FASP-Fast and Secure Protocol.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

FASP-Fast and Secure Protocol.Pdf FASP-Fast And Secure Protocol A SEMINAR REPORT Submitted by ATUL M In partial fulfillment for the award of the degree Of B-TECH DEGREE In COMPUTER SCIENCE & ENGINEERING SCHOOL OF ENGINEERING COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY KOCHI- 682022 JULY, 2010 Division of Computer Engineering School of Engineering Cochin University of Science & Technology Kochi-682022 ___________________________________________________ ______ CERTIFICATE Certified that this is a bonafide record of the seminar work titled FASP-Fast And Secure Protocol Done by Atul M of VII semester Computer Science & Engineering in the year 2010 in partial fulfillment of the requirements for the award of Degree of Bachelor of Technology in Computer Science & Engineering of Cochin University of Science & Technology Dr.David Peter S Dr. Sheena Mathew Head of the Division Seminar Guide ACKNOWLEDGEMENT I thank GOD almighty for guiding me throughout the seminar. I would like to thank all those who have contributed to the completion of the seminar and helped me with valuable suggestions for improvement. I am extremely grateful to Dr. David Peter, HOD, Division of Computer Science, for providing me with best facilities and atmosphere for the creative work guidance and encouragement. I would like to thank my coordinator, Mr. Sudheep Elayidom, Sr. Lecturer, Division of Computer Science, and my guide Dr. Sheena Mathew , Reader , Division of Computer Science , SOE for all help and support extended to me. I thank all the Staff members of my college and my friends for extending their cooperation during my seminar. Above all I would like to thank my parents without whose blessings, I would not have been able to accomplish my goal. TABLE OF CONTENTS Chapter No. Title Page LIST OF TABLES iv LIST OF FIGURES v 1. INTRODUCTION…………………………………………………………1 1.1 Transport Characteristics………………………………...1 1.2 Need for fasp…………………………………................2 2. FASP CAPABILITIES…………………………………………………...5 2.1 Core Technologies……………………………………...5 2.2 Transfer Modes………………………………………...7 2.3 Management And Automation………………………...8 3. SHORTCOMINGS OF TCP TRANSFER…………………………….10 3.1 The TCP bottleneck in file transfer…………………....10 3.2 Consequences………………………………………....11 4 THE FASP SOLUTION………………………………………………...14 4.1 Network Independent Speed………………………....14 i 4.2 Automatic Adaptive Rate Control…………………...15 4.3 Complete Security……………………………...........18 5. FASP VS FTP…………………………………………....……………..20 5.1 fasp vs. FTP wide area networks…………….……....20 5.2 fasp vs. FTP on cross-continental links…….………..21 5.3 fasp vs. FTP on intercontinental links…………….…21 5.4 fasp over high-delay satellite links…………………..22 5.5 fasp vs FTP on Wireless…………...………………...23 6 FASP TRANSFER TIMES…………………………………………...24 7 CONCLUSION………………………………………………………...25 8 REFERENCES………………………………………………………..26 ii LIST OF TABLES NO. NAME PAGE 1. Core Technologies 5 2. Transfer Modes 7 3. Management and Automation 8 4. Fasp Transfer Times 24 iii LIST OF FIGURES NO. NAME PAGE 1. TCP Throughput with distance 11 2. TCP vs FASP throughput 14 3. Efficiency of fasp 16 4. Fairness of fasp 17 5. Fasp vs FTP on WAN 20 6. Fasp vs FTP on continental networks 21 7. Fasp vs FTP on inter-continental network 22 8. Fasp vs FTP over satellite 22 9. Fasp vs FTP over wireless network 23 iv Fast and Secure Protocol 1. INTRODUCTION Aspera's fasp transfer technology is an innovative software that eliminates the fundamental bottlenecks of conventional file transfer technologies such as FTP, HTTP, and Windows CIFS, and dramatically speeds transfers over public and private IP networks. The approach achieves perfect throughput efficiency, independent of the latency of the path and robust to packet losses. In addition, users have extra-ordinary control over individual transfer rates and bandwidth sharing, and full visibility into bandwidth utilization. File transfer times can be guaranteed, regardless of the distance of the endpoints or the dynamic conditions of the network, including even transfers over satellite, wireless, and inherently long distance and unreliable international links. Complete security is built-in, including secure endpoint authentication, on-the-fly data encryption, and integrity verification. 1.1 Transport characteristics Maximum speed o Enables large data set transfers over any network at maximum speed, source disk to destination disk, regardless of network conditions or distance. Over gigabit WANs with 1 second RTT and 5% packet loss, achieves 700-800 Mbps file transfers on high-end PCs with RAID-0 and 400- 500 Mbps transfers on commodity PCs. Even with extreme packet loss and latency (30%/1 second RTT), sustains over 100 Mbps WAN transfers, and fills a satellite transponder. o Transfers large data sets of small files with the same efficiency as large single files. o Very lightweight. Does not require specialized or powerful hardware to maintain high speeds. Extraordinary bandwidth control o Provides precise rate control (pre-set and on-the-fly) for guaranteed transfer times. o Uses an automatic adaptive rate control to fully utilize available bandwidth while remaining fair to other traffic. Division Of Computer Science, SOE, CUSAT 1 Fast and Secure Protocol o Provides fast, automatic discovery of the bandwidth capacity between the source and destination. o Supports on-the-fly configurable bandwidth sharing policies. Users may pre- set and change individual transfer rates and finish times as needed. o Supports perfect progressive-style transfers, e.g. for media playout. Transfer speeds do not degrade with congestion or distance, ensuring smooth, immediate processing of the incoming data. Complete security o Includes complete, built-in security using open standard cryptography for user authentication, data encryption and data integrity verification. Software only o Uses standard, unmodified IP networking and is implemented in software as an application protocol. Requires no changes to the operating system or driver installation on the file transfer endpoints, no new appliances, and no network changes. Robust o Provides end-to-end transfer progress reporting and detailed performance statistics for monitoring and billing, as well as custom pre- and post-transfer processing. o Automatically resumes partial transfers and retries failed transfers. Flexible open architecture o Supports interoperable file and directory transfers between all major operating systems and provides a complete, modern software API to build upon. 1.2 Need for fasp In this digital world, fast and reliable movement of digital data, including massive sizes over global distances, is becoming vital business success across virtually every industry. The Transmission Control Protocol(TCP) that has traditionally been the engine of this data movement, however has inherent bottlenecks in performance(fig 1), especially for networks with high round-trip time and packet loss, and most pronounced on high-bandwidth networks. It is well understood that these inherent “soft” bottlenecks are caused by TCP’s Additive Division Of Computer Science, SOE, CUSAT 2 Fast and Secure Protocol Increase Multiplicative Decrease(AIMD) congestion avoidance algorithm, which slowly probes the available bandwidth of the network, increasing the transmission rate until packet loss is detected and then exponentially reducing the transmission rate. However, it is less understood that other sources of packet losses due to physical network media, not associated with network congestion equally reduce the transmission rate. In fact, TCP AIMD itself creates losses, and equally contributes to the bottleneck. In ramping up the transmission rate until loss occurs, AIMD inherently overdrives the available bandwidth. In some cases, this self-induced loss actually surpasses loss from other causes (E.g. Physical media) and turns a loss free communication “channel” into an unreliable “channel” with an unpredictable loss ratio. The loss-based congestion control in TCP AIMD has a deadly impact on throughput: Every packet loss leads to retransmission, and stalls the delivery of data to the receiving application until retransmission occurs. This can slow the performance of any network application but is fundamentally flawed for reliable transmission of large “bulk” data, for example file transfer, which does not require in-order (byte-stream delivery). This coupling of reliability (retransmission) to congestion control in TCP creates a severe artificial throughput penalty for file transport, as evident by the poor performance of traditional file transfer protocols built on TCP such as FTP, HTTP over wide area networks. Optimizations for these protocols such as TCP acceleration applied through hardware devices or alternative TCP improve file transfer throughput to some degree when round trip times and packet loss rates are modest, but the gains diminish significantly at global distances, Furthermore as we will later see, parallel TCP or UDP blasting technologies provide an alternative means to achieve apparently higher throughputs but at tremendous bandwidth costs. These approaches retransmit significant, sometimes colossal amounts of unneeded file data, redundant with data already in flight or received, and thus take many times longer to transfer file data than is necessary, and cause huge bandwidth cost. Specifically, their throughput of useful bits excluding retransmitted data packets—“goodput”—is very poor. These approaches deceptively appear to improve network bandwidth utilization by filling the pipe with waste, and transfer times are still
Recommended publications
  • Comparison of Ftp V/S Ftps
    www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 COMPARISON OF FTP V/S FTPS Subhasish Das ,VIT Kusumakar Kashyap,VIT Abstract: The File Transfer Protocol (FTP) is a standard network protocol used to transfer computer files from one host to another host over a TCP-based network, such as the Internet.FTP is built on a clientserver architecture and uses separate control and data connections between the client and the server.FTP users may authenticate themselves using clear sign-in protocol, normally in the form of a username and password, but can connect anonymously if the server is configured to allow it. For secure transmission that protects the username and password, and encrypts the content, FTP is often secured with SSL/TLS (FTPS). FTPS helps to encrypt and transfer private information within the constraints of regulatory requirements. Many industries rely on the timely and effective transfer of files to provide services to consumers. For example, the healthcare industry requires exchanging sensitive information between healthcare providers, insurance providers, and eligibility services, to name a few. Regulatory requirements such as the Health Insurance Portability and Accountability Act (HIPAA) provide requirements for the use and disclosure of patients'private healthcare information (PHI). FTP services exchange information between caregivers and insurance companies, but the FTP protocol lacks the level of protection needed to meet regulatory requirements for the safeguarding of PHI. However, encrypting private information over the wire using FTPS helps meet this requirement. Introduction Working of FTP FTP control connection created after TCP connection is established. Internal FTP commands are passed over this logical connection based on formatting rules established by the Telnet protocol.Each command sent by the client receives a reply from the server to indicate whether it succeeded or failed.
    [Show full text]
  • Fast and Secure Protocol Seminar Report
    Fast And Secure Protocol Seminar Report Ceriferous Webb sometimes traipsing his philopena definitely and sympathize so interestingly! Agley Denis taring some neologism and glories his laryngoscopy so demonstratively! Footworn Irvine moan some anns after abstractionist Gerold wash smooth. Learn more fun and national stakeholders should i post a seminar and how to all students Substantial data is geographically apart from real world that sensors in a spelling error correction is. Database encryption: an overview to contemporary challenges and design considerations. This seminar is used by a protocol for an algorithm, reports from fbi heads are. The implementation of such security measures between vehicles and Fog nodes will prevent primitive attacks before they reach and exploit cloud system too, and would help in improving the overall road safety. Ongoing campaigns should be visible throughout the year. Division Multiplexing, Data Compression. While smartphones and recover from addressing various fields and fast and system and training opportunities that protect their blood sugars. Genetic compatibility tests should report was then can be determined necessary industrial revolution look. PM to dislocate a flexible healthcare access control value which simply the benefits of context awareness and discretionary access. Robbery also includes crimes involving pretend weapons or those in which the weapon is not seen by the victim, but the robber claims to possess one. PDF SEMINAR REPORT Entitled NEAR FIELD. Field of concentration a comprehensive report and part oral presentation required. In order to support emerging online activities within the digital information infrastructure, such as commerce, healthcare, entertainment and scientific collaboration, it is increasingly important to verify and protect the digital identity of the individuals involved.
    [Show full text]
  • Study on Security Levels in Cloud Computing
    International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063 Volume-6, Issue-9, Sep.-2018, http://iraj.in STUDY ON SECURITY LEVELS IN CLOUD COMPUTING 1K. SWATHI, 2BADDAM INDIRA 1Research Scholar, Dept. of Computer Science & Engineering, University college of Engineering, OU, Hyderabad 2Associate Professor, Dept. of Computer Science, Kasturba Degree & PG College, Hyderabad E-mail: [email protected], [email protected] Abstract - Organization’s adapt to cloud computing is increasing rapidly as it offers many potential benefits to small and medium scale firm such as fast deployment, pay-for-use, low costs, scalability, rapid provisioning, rapid elasticity, pervasive network access, greater flexibility, and on-demand security controls. Beside its advantages, cloud computing has its own major disadvantages which is obstructing in moving cloud to vogue. Major concern on cloud computing is data and its security. Security attacks are at various levels in cloud computing which is becoming very difficult to handle with. The levels of cloud computing security include Network level, Host Level, and Application level. This paper demonstrates various possible attacks at each level of cloud computing security. It also helps in understanding the necessary measures required to be taken in order to get rid of the attacks. Keywords - Cloud Computings; Security Levels; Phishing Attack; Malware Injection; FASP; Hypervisor; DNSSEC; Virtual Server; VMware . I. INTRODUCTION and every type of service requires different levels of security in order to protect the cloud. Current hot topic in information technology discussions is cloud computing and the core part in it The common and main goals of security requirements is its security.
    [Show full text]
  • Ultra High-Speed Transport Technology WHITE PAPER
    Ultra High-Speed Transport Technology A theoretical study and its engineering practice of Aspera FASP TM over 10Gbps WANs with leading storage systems WHITE PAPER WHITE PAPER Ultra High-Speed Transport Technology The Future of Wide Area Data Movement TABLE OF CONTENTS HIGHLIGHTS 1. Introduction 3 FASP TM Overview Aspera’s FASP™ transfer technology 2. Performance limitations of TCP 4 is an innovative software that 3. New rate-based data transmission technology in FASP 6 eliminates the fundamental bottlenecks of conventional file 3.1. Rate-based congestion control 7 transfer technologies such as FTP, HTTP, and Windows CIFS and 3.2. Decoupled reliability and congestion control 7 dramatically speeds transfers over public and private IP networks. 3.3. Advanced bandwidth sharing and management 8 The approach achieves perfect 3.4. Performance measurement 9 throughput efficiency, independent of the latency of the path and is 4. Beyond the WAN - the “last foot” to the storage appliance 10 robust to packet losses. In addition, users have extra-ordinary control 4.1. Disk/storage rate adaptation 10 over individual transfer rates and bandwidth sharing and full visibility 5. Mutli-Gbps WAN transfers performance testing 12 into bandwidth utilization. 5.1. Experimental setup 13 Use Cases 5.2. Experimental results 14 • Enterprise-wide file movement 5.3. Best practices learned for maximum performance 17 • High-volume content ingest 6. Conclusions 17 • High-performance content distribution Reference 19 • FTP/SFTP replacement for high performance transfers Benefits • Maximum speed and predictable delivery times for digital assets of any size, over any distance or network conditions. • Complete security is built-in, including secure end-point authentication, on-the-fly data encryption, and integrity verification.
    [Show full text]
  • Video in the Cloud Tcp Congestion Control Optimization for Cloud Computing
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Fall 2012 VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING Rafael Alvarez-Horine San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Computer Sciences Commons Recommended Citation Alvarez-Horine, Rafael, "VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING" (2012). Master's Projects. 284. DOI: https://doi.org/10.31979/etd.mwak-8awt https://scholarworks.sjsu.edu/etd_projects/284 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING A Writing Project Presented to The Faculty of the Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Rafael Alvarez-Horine November 2012 © 2012 Rafael Alvarez-Horine ALL RIGHTS RESERVED ii VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING by Rafael Alvarez-Horine APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ STATE UNIVERSITY November 2012 Dr. Melody Moh Department of Computer Science Dr. Sami Khuri Department of Computer Science Dr. Chris Pollett Department of Computer Science iii ABSTRACT VIDEO IN THE CLOUD TCP CONGESTION CONTROL OPTIMIZATION FOR CLOUD COMPUTING by Rafael Alvarez-Horine With the popularity of video streaming, a new type of media player has been created called the adaptive video player that adjusts video quality based on available network bandwidth.
    [Show full text]
  • Evaluation of Communication Protocols Between Vehicle and Server: Evaluation of Data Transmission Overhead by Communication Prot
    DEGREE PROJECT IN INFORMATION TECHNOLOGY, SECOND CYCLE STOCKHOLM, SWEDEN 2016 Evaluation of communication protocols between vehicle and server Evaluation of data transmission overhead by communication protocols TOMAS WICKMAN KTH ROYAL INSTITUTE OF TECHNOLOGY INFORMATION AND COMMUNICATION TECHNOLOGY Evaluation of communication protocols between vehicle and server Evaluation of data transmission overhead by communication protocols Tomas Wickman 2016-06-29 Master’s Thesis Examiner Gerald Q. Maguire Jr. Academic adviser Anders Västberg KTH Royal Institute of Technology School of Information and Communication Technology (ICT) Department of Communication Systems SE-100 44 Stockholm, Sweden Abstract | i Abstract This thesis project has studied a number of protocols that could be used to communicate between a vehicle and a remote server in the context of Scania’s connected services. While there are many factors that are of interest to Scania (such as response time, transmission speed, and amount of data overhead for each message), this thesis will evaluate each protocol in terms of how much data overhead is introduced and how packet loss affects this overhead. The thesis begins by giving an overview of how a number of alternative protocols work and what they offer with regards to Scania’s needs. Next these protocols are compared based on previous studies and each protocol’s specifications to determine which protocol would be the best choice for realizing Scania’s connected services. Finally, a test framework was set up using a virtual environment to simulate different networking conditions. Each of the candidate protocols were deployed in this environment and setup to send sample data. The behaviour of each protocol during these tests served as the basis for the analysis of all of these protocols.
    [Show full text]
  • D4.1:Final Use Cases from Related Work
    ENDEAVOUR: D4.1 :Final Use Cases from related work Christoph Dietzel, M. Bleidner, Thomas King, Mitch Gusat, Philippe Owezarski To cite this version: Christoph Dietzel, M. Bleidner, Thomas King, Mitch Gusat, Philippe Owezarski. ENDEAVOUR: D4.1 :Final Use Cases from related work. DE-CIX; IBM Zürich; CNRS-LAAS. 2015. hal-01965669 HAL Id: hal-01965669 https://hal.laas.fr/hal-01965669 Submitted on 26 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ENDEAVOUR: Towards a flexible software-defined network ecosystem Project name ENDEAVOUR Project ID H2020-ICT-2014-1 Project No. 644960 Working Package Number 4 Deliverable Number 4.1 Document title Final Use Cases from Related Work Document version 1.0 Editor in Chief Dietzel, DE-CIX Authors Dietzel, Bleidner, King, Gusat Date 06/07/2015 Reviewer UCLO Date of Review 04/12/2015 Status Public WP4 / D4.1 ENDEAVOUR Version 1.0 Revision History Date Version Description Author 18/06/15 0.1 First draft Dietzel, Bleidner 25/06/15 0.2 Integrated Sections 2.4 and 2.6.3. Gusat, Kathareios 26/06/15 0.3 Improved structure, content and Dietzel, Bleidner, wording King 19/06/15 0.4 Minor changes Uhlig, Kathareios 02/07/15 0.5 Minor changes Dietzel, Bleidner 03/07/15 0.6 Add SoA on unsupervised attack de- Owezarski tection 26/11/15 0.7 Included list of acronyms Dietzel, Bleidner 01/12/15 0.8 Added a summary Dietzel, Bleidner 04/12/15 0.9 Review minor corrections Canini, Chiesa 10/12/15 1.0 Final improved version Dietzel, Bleidner H2020-ICT-2014-1 Project No.
    [Show full text]
  • ELFIQ APP OPTIMIZER White Paper V1.03 - May 2015 CONTENTS Introduction
    ELFIQ APP OPTIMIZER White Paper V1.03 - May 2015 CONTENTS Introduction ...............................................................................................................................................................................3 Signature-Based Recognition vs. ACL’s ................................................................................................................3 Detection Engine ...................................................................................................................................................................3 Using Groups or Individual Applications .............................................................................................................3 Actions Once an Application is Detected ...........................................................................................................3 Appendix A: Application List ........................................................................................................................................ 4 martellotech.com elfiq.com 2 INTRODUCTION The Elfiq AppOptimizer is designed to give organizations full control over their existing and future bandwidth, guaranteeing key applications such as Citrix XenDesktop or Skype get priority treatment and undesirables such as peer-to-peer file transfers or games are limited or no longer permitted. It is an add-on-module that provides application-layer deep packet inspection (layer 7) classification and control, including Mobile, Social Networking, P2P, Instant Messaging,
    [Show full text]
  • Data Transfer Basics and Best Practices
    Data Transfer Basics and Best Practices Joon Kim, Ph.D. PICSciE, Research Computing Research Computing Bootcamp 2018 10/29/2018 – 11/01/2018 Why do we care? Without good practice, you will waste time and effort 1. Start data transfer using SCP at 10pm. Usually takes 10 hours. 2. At 2am, there was a brief 1-minute network outage. Transfer job aborted. 3. Arrive 8am in the morning. See the damage. Start again, which will take 10 hours. Time 4. Lost a day of work. Effort 2 Why do we care? Without good practice, you will waste time and effort 1. Start data transfer using SCP at 10pm. Usually takes 10 hours. Is that really the best? Time Effort 3 We want you to Focus on your research, not on transferring data X X Time Effort 4 Use case 1 • I have data at Argonne National LaB that I want to process & analyze at Princeton HPC clusters Argonne National Lab Princeton RC HPC Clusters 5 Use case 2 • I have data on my workstation/laptop that I want to process & analyze at Princeton HPC clusters workstation/laptop Princeton RC HPC Clusters 6 Data Transfer Basics 7 Data transfer: Overview Three key elements • Endpoints 1/10/100 Gbps • Network Source Destination SCP • Transfer tool FTP SFTP rsync rsync over ssh These will determine how you transfer data and how fast it will be 8 Why is my data transfer slow? Where are the bottlenecks? scp scp ftp ftp Source Destination e.g., Server machine with 10 Gb/s connection will not guarantee 10 Gb/s transfer speed 9 Endpoint Examples SMB file mount NFS file mount Z: drive \\plabs.princeton.edu\data\ 10 1.
    [Show full text]
  • 5G User Satisfaction Enabled by FASP Evaluating the Performance of Aspera's FASP
    DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL STOCKHOLM, SWEDEN 2015 5G user satisfaction enabled by FASP Evaluating the performance of Aspera's FASP PATRIK HAGERNÄS KTH ROYAL INSTITUTE OF TECHNOLOGY INFORMATION AND COMMUNICATION TECHNOLOGY 5G user satisfaction enabled by FASP Evaluating the performance of Aspera's FASP Patrik Hagernäs 2015-08-28 Master’s Thesis Examiner and Academic Adviser Gerald Q. Maguire Jr. Industrial advisers Annikki Welin & Tomas Thyni KTH Royal Institute of Technology School of Information and Communication Technology (ICT) Department of Communication Systems SE-100 44 Stockholm, Sweden Abstract | i Abstract With Ericsson’s goal to have optimal user experience at 5G’s 2020 release, it is very important to optimize transport protocols and techniques to manage the increasing amount of data traffic. Additionally, it will be important to manage handovers between very high speed 5G networks and older networks. Today most of the traffic is video on demand and the amount of this kind of traffic is expected to increase. Moreover, the current amount of data traffic will increase by an order of magnitude over the next few years. This thesis focuses on radio access networks and the difficulties they face in delivering high speed data traffic. This thesis analyzes one of the most used TCP protocols, CUBIC, as well as a new transport protocol developed by Aspera, called the Fast and Secure Protocol. Aspera’s FASP is a new transport protocol that promises full link utilization. FASP is built upon UDP and uses advanced round trip time measurements and queuing delay to detect the available bandwidth between two communicating hosts.
    [Show full text]
  • Use Style: Paper Title
    International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063 Volume-6, Issue-9, Sep.-2018, http://iraj.in STUDY ON SECURITY LEVELS IN CLOUD COMPUTING 1K. SWATHI, 2BADDAM INDIRA 1Research Scholar, Dept. of Computer Science & Engineering, University college of Engineering, OU, Hyderabad 2Associate Professor, Dept. of Computer Science, Kasturba Degree & PG College, Hyderabad E-mail: [email protected], [email protected] Abstract - Organization’s adapt to cloud computing is increasing rapidly as it offers many potential benefits to small and medium scale firm such as fast deployment, pay-for-use, low costs, scalability, rapid provisioning, rapid elasticity, pervasive network access, greater flexibility, and on-demand security controls. Beside its advantages, cloud computing has its own major disadvantages which is obstructing in moving cloud to vogue. Major concern on cloud computing is data and its security. Security attacks are at various levels in cloud computing which is becoming very difficult to handle with. The levels of cloud computing security include Network level, Host Level, and Application level. This paper demonstrates various possible attacks at each level of cloud computing security. It also helps in understanding the necessary measures required to be taken in order to get rid of the attacks. Keywords - Cloud Computings; Security Levels; Phishing Attack; Malware Injection; FASP; Hypervisor; DNSSEC; Virtual Server; VMware . I. INTRODUCTION and every type of service requires different levels of security in order to protect the cloud. Current hot topic in information technology discussions is cloud computing and the core part in it The common and main goals of security requirements is its security.
    [Show full text]
  • IBM Connect:Direct for UNIX: Documentation
    IBM Connect:Direct for UNIX 6.1 Documentation IBM This edition applies to Version 5 Release 3 of IBM® Connect:Direct and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 1993, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Chapter 1. Release Notes.......................................................................................1 New Features and Enhancements...............................................................................................................1 Hardware and Software Requirements....................................................................................................... 3 Support policy for Container Delivery Models.............................................................................................5 Known Restrictions...................................................................................................................................... 5 Upgrade Considerations.............................................................................................................................. 7 Upgrading Connect:Direct File Agent on AIX.............................................................................................. 7 Special Considerations................................................................................................................................ 7 Special Considerations
    [Show full text]