Low-Carbon Ferrochromium Imports Not Causing Serious !~Jury

Total Page:16

File Type:pdf, Size:1020Kb

Low-Carbon Ferrochromium Imports Not Causing Serious !~Jury UNITED STATES INTERNATIONAL TRADE COMMISSION WW-CARBON FERROCHROMIUM Report to the President on Investigation No. TA-201-20 Under Section 201 of the Trade Act of 1974 USITC Publication 825 Washington, D. C. July 1977 UNITED STATES INTERNATIONAL TRADE COMMISSION COMMISSIONERS Daniel Minchew, Chairman Joseph O. Parker, Vice Chairman George M. Moore Catherine Bedell Italo H. Ablondi Kenneth R. Mason, Secretary to the Commission This report was principally prepared by Nicholas C. Talerico, Minerals and Metals Division James S. Kennedy, Minerals and Metals Division assisted by Marvin C. Claywell, Operations Division N. Timothy Yaworski, Office of the General Counsel Charles W. Ervin, Supervisory Investigator Address all communications to United States International Trade Commission Washington, D .. c. 20436 FOR RELEASE AT WILL CONTACT: Kenneth R. Mason July 11,.1977 (202) 523-0161 USITC 77-052 LOW-CARBON FERROCHROMIUM IMPORTS NOT CAUSING SERIOUS !~JURY The United States International Trade Commission today reported to the President pursuant to the provisions of section 201 of the Trade Act of 1974 that imports of low-carbon ferro- chromium are not causing serious injury or the threat there- of to the relevant U.S. industry. Commissioners Daniel Minchew, Catherine Bedell, and Italo H. Ablondi formed the majority with their negative findings. Commissioner George M. Moore found in the affirmative that increased imports of low-carbon ferrochromium were a sub- stantial cause of the threat of serious iTijury to the domestic industry. Commissioner Joseph 0. Parker did not participate in the decision. There are three U.S. producers of low-carbon ferrochromi~m: Satralloy, Inc.; Globe Metallurgical Division, Interlake, Inc.; and Union Carbide Corp. These firms' shipment_s of low-carbon ferrochromium were valued at about $41 million in 1976. ( more ) LOW-CARBON FERROCHROMIUM IMPORTS NOT CAUSING SERIOUS INJURY 2 U.S. imports of low-carbon ferrochromium, most of which come from the Republic of South Africa, Rhodesia, and Japan, amounted to 42,961 shbrt tons~ chromium content, having a foreign value of about $55 million in 1976. Copies of the Commission's report, Low-Carbon Ferrochromium (USITC_Publication 825), containing the views of the Commissioners and information developed during the course of the investigation (No. TA-201-20), may be obtained from the Office of the Secretary, United States International Trade Commission, 701 E Street NW., Washington, D.C. 20436. 0 0 0 C 0 N T E N T S Report to the President-------------------~-------------------- 1 Determination of the Commission--------------------~----------- 2 Views of Chairman Daniel Minchew, Commissioners Catherine Bedell, and Italo H. Ablondi---------------------------------- 4 Views of ComTrrissioner George H. Moore-------------------------- 8 Informatjon obtained in the investigation: Introduction----------------------------------------------- A-1 Description and uses--------------------------------~-----­ A-2 Low-carbon ferrochromium------------------------------­ A-2 High-carbon ferrochromium-----------------------------­ A-3 Ferros i l icon chromium---------------------------------­ A-3 Substitutability of the chromium-containing ferroalloys-----------------------------------------­ A-5 U. S. tariff treatment-------------------------------------- A-6 Status of General Services Administration programs----­ A-6 History of the Rhodesian chrome embargo-------------------­ A-6 The question of increased imports-------------------------- A-8 U. S. imports------------------------------------------- A-8 Factors affecting U.S. imports------------------------­ A-8 Ratios of U.S. imports to production and consumption--- A-12 The question of serious injury to the domestic industry---- A-15 U. S. producers----------------------------------------­ A-15 Capacity----------------------------------------------- A-16 Furnace convertibility--------------------------------­ A-17 Domestic production-----------------------------------­ A-17 U. S. producers' shipments-----------------------------­ A-18 Inventories: Producers' inventories----------------------------- A-21 Consumers' inventories-----------~----------------- A-21 Importers' inventories----------------------------- A-25 U.S. exports------------------------------------------- A-25 Employment--------------------------------------------- A-25 Man-hours------------------------------------------ A-27 Productivity--------------------------------------- A-27 Employee earnings---------------------------------- A-27 Price relationship between domestic and imported low- carbon ferrochromium--------------------------------- A-29 Price trends--------------------------------------- A-33 Profit-and-loss experience of U.S. producers----------- A-35 Overall operations of the establishments----------- A-35 Operations on low-carbon ferrochromium------------- A-37 Operations on other products produced within the same establishments-------------------------- A-37 Comparison of net operating profit margins for low-carbon ferrochromium with those for other product lines or industries---------------------- A-38 CONTENTS Investment in productive facilities-------------------- A-39 The question of imports as a substantial cause of serious injury------------------------------------------- A-39 U.S. consumption--------------------------------------- A-41 Causes of injury-------------------·-------------------- A-43 Lost sales--------------------------------------------- A-46 Foreign industry--------------------------------------- A-47 The Japanese industry------------------------------ A-47 The South African industry------------------------- A-47 The Rhodesian industry----------------------------- A-47 Effect of technological change on U.S. and world low-carbon ferrochromium consumption------------- A-48 Appendix A. Public Law 95-12 and related information---------- A-50 Appendix B. Statistical tables-------------------------------- A-68 Appendix C. Study by Union Carbide Corp----------------------- A-83 Appendix D. Responses of imports to changes in the prices of imported low-carbon ferrochromium and domestic low-carbon ferrochromium and to changes in U.S. economic indicators----- A-99 Appendix E. Figures------------------------------------------- A-102 Figures 1. Low-carbon ferrochromium: U.S. imports with trend lines, 1968-76 and 1971-76------------------------------------ A-10 2. Low-carbon ferrochromium: Ratio of imports to production, 1968-76------------------------------------------------ A-13 3. Low-carbon ferrochromium: Ratio of imports to consump- tion, 1968-76------------------------------------------ A-14 4. Low-carbon ferrochromium: U.S. imports arid production, 1972-76------------------------------------------------ A-19 5. Low-carbon ferrochromium: U.S. imports and producers' shipments, 1972-76------------------------------------- A-20 6. Low-carbon ferrochromium: U.S. importers', producers', and consumers' inventories by quarters, 1972-76------- A-23 7. Low-carbon ferrochromium: U.S. imports and producers' inventories 1972-76----------------------------------- A-24 8. Low-carbon ferrochromium: Average number of production and related workers employed in producing low-carbon ferrochromium, by quarters, 1972-76------------------- A-26 9. Low-carbon ferrochromium: Man-hours worked by production and related workers producing low-carbon ferrochromium, by quarters, 1972-76----------------------------------- A-28 10'. Low-carbon ferrochromium: U.S. 'producers' and importers' lowest net prices (68%-73% chromium, .05% carbon), by quarters, 1970-76------------------------------------- A-31 CONTENTS 11. Low-carbon ferrochromium: U.S. producers' and import~rs' lowest net prices (no chromium specification,· .025 percent carbon), by quarters, 1970-76------------------ A-32 12. Wholesale price indexes for low-carbon ferrochromium and other selected commodities, 1970-76-------------------- A-34 13. Chromium ferroalloys: U.S. consumption, total, and by types, 1972-76----------------------------------------- A-42 14. Low-carbon ferrochromium: U.S. consumption and imports, 1972-76------------------------------------------------ A-44 15. Chromium ferroalloys: U.S. production, total, and by types, 1972-76------------------------------------~---- A-103. 16. Chromium ferroalloys: U.S. producers' shipments, total, and by types, 1972-76---------------------------------- A-104 TABLES 1. Ferrochromium: U.S. imports of high-carbon ferrochromium and ferrochromium silicon, 1968-76--------------------- A-69 2. Low-carbon ferrochromium: Average unit value of U.S. imports, by sources, 1968-76--------------------------- A-70 3. Chromium ferroalloys: U.S. production, total, and by types, 1972-76-----------------~----------------------- A-71 4. Chromium ferroalloys: U.S. producers' shipments, by types, 1972-76----------------------------------------- A-72 5. Chromium ferroalloys: Producers's, consumers', and importers' inventories, by types and by quarters, Jan. 1, 1972-Jan. 1, 1977----------------------------- A-73 6. Ferrochromium: U.S. exports, 1972-75, January-October 1975, and January-October 1976----------------------~- A-74 7. Average number of persons and the average number of production and related workers employed in producing low-carbon and high carbon ferrochromium and ferrosili- con chromium, by quarters, 1972-76--~------------------ A-75 8. Chromium ferroalloys: Man-hours worked by production and related workers producing all products, low-carbon and high-carbon
Recommended publications
  • Magnesium Ferrosilicon Alloy and Use Thereof in Manufacture of Nodular Cast Iron
    :uropaisches Patentamt 0 1 08 1 07 $ QJll Europeaniuropean Patent Office ® Publication number: B 1 Office)ffice europeen des brevets g) EUROPEAN PATENT SPECIFICATION §) Date of publication of patent specification: 13.01.88 (g) int. CI.4: C 22 C 33/08 |j) Application number: 83901516.1 Date of filing: 28.03.83 ® International application number: PCT/US83/00428 @ International publication number: WO 83/03848 10.11.83 Gazette 83/26 g) MAGNESIUM FERROSILICON ALLOY AND USE THEREOF IN MANUFACTURE OF NODULAR CAST IRON. (§) Priority: 21.04.82 US 370185 (73) Proprietor: SKW ALLOYS INC. 3801 Highland Avenue Niagara Falls New York 14305 (US) (§) Date of publication of application: 16.05.84 Bulletin 84/20 ® Inventor: DREMANN, Charles Earl Buckwalter Road (§) Publication of the grant of the patent: Phoenixville, PA 19460 (US) 13.01.88 Bulletin 88/02 @ Representative: Hale, Stephen Geoffrey et al ® Designated Contracting States: J.Y. & G.W. Johnson Furnival House 14/18 High DE FR GB Holborn London WC1V 6DE (GB) (58) References cited: FR-A-2443 510 GB-A-746406 GB-A- 885 896 GB-A-1 273 319 CD US-A-2 762 705 US-A-2873188 US-A-3 537 842 O US-A-3 703 922 US-A-4004 630 US-A-4224 069 00 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall CL be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been LU paid.
    [Show full text]
  • Pellet-Size Estimation of a Ferrochrome Pelletizer Circuit Using Computer Vision Techniques
    Pellet-size estimation of a ferrochrome pelletizer circuit using Computer Vision techniques by Johannes Kasselman Rabie Thesis presented in partial fulfilment of the requirements for the Degree of MASTER OF ENGINEERING (EXTRACTIVE METALLURGICAL ENGINEERING) in the Faculty of Engineering at Stellenbosch University Supervisor Dr Lidia Auret March 2018 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za ABSTRACT Pellet-size estimation of a ferrochrome pelletizer circuit using Computer Vision techniques Rabie J.K., Auret L. Department of Process Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Thesis: M.Eng (Extractive Metallurgical Engineering) March 2018 Agglomerate pellet size plays an integral part in the safe and stable operation of a submerged arc furnace (SAF), and the efficiencies and yields achieved within the ferrochrome refining processes. For effective process control that ensures constant and optimal pellet size production, the continuous monitoring of pellet size distribution produced by the agglomeration circuit becomes imperative. Traditional size estimation methods tend to be labour intensive and time consuming, and cannot provide feedback in real time. The need therefore exists for automated, real time, and non-intrusive industrial size estimation systems.
    [Show full text]
  • Ferrochrome Waste Management - Addressing Current Gaps
    Ferrochrome waste management - addressing current gaps SP du Preez orcid.org/ 0000-0001-5214-3693 Thesis submitted for the degree Doctor of Philosophy in Chemistry at the North-West University Promoter: Prof JP Beukes Co-promoter: Prof PG van Zyl Graduation May 2018 21220212 SOLEM DECLARATION I, Stephanus Petrus du Preez, declare herewith that the thesis entitled: Ferrochrome waste management - addressing current gaps, which I herewith submit to the North-West University (NWU) as completion of the requirement set for the Doctor in Philosophiae in Chemistry degree, is my own work, unless specifically indicated otherwise, has been text edited as required, and has not been submitted to any other tertiary institution other than the NWU. Signature of the candidate: University number: 21220212 Signed at Potchefstroom on 20 November 2017 SOLEMN DECLARATION i ACKNOWLEDGMENTS “A sluggard’s appetite is never filled, but the desires of the diligent are fully satisfied” Proverbs 12:4 God Almighty, thank you for the strength and perseverance to undertake each task that came across my path. Without your grace and love, I am nothing. I would sincerely like to thank and convey my most genuine gratitude towards the following people for their support, assistance and guidance during the past three years. They played a vital role in the completion of my thesis and helped me to grow both academically and as a person. My supervisor Prof Paul Beukes, and co-supervisor Dr Pieter van Zyl. I am endlessly thankful for your excellent guidance, patience, and the critical roles that both of you played in my personal and academical growth.
    [Show full text]
  • Charcoal As an Alternative Reductant in Ferroalloy Production: a Review
    processes Review Charcoal as an Alternative Reductant in Ferroalloy Production: A Review Gerrit Ralf Surup 1,*, Anna Trubetskaya 2 and Merete Tangstad 1 1 Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway; [email protected] 2 Department of Chemical Sciences, University of Limerick, V94 T9PX Castletroy, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +47-934-73-184 Received: 12 October 2020; Accepted: 3 November 2020; Published: 9 November 2020 Abstract: This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of challenges related to energy efficient charcoal production and formation of emissions in classical kiln technologies are discussed to underline the potential of bio-based reductant usage in ferroalloy reduction process. Keywords: charcoal; pyrolysis; bio-based reductant; ferroalloy industry; kiln 1.
    [Show full text]
  • South Africanferroalloys Handbook 2013
    HANDBOOK H1/2013 SOUTH AFRICANFERROALLOYS HANDBOOK 2013 DIRECTORATE: MINERAL ECONOMICS HANDBOOK H1/2013 SOUTH AFRICAN FERROALLOYS HANDBOOK 2013 DIRECTORATE: MINERAL ECONOMICS Compiled by: Ms K Ratshomo Email: ([email protected]) Picture on front cover Source: The BoshoekSmelter, North West Province www.meraferesources.co.za Issued by and obtainable from The Director: Mineral Economics, Trevenna Campus, 70 Meintjies Street, Arcadia, Pretoria 0001, Private Bag X59, Arcadia 0001 Telephone (012)444-3531, Telefax (012) 444-3134 Website: http://www.dmr.gov.za DEPARTMENT OF MINERAL RESOURCES Director-General Dr. T Ramontja MINERAL POLICY AND PROMOTION BRANCH Deputy Director-General Mr. M Mabuza MINERAL PROMOTION CHIEF DIRECTORATE Chief Director Ms. S Mohale DIRECTORATE MINERAL ECONOMICS Director: Mineral Economics Mr. TR Masetlana Deputy Director: Precious Metals and Minerals Ms. L Malebo and Ferrous Minerals THIS, THE FIRST EDITION, PUBLISHED IN 2013 ISBN: 978-0-621-42052-4 COPYRIGHT RESERVED DISCLAIMER Whereas the greatest care has been taken in the compilation of the contents of this publication, the Department of Mineral Resources does not hold itself responsible for any errors or omissions. TABLE OF CONTENTS Contents Page 1. INTRODUCTION .................................................................................................................1 2. SOUTH AFRICA’S FERROUS ALLOYS OVERVIEW ..........................................................1 3. FERROCHROME ................................................................................................................3
    [Show full text]
  • 1. Introduction Ferrosilicon Smelting Is a Continuous Process Carried out In
    Arch. Metall. Mater., Vol. 61 (2016), No 1, p. 265–270 DOI: 10.1515/amm-2016-0050 B. MACHULEC*,#, W. BIALIK** COMPARISON THE PHYSICO-CHEMICAL MODEL OF FERROSILICON SMELTING PROCESS WITH RESULTS OBSERVATIONS OF THE PROCESS UNDER THE INDUSTRIAL CONDITIONS Based on the minimum Gibbs Free Enthalpy algorithm (FEM), model of the ferrosilicon smelting process has been presented. It is a system of two closed isothermal reactors: an upper one with a lower temperature T1, and a lower one with a higher temperature T2. Between the reactors and the environment as well as between the reactors inside the system, a periodical exchange of mass occurs at the moments when the equilibrium state is reached. The condensed products of chemical reactions move from the top to the bottom, and the gas phase components move in the opposite direction. It can be assumed that in the model, the Reactor 1 corresponds to the charge zone of submerged arc furnace where heat is released as a result of resistive heating, and the Reactor 2 corresponds to the zones of the furnace where heat is produced by electric arc. Using the model, a series of calculations was performed for the Fe-Si-O-C system and was determined the influence of temperatures T1, T2 on the process. The calculation results show a good agreement model with the real ferrosilicon process. It allows for the determination of the effects of temperature conditions in charge zones and arc zones of the ferrosilicon furnace on the carbothermic silica reduction process. This allows for an explanation of many characteristic states in the ferrosilicon smelting process.
    [Show full text]
  • Reduce Ductile Iron Processing Costs Through The
    Nodulizing and Inoculation Approaches for Year 2000 and Beyond - Part 1 by Dr. R. L. (Rod) Naro ASI International, Ltd. – July 30, 2001 Original Paper presented June 15, 2000 DIS Meeting, Wichita, Kansas Abstract: Nodu-Bloc, a new iron-magnesium briquette, offers ductile iron foundries a powerful alloy that can be used to replace traditional magnesium ferrosilicon (MgFeSi) as well as other magnesium containing master-alloys. Controlled laboratory tests show that Nodu-Bloc can replace up to 50 weight percent of MgFeSi. Field trials with Nodu-Bloc confirm these results and show that Nodu-Bloc replacement of MgFeSi can provide significant cost savings. Foundries converting to Nodu-Bloc will experience reduced melting costs because less MgFeSi is consumed, less steel and pig iron is required in the charge and far greater levels of foundry returns can be utilized. Foundries can easily save up to $10 or more per ton on molten ductile iron processing costs by incorporating Nodu-Bloc technology. Introduction: Since the commercialization of ductile iron in 1948, foundries have used numerous methods to introduce magnesium into molten cast iron. Figure 1 lists some of the approaches and techniques used over the years. Although some of these processes gained a brief following, and some have even been used successfully, most have fallen out of favor because of numerous shortcomings. Today, the majority of ductile iron castings made throughout the world are produced using ladle-metallurgy practices with MgFeSi alloys. It is estimated that MgFeSi alloys are used in 65 percent of all ductile irons produced worldwide. In the United States, MgFeSi alloys account for an estimated 75 percent of ductile iron production.
    [Show full text]
  • Ferrochrome (Fecr)
    Ferrochrome (FeCr) Price range in 2020 2,78 €/kg Cr – 3,77 €/kg Cr for Low Carbon Ferrochrome 1,49 $/Ib Cr – 1,90 $/Ib Cr Formula FeCr CAS no. 11114-46-8 Description Ferrochrome, or Ferrochromium (FeCr) is a type of ferroalloy, that is, an alloy between chromium and iron, generally containing 50% to 70% chromium. It is produced in an energy intensive process in electric furnaces from chrome ore, iron ore and coal. FeCr is used in the production of stainless steel, special steel and castings. Ferrochrome is divided up in three main products which are Low Carbon FeCr, Medium Carbon FeCr and High Carbon FeCr. Physical Properties General The melting point and density of ferrochrome depends on its chrome and carbon content Abrasion good resistance to abrasion Corrosion good resistance to corrosion Gravity high specific gravity Magnetism high magnetism High carbon Medium carbon Low carbon DensityFeCr70 6,7-7,1 g/cm³ 0,242-0,257 Ib/in³ 7,1-7,3 g/cm³ 0,257-0,264 Ib/in³ 7,3-7,35 g/cm³ 0,264-0,266 Ib/in³ Melting 1350-1650 °C 2462-3002 °F 1360-1600 °C 2480-2912 °F 1580-1690 °C 2876-3074 °F pointFeCr70 Source: Volkert, G. & Frank, K.-D.: Die Metallurgie der Ferrolegierungen CO2 Footprint Scope 2 * Scope 3 ** Upstream emission factors - 5,987 tCo2 / tFeCr Source: worldsteel association Actually requested materials based on metalshub transactions Material Size Composition, as percentages by mass Designation Packaging Pallet name [mm] Cr C Si P S Low carbon Min. 10 65 - LCFeCr 65 1 mt big bags One way pallet grade Max.
    [Show full text]
  • Mgfesi Alloys Psi English.Pdf
    Product Safety Information 1. Identification of the Product and Supplier Product name: Elkem MgFeSi Alloys Elmag®, Lamet® and Remag® Nodularisers, CompactMag® Alloy Product application: Additive to liquid metal in foundries for production of cast iron. Address/Phone No.: Elkem AS Foundry Products P.O. Box 334 Skøyen, N-0213 Oslo, Norway Telephone: + 47 22 45 01 00 Telefax: + 47 22 45 01 11 http://www.foundry.elkem.com [email protected] REACH registration numbers: 01-2119485286-28-0033 (FeSi) 01-2119537203-49-0046 (Mg) REACH and CLP helpdesk: http://echa.europa.eu/support/helpdesks/ Emergency Phone No.: https://poisoncentres.echa.europa.eu/home 2. Hazards Identification Classification: The product does not meet the criteria for hazard classification in accordance with Regulation (EC) No 1272/2008 (CLP) and the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revision. Hazard pictogram: N/A (not applicable) Signal word: N/A (not applicable) Hazard statements: N/A (not applicable) Precautionary statements: N/A (not applicable) Flammable and noxious gases may be formed in contact with moisture, acids or bases. See section 10 and 11. Dust from the product if suspended in air may under certain conditions cause dust explosions. See section 10. © COPYRIGHT ELKEM AS 2017 103/PSI/ENG Page 1 of 7 Rev. 04, 2017-10-16 3. Composition/Information on Ingredients Synonyms/Trade names: Ferrosilicon magnesium, Magnesium alloy. CAS No. Ferrosilicon: 8049-17-0 CAS No. Magnesium: 7439-95-4 REACH registrations: Elkem MgFeSi is a mixture of FeSi and Mg and has for hazard classification purposes been assessed as an entity in accordance with CLP.
    [Show full text]
  • Magnesium-Titanium-Ferrosilicon Alloys for Producing Compacted
    Europaisches Patentamt ® European Patent Office © Publication number: 0 192 090 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 86101151.8 © intCI.*: C 22 C 35/00 C 21 C 1/10 @ Date of filing: 29.01.86 ® Priority: 11.02.85 US 700796 © Applicant: SKW Alloys, Inc. P.O. Box 368 Niagara Falls, N.Y. 14302(US| (§) Date of publication of application: 27.08.86 Bulletin 86/35 © Inventor: Dremann, Charles E. Bruckwafter Road © Designated Contracting States: Phoenixville PA 19460(US) DE FR IT @ Inventor: Fugiel, Thomas F. 1514 West Suffield Village of Arlington Heights IllinoisfUSf © Representative: Weickmann, Heinrich, Dipl.-lng. et al, Patentanwahe Dipl.-lng. H.Weickmann Dipl.-Phys.Dr. K.Fincke Dipl.-lng. F.A. Weickmann Dipl.-Chem. B. Huber Dr.-lng. H. Liska Dipl.-Phys.Dr. J. Prechtel Mohistrasse 22 D-8000 Munchen 80(DE) © Magnesium-titanium-f errosilicon alloys for producing compacted graphite iron in the mold and process using same. Compacted graphite (CG) cast iron is obtained in the inmold casting process employing as an additive an alloy comprising 1.5-3 percent magnesium, 10-20 percent tita- nium, 40-80 percent silicon, 0-2 percent rare earth, 0-0.5 percent calcium, 0-2 percent aluminum and balance iron. This invention relates to novel magnesium-titanium-ferrosilicon-containing alloys for. producing compacted graphite (CG) iron in the mold and to a casting process using such alloys. Background of the Invention Compacted graphite is the name usually given to flake graphite which has become rounded, thickened and shortened as compared to normal elongated flakes commonly found in gray cast iron.
    [Show full text]
  • Influences of Alkali Fluxes on Direct Reduction of Chromite for Ferrochrome Production by D
    http://dx.doi.org/10.17159/2411-9717/2018/v118n12a9 Influences of alkali fluxes on direct reduction of chromite for ferrochrome production by D. Paktunc*, Y. Thibault*, S. Sokhanvaran*, and D. Yu* process. In comparison to the conventional $+DE;CFC smelting processes, this prereduction process Prereduction and flux-aided direct reduction of chromite provide lowers the overall energy consumption and significant advantages in reducing energy consumption and greenhouse greenhouse gas emissions by about one-third gas emissions during ferrochrome production. In this investigation, a (Naiker, 2007). comparative evaluation of the influences of several alkali fluxes was Prereduction of chromite with the use of carried out based on experimental observations supplemented by various fluxes or additives has been the topic advanced material characterization and thermodynamic predictions. Direct of many studies over at least three decades. reduction of a chromite ore with alkali fluxes at 1300°C for 1 hour The additives tested since 1986 include produced (Cr,Fe)7C3 type alloys with Cr/Fe mass ratios from 0.7 to 2.3. borates, NaCl, NaF, and CaF2 (Katayama, Among the alkali fluxes, reduction aided by NaOH resulted in a high Tokuda, and Ohtani, 1986), CaF2 and NaF degree (85%) of Cr metallization with the ferrochrome alloy being (Dawson and Edwards, 1986), K2CO3, CaO, Cr4.2–4.6Fe2.4–2.8C3. The formation of liquid slag, which facilitated Cr SiO2, Al2O3, and MgO (van Deventer, 1988), metallization, was limited by the formation of NaAlO2 between 800 and 1300°C. This, in turn, restricted the collection and transport of the charged granite and CaF2 (Nunnington and Barcza, ionic Cr species (i.e.
    [Show full text]
  • The Application of Sic in Converter Steelmaking Hailing Li
    3rd International Conference on Mechatronics and Information Technology (ICMIT 2016) The Application of SiC in Converter Steelmaking Hailing Li1,a, Qichun Peng1,b,Youhua Wang2 1school of Material and Metallurgy ,Wuhan University of Science and Technology,China. 2Hunan Valin Xiangtan iron and Steel Co. Ltd. [email protected], [email protected] Key words: Silicon carbide converter deoxidation mechanical properties inclusions Abstract. Silicon carbide has better deoxidization ability than ferrosilicon and recarburizer by the thermodynamic analysis,the gas of CO produed by the deoxidation reaction can agitates molten steel which could purify the molten steel .In this article, we choose HRB400 as our testing steel,it is found that the usage of SiC can reach the aim of recarburization and silicon increasing in the statistical analysis,the various properties of the testing steel are stable, and the use of Silicon carbide can further improve the economic benefits of steel plants as the price of SiC is lower. Introduction Silicon carbide with the molecular weight of 40.07 and the density of 3.209g / cm3 is a kind of synthetic compounds, molecular formula is SiC. SiC is made from high quality quartz sand and petroleum coke in the resistance furnace, it can be used as compound deoxidizer in metallurgy field as its widespread application. SiC is a new kind of compound deoxidizer with more stable physical and chemical performances and good deoxidization effection as the replacement of the traditional solid silicon powder and carbon powder.Furthermore,
    [Show full text]