Article [1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-π-A Organic Sensitizers for Dye- Sensitized Solar Cells Timofey N. Chmovzh 1, Ekaterina A. Knyazeva 1,2, Ellie Tanaka 3, Vadim V. Popov 2, Ludmila V. Mikhalchenko 1, Neil Robertson 3,* and Oleg A. Rakitin 1,2,* 1 N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
[email protected] (O.A.R.);
[email protected] (T.N.C.);
[email protected] (E.A.K.);
[email protected] (L.V.M.) 2 Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia;
[email protected] 3 EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
[email protected] * Correspondence: Correspondence:
[email protected] (N.R.);
[email protected] (O.A.R.); Tel.: +44-131-650-4755 (N.R.); +7-499-135-5327(O.A.R.) Academic Editor: Panayiotis A. Koutentis Received: 4 April 2019; Accepted: 19 April 2019; Published: 22 April 2019 Abstract: Four new D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs), with [1,2,5]thiadiazolo[3 ,4-d]pyridazine as internal acceptor, thiophene unit as π-spacer and cyanoacrylate as anchoring electron acceptor, have been synthesized. The donor moiety was introduced into [1,2,5]thiadiazolo[3,4-d]pyridazine by nucleophilic aromatic substitution and Suzuki cross-coupling reactions, allowing design of D-A-π-A sensitizers with the donor attached to the internal heterocyclic acceptor not only by the carbon atom, as it is in a majority of DSSCs, but by the nitrogen atom also.