Skeletal Mechanical Properties of Mediterranean Corals Along a Wide Latitudinal Gradient
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reproductive Strategies of the Coral Turbinaria Reniformis in The
www.nature.com/scientificreports OPEN Reproductive strategies of the coral Turbinaria reniformis in the northern Gulf of Aqaba (Red Sea) Received: 10 October 2016 Hanna Rapuano1, Itzchak Brickner1, Tom Shlesinger1, Efrat Meroz-Fine2, Raz Tamir1,2 & Accepted: 13 January 2017 Yossi Loya1 Published: 14 February 2017 Here we describe for the first time the reproductive biology of the scleractinian coralTurbinaria reniformis studied during three years at the coral reefs of Eilat and Aqaba. We also investigated the possibility of sex change in individually tagged colonies followed over a period of 12 years. T. reniformis was found to be a stable gonochorist (no detected sex change) that reproduces by broadcast spawning 5–6 nights after the full moon of June and July. Spawning was highly synchronized between individuals in the field and in the lab. Reproduction ofT. reniformis is temporally isolated from the times at which most other corals reproduce in Eilat. Its relatively long reproductive cycle compared to other hermaphroditic corals may be due to the high reproductive effort associated with the production of eggs by gonochoristic females. Sex ratio in both the Aqaba and Eilat coral populations deviated significantly from a 1:1 ratio. The larger number of males than of females may provide a compensation for sperm limitation due to its dilution in the water column. We posit that such sex allocation would facilitate adaptation within gonochoristic species by increasing fertilization success in low density populations, constituting a phenomenon possibly regulated by chemical communication. Research on scleractinian coral reproduction is a prerequisite for the study of other life-history strategies, the ecol- ogy and persistence of populations and communities, and for the management and preservation of the reef1–3. -
The Coral Trait Database, a Curated Database of Trait Information for Coral Species from the Global Oceans
www.nature.com/scientificdata OPEN The Coral Trait Database, a curated SUBJECT CATEGORIES » Community ecology database of trait information for » Marine biology » Biodiversity coral species from the global oceans » Biogeography 1 2 3 2 4 Joshua S. Madin , Kristen D. Anderson , Magnus Heide Andreasen , Tom C.L. Bridge , , » Coral reefs 5 2 6 7 1 1 Stephen D. Cairns , Sean R. Connolly , , Emily S. Darling , Marcela Diaz , Daniel S. Falster , 8 8 2 6 9 3 Erik C. Franklin , Ruth D. Gates , Mia O. Hoogenboom , , Danwei Huang , Sally A. Keith , 1 2 2 4 10 Matthew A. Kosnik , Chao-Yang Kuo , Janice M. Lough , , Catherine E. Lovelock , 1 1 1 11 12 13 Osmar Luiz , Julieta Martinelli , Toni Mizerek , John M. Pandolfi , Xavier Pochon , , 2 8 2 14 Morgan S. Pratchett , Hollie M. Putnam , T. Edward Roberts , Michael Stat , 15 16 2 Carden C. Wallace , Elizabeth Widman & Andrew H. Baird Received: 06 October 2015 28 2016 Accepted: January Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to Published: 29 March 2016 an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. -
The Global Body Size Biomass Spectrum Is Multimodal
Supplementary Information for The Global Body Size Biomass Spectrum is Multimodal Edward W. Tekwa, Katrina A. Catalano, Anna L. Bazzicalupo, Malin L. Pinsky Edward W. Tekwa Email: [email protected] This PDF file includes: SI Text Figures S1 to S2 Tables S1 to S8 SI References 1 Supplementary Information Text Statistical Evaluation of Allometric Trends and Multimodality. Statistical evaluations of the size- biomass relationship were performed among different classifications of organisms depending on ecological realms (marine, terrestrial, subterranean) and trophic levels (producer, consumer). The six classes are: all, terrestrial, marine, terrestrial and marine, producers, and consumers. To fit statistical relationships between size and biomass, we did not perform simple hypothesis tests directly on the best estimated spectra because 1) biomass datapoints are not independent across sizes within groups, and 2) the cross-taxa biomass at any size depends on all groups, making the error structure correlated across the size range. To obtain confidence bounds, we rely on a parametric bootstrapped ensemble of possible spectra. For each bootstrap, the possible continuous spectrum is sampled once per log size bin from -18 to 11, for a sample size of 30. This is a lower resolution than used for graphical purposes; here, 30 is likely a conservative estimate of the number of independent datapoints that contribute to the cross-taxa spectrum in any trophic or habitat class. We then performed statistical regressions on 200 bootstrap sampled sets, each obtained by independently sampling from the biomass error distribution of each group and summing by size. We then found the 2.5th and 97.5th percentiles of the outputs as each regression model’s 95% confidence bounds. -
Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S. -
Sexual Reproduction of the Solitary Sunset Cup Coral Leptopsammia Pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean
Marine Biology (2005) 147: 485–495 DOI 10.1007/s00227-005-1567-z RESEARCH ARTICLE S. Goffredo Æ J. Radetic´Æ V. Airi Æ F. Zaccanti Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis Received: 16 July 2004 / Accepted: 18 December 2004 / Published online: 3 March 2005 Ó Springer-Verlag 2005 Abstract Information on the reproduction in scleractin- came indented, assuming a sickle or dome shape. We can ian solitary corals and in those living in temperate zones hypothesize that the nucleus’ migration and change of is notably scant. Leptopsammia pruvoti is a solitary coral shape may have to do with facilitating fertilization and living in the Mediterranean Sea and along Atlantic determining the future embryonic axis. During oogene- coasts from Portugal to southern England. This coral sis, oocyte diameter increased from a minimum of 20 lm lives in shaded habitats, from the surface to 70 m in during the immature stage to a maximum of 680 lm depth, reaching population densities of >17,000 indi- when mature. Embryogenesis took place in the coelen- viduals mÀ2. In this paper, we discuss the morphological teron. We did not see any evidence that even hinted at aspects of sexual reproduction in this species. In a sep- the formation of a blastocoel; embryonic development arate paper, we report the quantitative data on the an- proceeded via stereoblastulae with superficial cleavage. nual reproductive cycle and make an interspecific Gastrulation took place by delamination. Early and late comparison of reproductive traits among Dend- embryos had diameters of 204–724 lm and 290–736 lm, rophylliidae aimed at defining different reproductive respectively. -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
Anthozoa: Hexacorallia: Scleractinia: Dendrophylliidae) from Korea
Anim. Syst. Evol. Divers. Vol. 32, No. 1: 38-43, January 2016 http://dx.doi.org/10.5635/ASED.2016.32.1.038 Short communication A New Record of Dendrophyllia compressa (Anthozoa: Hexacorallia: Scleractinia: Dendrophylliidae) from Korea Eunae Choi, Jun-Im Song* College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea ABSTRACT Dendrophyllia compressa Ogawa and Takahashi, 1995 is newly reported from Korea. The specimen was collected off Seogwipo, Jeju-do, Korea in 1969. It is described herein based on the morphological characters of the skeletal structures. Dendrophyllia compressa is characterized by its small and bushy growth form with branches, vertical growth direction, small calicular diameter, compressed calice, Pourtalès Plan with vertical septal inner edges, flat and spongy columella, exserted septal upper margins, and epitheca. Dendrophyllia compressa has been synonymized with Cladopsammia eguchii (Wells, 1982). However, the former species differs from the latter species in its growth form, growth direction, colony size, corallite size, and corallite shape. Keywords: Anthozoa, Scleractinia, Dendrophylliidae, Dendrophyllia, Korea INTRODUCTION cribed. The specimen was collected from the subtidal zone off The family Dendrophylliidae Gray, 1847 comprises 167 Seogwipo, Jeju-do, Korea in 1969. It was dissolved in sod- species in 21 genera (Cairns, 2001; Roberts et al., 2009; ium hypochlorite solution diluted with distilled water for World Register of Marine Species, 2015). Among these 24 hours to remove all the soft tissues, washed in distilled species, 29 species in the genus Dendrophyllia have been water, and dried for the examination of the skeletal struc- reported worldwide (Roberts et al., 2009; World Register of tures. The external growth forms and shapes of the coralla Marine Species, 2015). -
Scleractinia Fauna of Taiwan I
Scleractinia Fauna of Taiwan I. The Complex Group 台灣石珊瑚誌 I. 複雜類群 Chang-feng Dai and Sharon Horng Institute of Oceanography, National Taiwan University Published by National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan Table of Contents Scleractinia Fauna of Taiwan ................................................................................................1 General Introduction ........................................................................................................1 Historical Review .............................................................................................................1 Basics for Coral Taxonomy ..............................................................................................4 Taxonomic Framework and Phylogeny ........................................................................... 9 Family Acroporidae ............................................................................................................ 15 Montipora ...................................................................................................................... 17 Acropora ........................................................................................................................ 47 Anacropora .................................................................................................................... 95 Isopora ...........................................................................................................................96 Astreopora ......................................................................................................................99 -
The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as -
Structure of Mediterranean 'Cnidarian Populations In
Homage to Ramon Marga/et,· or, Why there is such p/easure in studying nature 243 (J. D. Ros & N. Prat, eds.). 1991 . Oec% gia aquatica, 10: 243-254 STRUCTURE OF 'CNIDARIAN POPULATIONS IN MEDITERRANEAN SUBLITTORAL BENTHIC COMMUNITIES AS A RESUL T OF ADAPTATION TO DIFFERENT ENVIRONMENTAL CONDITIONS 2 JOSEP-MARIA GILIl & ENRIe BALLESTEROs .• 1 Insti t de Ciencies del Mar (CSIC). Passeig Nacional, s/n. 08039 Barcelona. Spain 2 � Centre d'Estudis Avanc;:atsde Blanes (CSIC). Camí de Santa Barbara, s/n. 17300 Blanes. Spain Received: March 1990 SUMMARY The presence and abundance of Cnidarians, extremely cornmon in Mediterranean sublittoral benthic communities, exerts a profound effect on the entire structure of such communities, although the roles of Anthozoans and Hydrozoans differ in accordance with their different biological characteristics. Structural differences in benthic cnidarian populations were observed in three sublittoral cornmunities located within 100 m of each other yet differing considerably in light intensity and water movement. Species-area and Shannon's diversity-area curves were computed for each community from reticulate samples constituted by 18 subsamples 2 of 289 cm . Species-area curves were fitted to semilogarithmic functions, while diversity-area curves were fitted to Michaelis-Menten functions by the method of least squares. Species richness, species distribution, alpha-diversity, and pattem diversity were estimated from the fitted curves. Patch size for Anthozoans was smaller than that for Hydrozoans in all three communities. Diversity was greatest in the cornmunities with the lowest and with the highest light intensity and water flow levels, but species richness was highest in the intermediate community. -
POCILLOPORIDAE, FAVIIDAE Y DENDROPHYLLIIDAE (ANTHOZOA: SCLERACTINIA) DE LAS AGUAS COSTERAS DE MALLORCA
CORE Metadata, citation and similar papers at core.ac.uk Provided by Revistes Catalanes amb Accés Obert Bol\. SOCo Hist. Nat. Balears, 31 (1987): 105-114. Palma de Mallorca POCILLOPORIDAE, FAVIIDAE y DENDROPHYLLIIDAE (ANTHOZOA: SCLERACTINIA) DE LAS AGUAS COSTERAS DE MALLORCA. 1. ROCA e 1. MORENO<l) PALABRAS CLAVE: Escleractiniarios, Mallorca. KEYWORDS: Scleractinia, Majorca. RESUMEN. Se citan cinco especies representantes de las familias Pocilloporidae, Fa viidae y Dendrophylliidae de las aguas costeras de Mallorca. Las especies Ballanophy llia europaea y B. regia constituyen primeras citas para estas aguas. Para cada una de las especies, se dan las sinonimias y variaciones morfológicas que pueda presentar, así como algunas particularidades sobre el hábitat y la distribu ción geográfica. SUMMARY. POCILLOPORIDAE, FAVIIDAE AND DENDROPHYLLIIDAE (ANTHO ZOA: SCLERACTINIA) IN THE COASTAL WATERS OF THE ISLAND OF MAJORCA. Five species of the families Pocilloporidae, Faviidae and Dendrophylliidae from the coastal waters of the Island of Majorca (NW Mediterranean) are listed. Ballanophyllia europaea and B. regia are first records for Majorcan waters. For each species, the synonymy, morphological variations as well as sorne remarks on the habitat and geographic distribution, especially referred to our coasts, are given. RESUM. POCILLOPORIDAE, FAVIIDAE 1 DENDROPHYLLIDAE (ANTHOZOA: SCLE RACTINIA) A LES AIGÜES COSTANERES DE MALLORCA. Es citen cinc especies re presentants de les famílies Pocilloporidae, Faviidae i Dendrophyllidae de les aigües cos taneres de Mallorca. B,alanophyllia europaea i B. regia són primeres cites per a aques- . tes aigües. Es donen les sinonímies i variacions morfológiques per a cadascuna de les especies, així mateix s'assenyalen algunes característiques particulars en relació a l'habitat i la distribució g~ografica. -
The Reproductive Biology of the Scleractinian Coral Plesiastrea Versipora in Sydney Harbour, Australia
Vol. 1: 25–33, 2014 SEXUALITY AND EARLY DEVELOPMENT IN AQUATIC ORGANISMS Published online February 6 doi: 10.3354/sedao00004 Sex Early Dev Aquat Org OPEN ACCESS The reproductive biology of the scleractinian coral Plesiastrea versipora in Sydney Harbour, Australia Alisha Madsen1, Joshua S. Madin1, Chung-Hong Tan2, Andrew H. Baird2,* 1Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia 2ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia ABSTRACT: The scleractinian coral Plesiastrea versipora occurs throughout most of the Indo- Pacific; however, the species is only abundant in temperate regions, including Sydney Harbour, in New South Wales, Australia, where it can be the dominant sessile organism over small spatial scales. Population genetics indicates that the Sydney Harbour population is highly isolated, sug- gesting long-term persistence will depend upon on the local production of recruits. To determine the potential role of sexual reproduction in population persistence, we examined a number of fea- tures of the reproductive biology of P. versipora for the first time, including the sexual system, the length of the gametogenetic cycles and size-specific fecundity. P. versipora was gonochoric, sup- porting recent molecular work removing the species from the Family Merulinidae, in which the species are exclusively hermaphroditic. The oogenic cycle was between 13 and 14 mo and the spermatogenetic cycle between 7 and 8 mo, with broadcast spawning inferred to occur in either January or February. Colony sex was strongly influenced by colony size: the probability of being male increased with colony area. The longer oogenic cycle suggests that females are investing energy in reproduction rather than growth, and consequently, males are on average larger for a given age.