bioRxiv preprint doi: https://doi.org/10.1101/2020.01.26.920322; this version posted January 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C. elegans “reads” bacterial non-coding RNAs to learn pathogenic avoidance Authors: Rachel Kaletsky#1, 2, Rebecca S. Moore#1, Geoffrey D. Vrla1, Lance L. Parsons2, Zemer Gitai1, and Coleen T. Murphy1, 2* Affiliations: 1Department of Molecular Biology & 2LSI Genomics, Princeton University, Princeton NJ 08544 *Corresponding Author:
[email protected] # Equal contribution 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.26.920322; this version posted January 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: C. elegans is exposed to many different bacteria in its environment, and must distinguish pathogenic from nutritious bacterial food sources. Here, we show that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance, both in the treated animals and in four subsequent generations of progeny. The RNA interference and piRNA pathways, the germline, and the ASI neuron are required for bacterial small RNA-induced avoidance behavior and transgenerational inheritance. A single non-coding RNA, P11, is both necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. A natural microbiome Pseudomonas isolate, GRb0427, can induce avoidance via its small RNAs, and the wild C.