Overview of Sustainable Design Factors in High-Rise Buildings

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Sustainable Design Factors in High-Rise Buildings ctbuh.org/papers Title: Overview of Sustainable Design Factors in High-Rise Buildings Authors: Mir Ali, University of Illinois at Urbana-Champaign Paul Armstrong, University of Illinois at Urbana-Champaign Subjects: Architectural/Design Sustainability/Green/Energy Keywords: Integrated Design MEP Renewable Energy Sustainability Publication Date: 2008 Original Publication: CTBUH 2008 8th World Congress, Dubai Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Mir Ali; Paul Armstrong Overview of Sustainable Design Factors in High-Rise Buildings Mir M. Ali and Paul J. Armstrong School of Architecture, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61820 Tel: +1 217 244 8011, Email: [email protected], [email protected] Abstract This paper examines the critical design factors and strategies that warrant consideration to accomplish sustainable or high-performance tall buildings applying innovative technologies. It shows how “technology transfers” in the aerospace industry have been applied to tall building systems to achieve high-performance. Because the design of tall buildings warrants a multi-disciplinary approach and requires the integration of architectural components, structure, HVAC, and communication systems, an analogy exists between tall building and aircraft, which also comprises complex integrated systems. A few case study building examples are presented which represent the new generation of sustainable tall buildings that are setting trends for future projects incorporating innovations in materials and building systems. It is concluded that since tall buildings consume massive energy, designers of the next generation of tall buildings will [email protected] incrementally aim for “zero energy” design. In this approach climate is used to advantage and the [email protected] becomes a Mirsource M. ofAli power. It is possible that tall buildings will some day even produce excess energy and transfer the excess to Mir M. Ali is currently Professor and Chairman of the Structures Division of the School of Architecture, University of Illinoisthe city’s at Urbana-Champaign.power grid for use in In other 1999, ways. he was recognized by the University’s Chancellor for academic excellence. He is a registered structural engineer in Illinois and a Fellow of the American Society of Civil Engineers (ASCE). He received ASCE’sKeywords Millennium: up alternative Challenge energy, integration,Prize in 1999 sustainable for his winningarchitecture, article tall buildinon skyscrapersgs, technology in a transferworld-wide competition. HisIntroduction considerable industrial experience includes Skidmore, Owingscompromising and Merrill the and ability Sargent of & future Lundy generations in Chicago. to He meet has workedIt as is consultant projected in that Canada, by 2030, Singapore, 5 billion Saudi people Arabia, will Bangladesh their own and needs.” the USA. He also worked as consultant with US Armylive in Corps urban of areas Engineers. throughout He wasthe worldthe Chairman (United ofNations, Committee 30-Architecture, of CTBUH from 1990 to 1998. Follow- ing2001). that Whereashe had been 30 pera Group cent of Leader the world of its population Group PA-Planning lived and ArchitectureSustainable untilarchitectur recently eand hasis beenenvironmentally a member of itsin Steeringurban areas Group in 1950,since 1998.the proportion He has been of urbaninterviewed dwellers on WTCconscious, and tall buildingsenergy-saving, by the Newand Yorkutilizes Times, responsive Toronto Star,and Chicagoclimbed Sunto 47 Times, per cent Chicago in 2000 Daily and Herald,is projected The Architecturalto rise to renewableRecord, Milwaukee materials Journal and Sentinel,systems Discovery(Newman, Channel, 2001). Travel60 per Channel, cent by MSNBC,2030. Energy NPR, shortage, IPR, Popular global Science, warming, PRI, AP,Ecological Rolling Stones, and environmentaland several others. concerns have expanded urban sprawl, air pollution, overflowing landfills, water beyond the issue of the consumption of non-renewable Dr.shortage, Ali was disease, a TOKTEN and global Fellow conflict of the will United be the Nations legacy in of 1989. energy He has authoredsources. a Sustainabilitybook titled Art essentiallyof the Skyscraper: aims Thefor Geniusthe twenty-first of Fazlur centuryKhan, and unless edited we three move books, quickly Architecture towards of ecologicalTall Buildings; balance. Bangladesh Floods: Views from Home and Abroad;the notion and Catalystand implementationfor Skyscraper Revolution:of sustainability. Lynn S. Beedle--A TheLegend Highin His Lifetime.Performance He has publishedTall Building:over 100 papersSurvival and of articles, the human and racepresented depends numerous upon the papers survival on tall of buildingsEnvironmental at conferences awareness and seminars extends nationally to both andthe interna urban- tionally.the cities--their His new bookbuilt The environment Skyscraper andand the theCity: urbanDesign, Technologyenvironment and and Innovation the context co-authored in which by a Lynntall building S. Beedle is andinfrastructure. Paul J. Armstrong This will is scheduledwarrant vision, for publication commitment, in December, and placed 2007. as well as its interior environment. The issues of action through partnership and commitment of outdoor microclimate and indoor air quality as well as the Paulgovernments, J. Armstrong policy makers, experts, and the potential toxicity of materials and chemicals used in Paulinvolvement J. Armstrong of citizens. is a registered It will architect require andcollaboration Associate ofProfessor building and Chair components, of Design systems, Program, and School furnishings of Architecture, are also of Universityurban planners, of Illinois architects,at Urbana-Champaign. engineers, Hepoliticians, is the co-author concern of Architecture to the building of Tall Buildingsusers. In a(1995), broad Space,sense theLight, term andacademics, Movement: and Thecommunity Architecture groups. of Jack S. Baker, FAIA (1997),“green” and The is Skyscraperoften used forand athe sustainable, City: Design, which Technology, essentially and Innovation (2007). He has published many papers on tall buildings,describes Moderndesign, constructionand Post-Modern and maintenancearchitecture, andpractices ar- chitecturalSustainable theory. Architecture He co-teaches with Professor Mir M. Ali a graduatethat minimize seminar orcourse eliminate titled “High-Risethe negative and impactHabitat” of and a supervisesIn 1983, design the studio UN established projects on the tall World buildings. Commission building on the environment and on the users. on Environment and Development in an attempt to Tall buildings are massive consumers of energy. resolve the conflicts arising out of the aspirations of the They are the dominant elements in urban architecture due developed and developing worlds. In 1989 they published to their scale and purpose, and should be the focus of “Our Common Future” or the Brundtland Report (WCED, sustainable design. A high performance tall building is 1989), which launched the concept of “sustainable one that achieves the peak efficiency of building functions development” and was reinforced in 1992 at Earth while meeting the requirements of optimum performance Summit in Rio. It called for “Development which meets employing green technologies. These technologies and the needs of the present generation without innovations offer radical changes to the built environments in terms of energy usage, structural CTBUH 8th World Congress 2008 1 Overview of Sustainable Design Factors in High-Rise Buildings Mir M. Ali and Paul J. Armstrong School of Architecture, University of Illinois at Urbana-Champaign, 611 Taft Drive, Champaign, IL 61820 Tel: +1 217 244 8011, Email: [email protected], [email protected] Abstract This paper examines the critical design factors and strategies that warrant consideration to accomplish sustainable or high-performance tall buildings applying innovative technologies. It shows how “technology transfers” in the aerospace industry have been applied to tall building systems to achieve high-performance. Because the design of tall buildings warrants a multi-disciplinary approach and requires the integration of architectural components, structure, HVAC, and communication systems, an analogy exists between tall building and aircraft, which also comprises complex integrated systems. A few case study building examples are presented which represent the new generation of sustainable tall buildings that are setting trends for future projects incorporating innovations in materials and building systems. It is concluded that since tall buildings consume massive energy, designers of the next generation of tall buildings will incrementally aim for “zero energy” design. In this approach climate is used to advantage and the building becomes a source of power. It is possible that tall buildings will some day even produce excess energy and transfer the excess to the city’s power grid for use in other ways. Keywords: up alternative energy, integration, sustainable architecture, tall buildings, technology transfer Introduction compromising the ability of future generations to meet It is projected that by 2030, 5 billion people will their own needs.” live in urban areas throughout the world (United Nations, 2001). Whereas 30 per cent of the
Recommended publications
  • Critical Making at the Edges
    Visible Language 49.3 the journal of visual communication research special issue Jessica Barness Amy Papaelias guest editors December 2015 critical making DESIGN and the DIGITAL HUMANITIES ADVISORY BOARD GUEST EDITORS' INTRODUCTION Naomi Baron — The American University, Washington, D.C. 4–11 Critical Making at the Edges Michael Bierut — Pentagram, New York, NY Jessica Barness, Amy Papaelias Matthew Carter — Carter & Cone Type, Cambridge, MA Keith Crutcher — Cincinnati, OH THEORY AND SPECULATIONS Mary Dyson — University of Reading, UK 12–33 Meta!Meta!Meta! A Speculative Design Brief for the Digital Humanities Jorge Frascara — University of Alberta, Canada / Universidad Anne Burdick de las Americas Puebla Ken Friedman — Swinburne University of Technology, Melbourne, Australia 34–61 Clues. Anomalies. Understanding. Detecting underlying assumptions and Michael Golec — School of the Chicago Art Institute, Chicago, IL Judith Gregory — University of California-Irvine, Irvine, CA expected practices in the Digital Humanities through the AIME project Kevin Larson — Microsoft Advanced Reading Technologies Donato Ricci, Robin de Mourat, Christophe Leclercq, Bruno Latour Aaron Marcus — Aaron Marcus & Associates, Berkeley, CA Per Mollerup — Swinburne University of Technology, Melbourne, Australia 62–77 Writing Images and the Cinematic Humanities Tom Ockerse — Rhode Island School of Design, Providence, RI Holly Willis Sharon Poggenpohl — Estes Park, CO Michael Renner — The Basel School of Design — Visual Communication 78–99 Beyond the Map: Unpacking
    [Show full text]
  • Design Technology Sl, Year 1
    FREEHOLD REGIONAL HIGH SCHOOL DISTRICT OFFICE OF CURRICULUM AND INSTRUCTION INTERNATIONAL BACCALAUREATE PROGRAM DESIGN TECHNOLOGY SL, YEAR 1 Grade Level: 11 Credits: 2.5 BOARD OF EDUCATION ADOPTION DATE: AUGUST 28, 2017 SUPPORTING RESOURCES AVAILABLE IN DISTRICT RESOURCE SHARING APPENDIX A: ACCOMMODATIONS AND MODIFICATIONS APPENDIX B: ASSESSMENT EVIDENCE APPENDIX C: INTERDISCIPLINARY CONNECTIONS FREEHOLD REGIONAL HIGH SCHOOL DISTRICT Board of Education Mrs. Jennifer Sutera, President Mr. Peter Bruno, Vice President Mr. Vincent Accettola Mrs. Elizabeth Canario Mr. Samuel Carollo Mrs. Amy Fankhauser Mrs. Kathie Lavin Mr. Michael Messinger Mr. Heshy Moses Central Administration Mr. Charles Sampson, Superintendent Dr. Nicole Hazel, Chief Academic Officer Ms. Shanna Howell, Director of Curriculum and Instruction Mr. Oscar Diaz, Administrative Supervisor of Curriculum & Instruction Ms. Stephanie Mechmann, Administrative Supervisor of Curriculum & Instruction Ms. Renee Schneider, Administrative Supervisor of Curriculum & Instruction Curriculum Writing Committee Mr. Thomas Jennings Supervisor Ms. Mary Hough IB DESIGN TECHNOLOGY SL YEAR 1 COURSE PHILOSOPHY The International Baccalaureate Organization provides the following philosophy: “Diploma Programme Design Technology aims to develop internationally- minded people whose enhanced understanding of design and the technological world can facilitate our shared guardianship of the planet and create a better world. Both science and technology have a fundamental relationship with design. Technology preceded science, but now most technological developments are based on scientific understanding. Traditional technology comprised useful artifacts often with little understanding of the science underpinning their production and use. In contrast, modern technology involves the application of scientific discoveries to produce useful artifacts. The application of scientific discovery to solve a problem enables designers to create new technologies and these new technologies, in turn, can impact on the rate of scientific discovery.
    [Show full text]
  • Appendix B – Eco-Charrette Report
    Appendix B – Eco-Charrette Report 2010 Facility Master Plan Factoria Recycling and Transfer Station November 2010 2010 Facility Master Plan Factoria Recycling and Transfer Station November 2010 Appendix B‐1: Factoria Recycling and Transfer Station ‐ Eco‐Charrette – Final Report. June 24, 2010. Prepared for King County Department of Natural Resources and Parks‐‐ Solid Waste Division. HDR Engineering, Inc. Appendix B‐2: Initial Guidance from the Salmon‐Safe Assessment Team regarding The Factoria Recycling and Transfer Station – Site Design Evaluation. July 15, 2010. Salmon‐Safe, Inc. Appendix B‐1: Factoria Recycling and Transfer Station ‐ Eco‐Charrette – Final Report. June 24, 2010. Prepared for King County Department of Natural Resources and Parks‐‐ Solid Waste Division. HDR Engineering, Inc. Table of Contents PART 1: ECO‐CHARRETTE...................................................................................................................... 1 Introduction and Purpose ......................................................................................................................... 1 Project Background and Setting ................................................................................................................ 1 Day 1. Introduction to the Sustainable Design Process ........................................................................... 3 Day 2: LEED Scorecard Review ................................................................................................................. 4 The LEED Green Building Certification
    [Show full text]
  • Architectural Design Technology – Interior Design ASSOCIATE of APPLIED SCIENCE DEGREE (AAS) REQUIRED CREDITS: 67 DEGREE CODE: ADTDSG-AAS
    ARCHITECTURAL DESIGN TECHNOLOGY PROGRAM Architectural Design Technology – Interior Design ASSOCIATE OF APPLIED SCIENCE DEGREE (AAS) REQUIRED CREDITS: 67 DEGREE CODE: ADTDSG-AAS DESCRIPTION This degree program builds the skills required to produce professional and quality interior architectural designs. The core curriculum is a sequence of lecture/lab courses that stress the design theory and application, color, space planning, interior materials, furniture specification, CADD, business practices and field experience. STUDENT LEARNING OUTCOMES • Demonstrate competency in the foundations and theory of interior design. • Demonstrate competency in drafting, CADD and presentation skills. • Demonstrate competency in design development skills in the selection and specification of interior furnishings, finishes, materials, textiles and decorative elements. • Demonstrate knowledge in design process including research, programming, concept development, specifications and business practices. PLEASE NOTE - The courses listed below may require a prerequisite or corequisite. Read course descriptions before registering for classes. All MATH and ENG courses numbered 01-99 must be completed before reaching 30 total college-level credits. No course under 100-level counts toward degree completion. GENERAL EDUCATION REQUIREMENTS (25 CREDITS) FULL-TIME STUDENT DEGREE PLAN Add more semesters to modify this plan to fit part-time student needs. MATHEMATICS (3 credits) FIRST SEMESTER Credits MATH 116 or above (except MATH 122, 123) ENG 100 or 101 or 113 3-5 AAD
    [Show full text]
  • BEYOND SUSTAINABILITY THROUGH REGENERATIVE ARCHITECTURE Regenerative Urban Landscapes
    BEYOND SUSTAINABILITY THROUGH REGENERATIVE ARCHITECTURE Regenerative Urban Landscapes SAM NEMATI Thesis Report Master of Fine Arts in Architecture and Urban Design Year 5 Studio 12 Tutors: Alejandro Haiek, Carl-Johan Vesterlund, Andrew Bellfild, Tom Dobson Spring 2020 Umeå School of Architecture Umeå University 4640 Words Sam Nemati Thesis Report Spring 2020 Contents Table of Figures ............................................................................................................................................ 2 Abstract ........................................................................................................................................................ 3 Introduction .................................................................................................................................................. 4 Methodology ................................................................................................................................................ 5 CHAPTER 1: Beyond sustainability through regenerative architecture ..................................................... 6 1. Climate Change and Regenerative Architecture ................................................................................... 6 2. Regenerative Architecture in Practice .................................................................................................. 7 2.1. Case Study: Playa Viva, Mexico (2009) .............................................................................................. 8 3. Regenerative
    [Show full text]
  • Multifarious Approaches to Attain Sustainable Fashion
    Dr. Nidhi L Sharda is an Associate Professor in the Department of Multifarious Approaches to Knitwear Design at National Institute of Fashion Technology, Bangalore. In Attain Sustainable Fashion the decade and a half of her profes- sional life, she has extensively utilized Dr. Nidhi L. Sharda, Mr. Mohan Kumar VK her applied research which focuses Dept. of Knitwear Design, National Institute of Fashion Technology, Bangalore on the area of apparel and textile [email protected] design. Her applied research focuses on the area of textile and costumes Abstract with research experience in the field Fashion is a huge industry and affects environmental, economic and social system in of natural dyes, sustainable fashion, many ways. Exploitation of resources for ever changing trends in fashion is immense clothing and craft. and providing these demands put enormous pressure on the environment. In such a situation sustainable practices in every human activity has become important and fashion Mr. Mohan Kumar VK is an Assistant is not less affected by this drive. Fashion professionals have to play major role to Professor & Centre Coordinator of the inculcate the concept of sustainable fashion with responsibility in their product line. It Department of Knitwear Design at is important that while designing, designer should understand the benefits of sustain- National Institute of Fashion able operation starting with concept development level. In this paper design solutions Technology, Bangalore. He has 9 years for sustainable fashion are inferred in a design school scenario. The main idea to do so of teaching experience in NIFT. As a is to develop more sensible and responsible designs, which can be better solutions for designer, NIFT being his Alma Mater, sustainable fashion.
    [Show full text]
  • A Guide to Environmentally Sustainable Landscape Architecture Products
    A Guide to Environmentally Sustainable Landscape Architecture Products jonite.com/a-guide-to-environmentally-sustainable-and-long-lasting-landscape-architecture-products May 23, 2019 Landscape architects play an essential role in creating design interventions to ensure environmental sustainability. As we’ve explained in our other post on architectural trends that are here to stay (link), sustainability and climate adaptation strategies have not only been increasingly in the focus, but is here to stay. Sustainable architecture aims to incorporate elements of green design into various parts of the building. The main goal is to strike a beautiful harmony between green life and architecture to preserve nature and improve the quality of living. Green buildings are designed in a way to be built in a way that reduces harmful impact on the environment. What is environmentally sustainable design? 1/13 Environmentally sustainable design (or environmentally-conscious design, eco-design) is the philosophy of designing physical objects, the built environment and services to comply with the principles of ecological sustainability. Its core idea is to eliminate wastefulness and minimise environmental impact through architecture design. There are some common principles in sustainable design that most designers take into consideration when scoping out their design projects. They include the following: Choosing low-impact materials: These come in the form of choosing products that have high recycled content incorporated in the manufacturing process. Also, designers may choose materials that are locally sourced to reduce the carbon footprint of transporting materials to the project site. Choosing energy-efficient materials: Designers may also take the time to understand the material’s basic manufacturing processes and make their choice based on the energy involved in producing their selected materials.
    [Show full text]
  • Architectural and Engineering Design Technology
    MCHENRY COUNTY COLLEGE ARCHITECTURAL AND ENGINEERING DESIGN TECHNOLOGY A PROGRAM IN CONJUNCTION WITH THE MCC FAST TRACK The Fast Track at McHenry County College is a cohort-based program that helps give students the advantage they need when competing for jobs in today’s workforce. Through the Fast Track, students can earn a certificate in two years or less and an associate’s degree in three years, depending on the program. Nearly everything manufactured and built in today’s society starts with computer generated drawings. Drafters and designers work in a variety of industries, including manufacturing, architecture and construction to develop the technical drawings needed for the manufacturing and construction of our built environment. Using the latest computer- aided design (CAD) systems, including parametric solid modeling and building information modeling (BIM), they create both 2-D and 3-D models and drawings for everything—from the simplest machined part of a mechanical assembly to the largest and most complex structures SALARY RANGE such as bridges and skyscrapers and everything in between. $30,000 to $45,700 The Architectural and Engineering Design Certificate program, with specialization in either architectural, engineering, or interior JOB OUTLOOK* design technology, represents a collective approach to developing Projected growth is 3-9% in most or upgrading the necessary visualization, graphical communication fields, higher in others. Projected and organization skills required of this ever evolving field. CAD job openings range by field. Top technicians can expect to find employment in such diverse occupations industries are professional, as architectural/mechanical/civil design and construction, surveying, scientific, manufacturing, and product design, or fashion/interior design.
    [Show full text]
  • A Critical Role for Design Technology Charles L
    Institute of Design Illinois Institute of Technology Chicago, Illinois U.S.A A Critical Role for Design Technology Charles L. Owen Distinguished Professor of Design (Keynote article, Design Management Journal, Design Technology Issue (Spring 1993): pp. 10-18) A phenomenon very apparent to the American businessman, as well as to any lay observer, is the wave of "restructuring" passing through the country. It is a fact of life for seemingly all large companies, and through ripple effects, it affects all but those companies most finely tuned to the new realities of the marketplace. Less apparent, but of greater portent, is the implicit recognition that new rules are taking form for how the games of business will be played. As the recession abates, and revitalized industries emerge, they will not return to the ways of the past; they will seek a development philosophy for their products and services in tune with the times. Of the factors involved in this product/service philosophy, design will be one of the most important, as the growing interest of the business press makes that very clear. There is little question that design will play a major role in the kind of economic world on the horizon. The question is, What role will that be? The Quality The issue really involves "quality", and what is now being termed "product Pyramid integrity". To a great extent, the present opportunity for design is what it is because of the now-general concern for quality. Most customers equate quality with craftsmanship, an observable attribute that has been drummed into everyone’s consciousness for at least a decade.
    [Show full text]
  • Occupying Time: Design, Technology, and the Form of Interaction
    Title Occupying Time: Design, technology, and the form of interaction Type The sis URL https://ualresearchonline.arts.ac.uk/id/eprint/16139/ Dat e 2 0 0 7 Citation Mazé, Ramia (2007) Occupying Time: Design, technology, and the form of interaction. PhD thesis, Malmö University/ Blekinge Institute of Technology. Cr e a to rs Mazé, Ramia Usage Guidelines Please refer to usage guidelines at http://ualresearchonline.arts.ac.uk/policies.html or alternatively contact [email protected] . License: Creative Commons Attribution Non-commercial No Derivatives Unless otherwise stated, copyright owned by the author Occupying Time Ramia Maze Author Ramia Mazé Title Occupying Time: Design, technology, and the form of interaction Blekinge Institute of Technology Doctoral Dissertation Series No. 2007:16 ISSN 1653-2090 ISBN 978-91-7295-124-2 School of Arts and Communication, Malmö University, Sweden in collaboration with Department of Interaction and System Design. School of Engineering, Blekinge Institute of Technology, Sweden Copyright © 2007 Ramia Mazé Published by Axl Books, Stockholm: 2007 www.axlbooks.com info@ axlbooks.com ISBN 978-91-975901-8-1 To the best of my knowledge, all images and photographs featured here were created by members of the ‘project team’ as listed by each respective project or program. Additional photographs of IT+Textiles projects and the Static! ‘Energy Curtain’ were taken by Ben Hooker and James King. Additional photographs of the Front ‘Flower Lamp’ were taken by myself. Book and cover design by Christian Altmann Printed in Latvia Ramia Mazé Occupying Time Abstract As technology pervades our everyday life and material culture, new possibilities and problematics are raised for design.
    [Show full text]
  • 244 Project 1 = 10% Sustainability 101 Design Manifesto
    244 PROJECT 1 = 10% SUSTAINABILITY 101 DESIGN MANIFESTO WHAT • Write your vision for your career through a personal manifesto. Present it in the form of an 11X17” colour poster. Use concept, layout and typography to share your vision in a unique way. • Your target audience is future industry employers. Imagine that employerw will decide who to hire based on this poster. WHY • To document your understanding of sustainable design and to explore how you see it influencing your future practice. • To practice communicating a message quickly and engagingly in a poster format, using concept, layout, imagery, typography, etc. • To give you an opportunity to implement design principles such as balance, scale, colour, figure/ground and framing. HOW • Review the links to examples of past design manifestos for inspiration. • Consider what you’ve uncovered about sustainable design. What resonates with you? What elements of sustainable design will you apply in your work? • Design a poster that includes your name and demonstrates that you understand the four pillars of sustainability. Write your manifesto in one or several paragraphs. It’s a poster, so keep it to 150 words maximum. • Consider the vernacular and the sensibilities of your target audience. • Consider what kind of design will best reflect you and your personality as a designer. • Combine two different type families in your design, and use at least three levels of type hierarchy. • Consider how to inject your personal voice into the copy itself and the typography. • Sketch different ideas. Revise and refine. • Post a jpg/png of your poster on your blog along and provide a rationale.
    [Show full text]
  • Building for the Future: Sustainable Home Design
    Building for the Future Sustainable Home Design John Quale, Assistant Professor and ecoMOD Project Director University of Virginia School of Architecture U.S. Department of Energy environmental impact of buildings electricity usage carbon emissions source: www.architecture2030.org U.S. Department of Energy environmental impact of buildings • the U.S. generates and uses more energy than any other nation; more than half is used in the construction or operation of buildings • the U.S. is the world's largest generator of greenhouse gas emissions • the average single-family home in the U.S. emits more than 22,000 pounds of carbon dioxide each year (from the electricity generated by utilities to run the home, and oil or gas powered appliances and equipment in the home) this is more than twice the amount emitted by the typical American car • each day the sun directly radiates more than 10,000 times the amount of energy required in the world • less than 10 percent of single-family residences are designed by architects; of those, most are for the wealthy U.S. Department of Energy what is green design? design and construction practices that significantly reduce or eliminate the negative impact of buildings on the environment and occupants in five broad areas: . site . water . energy . materials . comfort U.S. Department of Energy how is it measured? energy and water use monitoring utility bills life cycle analysis / assessments post occupancy evaluations carbon neutrality assessments certification processes such as LEED or Energy Star or Earthcraft U.S. Department of Energy who is responsible? clients architects engineers landscape architects planners contractors policy makers government officials U.S.
    [Show full text]