of results have been proved in recent years. At the conference, Caraiani, Gabber, Hansen and Liu reported on such results. In particular, Liu explained general p-adic versions of the Riemann–Hilbert and Simpson correspondences, and Caraiani reported on results on the torsion in the cohomology of Shimura varieties. This involved the geometry of the Hodge–Tate period map, which Hansen extended to a general Shimura variety, using the results reported by Liu. Moreover, Gabber proved degeneration of the Hodge spectral sequence for all proper smooth rigid spaces over nonarchimedean fields of characteristic 0, or even in families, by proving a spreading out result for proper rigid spaces to reduce to a recent result in p-adic Hodge theory.
    [Show full text]
  • The Duality Theorem on a Generalized Flag Variety
    proceedings of the american mathematical society Volume 117, Number 3, March 1993 REMARKS ON LOCALIZATION AND STANDARD MODULES: THE DUALITY THEOREM ON A GENERALIZED FLAG VARIETY JEN-TSEH CHANG (Communicated by Jonathan M. Rosenberg) Abstract. An amplification of the duality theorem of Hecht, Milicic, Schmid, and Wolf is given in the setting of a generalized flag variety. As an application, we give a different proof of the reducibility theorem for principal series by Speh and Vogan. The purpose of this note is to sketch an amplification of the duality theo- rem of Hecht, Milicic, Schmid, and Wolf. The main theorem in [3] establishes a natural duality between Harish-Chandra modules constructed in two differ- ent ways: the ^-module construction on a flag variety (due to Beilinson and Bernstein) on the one hand and the cohomological induction from a Borel sub- algebra (due to Zuckerman) on the other hand. This also follows from a result of Bernstein, which gives a ^-module construction of Zuckerman's functors (for the construction, see [1]). In this note we introduce a similar Z)-module construction on a generalized flag variety. Following Hecht, Milicic, Schmid, and Wolf, this construction is then dual to the cohomological induction from a parabolic subalgebra (when containing a a-stable Levi factor). As an applica- tion of this result, we give a different proof of a result by Speh and Vogan [4], which asserts the irreducibility of certain standard Zuckerman modules. This introduction is followed by four sections. The first section recalls the notion of a generalized t.d.o. on a generalized flag variety introduced in [2], from which our construction stems.
    [Show full text]
  • Localization of Cohomologically Induced Modules to Partial Flag Varieties
    LOCALIZATION OF COHOMOLOGICALLY INDUCED MODULES TO PARTIAL FLAG VARIETIES by Sarah Kitchen A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Mathematics The University of Utah March 2010 Copyright c Sarah Kitchen 2010 All Rights Reserved THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by Sarah Kitchen This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory. Chair: Dragan Miliˇci´c Aaron Bertram Peter Trapa Henryk Hecht Y.P. Lee THE UNIVERSITY OF UTAH GRADUATE SCHOOL FINAL READING APPROVAL To the Graduate Council of the University of Utah: I have read the dissertation of Sarah Kitchen in its final form and have found that (1) its format, citations, and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready for submission to The Graduate School. Date Dragan Miliˇci´c Chair, Supervisory Committee Approved for the Major Department Aaron Bertram Chair/Dean Approved for the Graduate Council Charles A. Wight Dean of The Graduate School ABSTRACT Abstract goes here. ?? CONTENTS ABSTRACT ...................................................... ii CHAPTERS 1. INTRODUCTION ............................................. 1 1.1 Cohomological Induction and Harish-Chandra Modules . 1 1.2 The Kazhdan-Lusztig Conjectures . 2 1.3 Localization of Harish-Chandra Modules . 3 1.4 The Beilinson-Ginzburg Equivariant Derived Category . 5 1.5 Equivariant Zuckerman Functors .
    [Show full text]
  • Galois Cohomology and Homogeneous Varieties
    GALOIS COHOMOLOGY IN DEGREE THREE AND HOMOGENEOUS VARIETIES∗ by Emmanuel Peyre Abstract. — The central result of this paper is the following generalization of a result of the author on products of Severi•Brauer varieties. Let G be a semi•simple linear algebraic group over a field k. Let V be a generalized flag variety under G. Then there exist finite extensions ki of k for 1 6 i 6 m, elements αi in Brki and a natural exact sequence m N (. α ) ki /k i k ∪ Ker H3(k,Q/Z(2)) H3(k(V ),Q/Z(2)) CH2(V ) 0. i∗ −−−−−−→ → → tors→ Mi=1 After giving a more explicit expression of the second morphism in a particular case, we apply this result to get classes in H3(Q,Q/Z), which are k•negligible for any field k of characteristic different from 2 which contains a fourth root of unity, for a group Q which is a central extension of an F2 vector space by another. Résumé. — Le résultat central de ce texte est la généralisation suivante d’un résultat de l’auteur sur les produits de variétés de Severi•Brauer. Soit G un groupe algébrique linéaire semi•simple sur un corps k. Soit V une variété de drapeaux généralisée sous G. Alors il existe des extensions finies ki de k pour 1 6 i 6 m, des éléments αi de Brki et une suite exacte naturelle m N (. α ) ki /k i k ∪ Ker H3(k,Q/Z(2)) H3(k(V ),Q/Z(2)) CH2(V ) 0.
    [Show full text]
  • Fubini-Griffiths-Harris Rigidity and Lie Algebra Cohomology∗
    ASIAN J. MATH. c 2012 International Press Vol. 16, No. 4, pp. 561–586, December 2012 001 FUBINI-GRIFFITHS-HARRIS RIGIDITY AND LIE ALGEBRA COHOMOLOGY∗ JOSEPH M. LANDSBERG† AND COLLEEN ROBLES† Abstract. We prove a rigidity theorem for represented semi-simple Lie groups. The theorem is used to show that the adjoint variety of a complex simple Lie algebra g (the unique minimal G orbit in Pg) is extrinsically rigid to third order (with the exception of g = a1). 1 n In contrast, we show that the adjoint variety of SL3C and the Segre product Seg(P × P ) are flexible at order two. In the SL3C example we discuss the relationship between the extrinsic projective geometry and the intrinsic path geometry. We extend machinery developed by Hwang and Yamaguchi, Se-ashi, Tanaka and others to reduce the proof of the general theorem to a Lie algebra cohomology calculation. The proofs of the flexibility statements use exterior differential systems techniques. Key words. Exterior differential systems, Lie algebra cohomology, projective rigidity, rational homogeneous varieties. AMS subject classifications. 14M15, 14M17, 53C24, 53C30, 58A15. 1. Introduction. 1.1. History and statement of the motivating problem. This paper in- troduces new machinery to the study of exterior differential systems with symmetry. Our main result (Theorem 6.12) was motivated by the following question. The problem of determining the projective (or extrinsic) rigidity of varieties X ⊂ CPN = PN dates back to Monge and has been studied by Fubini [8], Griffiths and Harris [9] and others. The problem may be stated informally as follows: given a homogeneous variety Z = G/P ⊂ PU = PN and an unknown variety Y ⊂ PW = PM , how many derivatives do we need to take at a general point of Y to determine whether or not Y is projectively equivalent to Z? More precisely, there is a sequence of relative differential invariants of a projective variety X ⊂ PN , defined at a smooth point x ∈ X (the Fubini forms, see §3.1) that encode the extrinsic geometric information of X.
    [Show full text]
  • 1. Simplicial Enrichment of Chain Complexes 1.1
    M.SC. RESEARCH PROJECTS MARTIN FRANKLAND 1. Simplicial enrichment of chain complexes 1.1. Background. Notation 1.1. Let R be a ring and let Ch≥0(R) denote the category of non-negatively graded chain complexes of (left) R-modules. Let sModR denote the category of simplicial R-modules. One would think that there is an \obvious" enrichment of Ch≥0(R) in simplicial sets via the Dold{Kan correspondence, but there there are two such constructions. (a) Use Dold{Kan locally. Use the mapping chain complexes in Ch≥0(R) | i.e., the fact that Ch≥0(R) is enriched in Ch(R) | to produce the mapping spaces via Dold{Kan, as explained in [Lur17, Construction 1.3.1.13]. (b) Use Dold{Kan globally. Transport the simplicial enrichment from sModR via the equivalence of categories N : sModR Ch≥0(R):Γ; as explained in [nLa17, Remark 2.8]. 1.2. Project. The project encompasses three aspects. (1) Show that the two simplicial enrichments on Ch≥0(R) are not the same. Show that they are related by a natural map. Study the properties of that comparison map. (2) Study how the two enrichments interact with the projective model structure on Ch≥0(R). Understand why the enrichment (b) makes Ch≥0(R) into a simplicial model category. Check whether the enrichment (a) does. (3) Work out a formula for the tensoring of Ch≥0(R) over simplicial sets based on the combinatorics of ∆n viewed as a simplicial complex (as opposed to a simplicial set). 1.3.
    [Show full text]
  • The Anomalous Nambu-Goldstone Theorem in Relativistic
    The Anomalous Nambu-Goldstone Theorem in Relativistic/Nonrelativistic Quantum Field Theory Tadafumi Ohsaku today In der Welt habt ihr Angst; aber seid getrost, ich habe die Welt ¨uberwunden. ( Johannes, Kapitel 16 ) It always seems impossible until it is done. ( Nelson Mandela ) This Paper is Dedicated for Our Brave Fighters and Super-Heroes for the Fundamental Human Rights Around the World. Abstract: The anomalous Nambu-Goldstone ( NG ) theorem which is found as a violation of counting law of the number of NG bosons of the standard ( normal ) NG theorem in nonrelativistic and Lorentz-symmetry- violated relativistic theories is studied in detail, with emphasis on its math- ematical aspect from Lie algebras, geometry to number theory. The basis of counting law of NG bosons in the anomalous NG theorem is examined by Lie algebras ( local ) and Lie groups ( global ). A quasi-Heisenberg algebra is found generically in various symmetry breaking schema of the anoma- arXiv:1312.0916v1 [physics.gen-ph] 1 Dec 2013 lous NG theorem, and it indicates that it causes a violation/modification of the Heisenberg uncertainty relation in an NG sector which can be ex- perimentally confirmed. This fact implies that we might need a framework ”beyond” quantum mechanical apparatus to describe quantum fluctuations in the phenomena of the anomalous NG theorem which might affect forma- tions of orderings in quantum critical phenomena. The formalism of effective potential is presented for understanding the mechanism of anomalous NG theorem with the aid of our result of Lie algebras. After an investigation 1 on a bosonic kaon condensation model with a finite chemical potential as an explicit Lorentz-symmetry-breaking parameter, a model Lagrangian ap- proach on the anomalous NG theorem is given for our general discussion.
    [Show full text]
  • Visible Actions of Reductive Algebraic Groups on Complex Algebraic Varieties (簡約代数群の複素代数多様体への可視的作用について) 田中雄一郎
    博士論文 (要約) 論文題目 Visible actions of reductive algebraic groups on complex algebraic varieties (簡約代数群の複素代数多様体への可視的作用について) 田中 雄一郎 1 2 Summary of Ph. D Thesis submitted to the University of Tokyo Yuichiro Tanaka We study visible actions on complex algebraic varieties, and the main result is a classifica- tion of visible actions on generalized flag varieties. Definition 1.1 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a complex manifold X is strongly visible if the following two conditions are satisfied: (1) There exists a real submanifold S (called a \slice") such that X0 := G · S is an open subset of X: (2) There exists an anti-holomorphic diffeomorphism σ of X0 such that σjS = idS; σ(G · x) = G · x for any x 2 X0: In the above setting, we say the action of G on X is S-visible. This terminology will be used also if S is just a subset of X. Definition 1.2 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a complex manifold X is previsible if the condition (1) of Definition 1.1 is satisfied for a totally real submanifold S of X. The notion of visible actions on complex manifolds was introduced by T. Kobayashi [Ko2] with the aim of uniform treatment of multiplicity-free representations of Lie groups. Definition 1.3. We say a unitary representation V of a locally compact group G is multiplicity-free if the ring EndG(V ) of intertwining operators on V is commutative. To prove the multiplicity-freeness property of representations of Lie groups in the frame- work of visible actions ([Ko1, Ko2, Ko5, Ko6]), we use Kobayashi's theory of the propaga- tion of the multiplicity-freeness property under the assumption of visible actions.
    [Show full text]
  • 7 Nov 2012 Deformation Theory and Rational Homotopy Type
    1 Deformation Theory and Rational Homotopy Type 2 Mike Schlessinger and Jim Stasheff 3 November 8, 2012 4 Abstract 5 We regard the classification of rational homotopy types as a problem in algebraic de- 6 formation theory: any space with given cohomology is a perturbation, or deformation, 7 of the “formal” space with that cohomology. The classifying space is then a “moduli” 8 space — a certain quotient of an algebraic variety of perturbations. The description 9 we give of this moduli space links it with corresponding structures in homotopy theory, p 10 especially the classification of fibres spaces F → E → B with fixed fibre F in terms 11 of homotopy classes of maps of the base B into a classifying space constructed from 12 Aut(F ), the monoid of homotopy equivalences of F to itself. We adopt the philosophy, 13 later promoted by Deligne in response to Goldman and Millson, that any problem in 14 deformation theory is “controlled” by a differential graded Lie algebra, unique up to 15 homology equivalence (quasi-isomorphism) of dg Lie algebras. Here we extend this 16 philosophy further to control by L∞ -algebras. In memory of Dan Quillen who established the foundation on which this work rests. 17 Contents arXiv:1211.1647v1 [math.QA] 7 Nov 2012 18 1 Introduction 3 19 1.1 Background .................................... 3 20 1.2 ControlbyDGLAs ................................ 4 21 1.3 Applications.................................... 7 22 1.4 Outline....................................... 8 23 2 Models of homotopy types 10 24 2.1 The Tate–Jozefiak resolution in characteristic zero . ..... 10 25 2.2 TheHalperin–Stashefforfilteredmodel .
    [Show full text]
  • A Cocycle Model for Topological and Lie Group Cohomology
    A Cocycle Model for Topological and Lie Group Cohomology Friedrich Wagemann Christoph Wockel [email protected] [email protected] February 14, 2013 Abstract We propose a unified framework in which the different constructions of cohomology groups for topo- logical and Lie groups can all be treated on equal footings. In particular, we show that the cohomology of \locally continuous" cochains (respectively \locally smooth" in the case of Lie groups) fits into this framework, which provides an easily accessible cocycle model for topological and Lie group cohomology. We illustrate the use of this unified framework and the relation between the different models in various applications. This includes the construction of cohomology classes characterizing the string group and a direct connection to Lie algebra cohomology. MSC: 22E41 (primary), 57T10, 20J06 (secondary) Keywords: cohomology for topological groups, cohomology for Lie groups, abelian extension, crossed module, Lie algebra cohomology, string group Introduction It is a common pattern in mathematics that things that are easy to define are hard to compute and things that are hard to define come with lots of machinery to compute them1. On the other hand, mathematics can be very enjoyable if these different definitions can be shown to yield isomorphic objects. In the present article we want to promote such a perspective towards topological group cohomology, along with its specialization to Lie group cohomology. It has become clear in the last decade that concretely accessible cocycle models for cohomology theories (understood in a broader sense) are as important as abstract constructions. Examples for this are differential cohomology theories (cocycle models come for instance from (bundle) gerbes, an important concept in topo- logical and conformal field theory), elliptic cohomology (where cocycle models are yet conjectural but have nevertheless already been quite influential) and Chas-Sullivan's string topology operations (which are subject to certain well behaved representing cocycles).
    [Show full text]
  • Lie Algebra Cohomology
    Lie algebra cohomology November 16, 2018 1 History Citing [1]: In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Elie´ Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg (1948) to coefficients in an arbitrary Lie module. 2 Objects in Lie theory We begin and define Lie algebras, Lie groups and enveloping algebras. Their relation is given by: Lie algebras appear as . • tangent spaces at 1 of Lie groups and • by \unenveloping" associative algebras. We then continue to define representations (ie. modules) of such objects. 2.1 Lie algebras A Lie algebra over a field k1 is a vector space g with a binary operation [·; ·]: g × g ! g (called the Lie bracket) satisfying bilinearity, alternativity and the Jacobi identity. One should think of a Lie algebra as a (non-unitary) ring with [·; ·] being multiplication, although it need not be associative (or commutative). For ex- ample one defines a derivation on g as a linear map δ : g ! g satisfying Leibniz law: δ[x; y] = [δx; y] + [x; δy]: (1) 1The definition for Lie algebra makes sense for any ring k. However, we will mainly discuss the case k 2 fR; Cg, namely when g is the Lie algebra for a Lie group G (real) or its complexification gC. 1 Also the notions of homomorphism, subalgebra, ideal, direct sum and quotient algebra extend to Lie algebras.
    [Show full text]