GCM-AES-VR : a Scheme for Cloud Data Confidentiality and Authenticity

Total Page:16

File Type:pdf, Size:1020Kb

GCM-AES-VR : a Scheme for Cloud Data Confidentiality and Authenticity International Journal of Computer Sciences and Engineering Open Access Research Paper Vol.-6, Issue-12, Dec 2018 E-ISSN: 2347-2693 GCM-AES-VR : A Scheme for Cloud Data Confidentiality and Authenticity Rajani S. Sajjan1*, Vijay R. Ghorpade2 1Department of Computer Science & Engineering, VVPIET, Solapur, MH-India 2Principal, Bharathi Vidyapeeth’s College of Engineering, Kolhapur, MH-India *Corresponding Author: [email protected], Tel.: 08308602157 Available online at: www.ijcseonline.org Accepted: 19/Dec/2018, Published: 31/Dec/2018 Abstract— Cloud data security is recognized as making the data confidential along with proper authentication. The Galois/Counter Mode (GCM) is used to provide data confidentiality with associated data as authentication. It aims to provide birthday bound security i.e. it is secure up to adversarial queries where is a block size. But in some cases this much security is not sufficient. In this paper, we have proposed a new approach to authenticated encryption with associated data (AEAD), an improved AEAD scheme which can be secure up to approximately adversarial queries where, ( ) , where is a block size and is a bit variance. This bit variance is introduced in the encryption process. In the proposed nonce-respecting AEAD scheme a new pseudorandom function is defined and used for implementation. To generate authentication tag universal hash function is used. In this paper security proofs of proposed scheme are given by presenting its construction and its security model. Keywords—Authenticated encryption with associated data, beyond birthday bound security, cloud data confidentiality, data authentication I. BACKGROUND process and the working of proposed scheme are discussed in detail. Algorithms are given with block diagram of Cloud data security is recognized as making the data proposed scheme. Further security analysis is done for data confidential along with proper authentication. This leads to privacy and data authenticity. The proposed scheme is many solutions. Traditionally data was encrypted and compared with existing systems and it is described in detail message authentication code glued with it [1]. Even though in the last section of the paper followed by conclusion and this solution seems feasible it has drawbacks. It contains two future work. parts for the same solution. This wasn’t sufficient to make it applicable as a perfect solution for providing confidentiality A. Authenticated Encryption with Associated Data (AEAD): and authenticity to data. This brought recognition to AEAD scheme provides data confidentiality, integrity and authenticated encryption with associated data (AEAD) authenticity under one umbrella. It applies encryption schemes. Jutla [2] , V. Gligor and P. Donescu [3] and P. process and hash function to achieve this. It takes input as Rogaway, M. Bellare, J. Black, and T. Krovetz [4] have plaintext and provides a packet containing ciphertext and come up with more standard solution for data privacy and hash tag. There are various authenticated encryption modes authenticity as an integrated solution named as AEAD developed. All of them work with symmetric block ciphers. schemes. In general AEAD scheme is secure if encryption scheme used is semantically secure under chosen plaintext attack In this paper we have proposed an AEAD scheme, and MAC function used is unforgeable under chosen Galois/Counter Mode (GCM) using variant of advanced message attack [5]. encryption standard (AES-VR), named GCM-AES-VR. This We can categorize various AEAD schemes into three classes scheme aims to achieve beyond birthday bound security. depending on their working paradigm. The paper is organized in different sections, the first section a. Encrypt then MAC gives brief introduction of AEAD, GCM and discusses b. Encrypt and MAC about the background. The second section defines the c. MAC then encrypt problem statement followed by the preliminaries used Table 1 provides brief information about these schemes. Out throughout the paper. The construction of proposed scheme of these three, encrypt then MAC is more secure AEAD is given in the fourth section where the key derivation approach, if chosen MAC scheme is unforgeable. © 2018, IJCSE All Rights Reserved 86 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693 CAESAR competition is started in 2012 which promoted In general, Advanced Encryption Standard (AES) is used as many researchers to develop AE schemes. These schemes the block cipher encryption algorithm which has block size have been applied in various fields. of n = 128 bits, and when it is used with AE schemes its Depending on application requirements AE schemes can be security degrades to i.e. 64 bits. classified as AE modes involve multiple block invoking operation during a. AE with associated data execution; this causes extra overhead on existing hardware b. Parallelizable AE and software. This overhead increases with increase in block c. Online AE invoking. In case of BBB secure AE schemes number of d. Tweakable AE block invoking may vary and accordingly overhead also e. Deterministic AE varies. f. Wide block AE g. XOR based AE B. Galois/Counter Mode (GCM): h. Dedicated AE algorithms GCM is a block cipher mode of operation designed by McGrew and Viega [11]. It is nonce based AEAD scheme. Table 1: Different approaches to AEAD scheme GCM uses universal hash function for authentication part Stron and counter mode in encryption part. It performs two AEAD gly Applica Approac Process 1 Process 2 operations, authenticated encryption and authenticated unfor tion h decryption. The authenticated encryption operation takes geable four inputs viz., secret key K, initialization vector IV whose MAC is length can vary from 1 to 264. 96 bit IV values are generated Encrypt Plaintext based on recommended in critical cases due to its efficient processing. then is Yes IPsec ciphertext The authenticated encryption process produces ciphertext C MAC encrypted produced in of length P and authentication tag T of any length between 0 process 1 to 128. The authenticated decryption operation takes five Plaintext MAC is inputs: K, IV, C, A, T. It produces only one output i.e. Encrypt is generated as No SSH and MAC plaintext P or FAIL otherwise. FAIL output indicates that encrypted per plaintext the operation is not authentic means whatever inputs were MAC is MAC Plaintext and provided to authenticated decryption operation were not generated SSL/TL then MAC is No generated by authenticated encryption operation. The A, based on S encrypt encrypted additional authenticated data (AAD) provides protection to plaintext the data which needs to be authenticated. Depending on the design approach used AE schemes can be GCM is proved secure in concrete security models against classified as chosen plaintext attack. Security of GCM relies on the fact a. Generic composed AE that underlying block cipher is a random permutation. GCM b. Block cipher based AE uses universal hash function for strong authentication, which c. Stream cipher based AE is a strong element used in many cryptosystems. d. Permutation based AE Additionally GCM uses counter mode which is proven as e. Keyed function based AE strongly secure. f. Tweakable block cipher based AE g. Hybrid AE II. PROBLEM STATEMENT Authenticated encryption schemes [6] [7] [8] [9] [10] provide birthday bound security. GCM provides security up to adversarial queries. When used with AES its security drops down to 64 bits which is Birthday bound security: The given encryption scheme is not acceptable in some critical operations. This security obtained using GCM is based on the assumption that said to be birthday bound secure if it is secure up to adversarial queries, where n is the block size. underlying block cipher is a secure pseudorandom permutation. In this chapter we are proposing a GCM Beyond birthday bound (BBB) security: The given encryption scheme is said to be BBB secure if it is provably AEAD scheme which addresses improvement in the security secure up to approximately ( ) adversarial queries, bits as comapred to GCM-AES AEAD scheme. where r >= 2 is an integer. III. PRELIMINARIES Optimal security: The given encryption scheme is said to be optimal secure if it is provably secure up to adversarial In this section we are going to discuss the terms and queries. notations used throughout the paper. © 2018, IJCSE All Rights Reserved 87 International Journal of Computer Sciences and Engineering Vol.6(12), Dec 2018, E-ISSN: 2347-2693 A. Notations: B. Hash function: Assume be the set containing strings including ε, The hash function used here is universal hash function. It is empty string. For any string y, |y| indicates length of string denoted by H. This keyed hash function takes two inputs: y, such that y ϵ . |y|n indicates number of blocks of one is key and another is message. It returns one output. size n bits each, of input string y, where block size n >= 1. Input key Kh ϵ Kh and input message y ϵ is given The n bit zero string is denoted as 0n ϵ . For any two and output z ϵ is given by H. The H is said to be strings y and z, concatenation is denoted by y || z i.e. yz. To almost XOR universal hash function if for y ϵ and z ϵ denote XOR operation of y and z strings notation is , used. Pr[Kh ← Kh : HKh (y) = z ] ≤ α For y ϵ and y’ ϵ where y and y’ are two For finite set Y, y is drawn from Y and it is denoted as distinct values and z ϵ ← , here y is randomly drawn from Y. The number of Pr[K ← K : H (y) H (y’) = z ] ≤ β elements in Y is denoted as |Y|. Adversary A produces h h Kh Kh Where H(α,β) is almost XOR universal hash function. output as 1 after oracle interaction, where oracle is indicated by O.
Recommended publications
  • Advanced Encryption Standard (Aes) Modes of Operation
    ADVANCED ENCRYPTION STANDARD (AES) MODES OF OPERATION 1 Arya Rohan Under the guidance of Dr. Edward Schneider University of Maryland, College Park MISSION: TO SIMULATE BLOCK CIPHER MODES OF OPERATION FOR AES IN MATLAB Simulation of the AES (Rijndael Algorithm) in MATLAB for 128 bit key-length. Simulation of the five block cipher modes of operation for AES as per FIPS publication. Comparison of the five modes based on Avalanche Effect. Future Work 2 OUTLINE A brief history of AES Galois Field Theory De-Ciphering the Algorithm-ENCRYPTION De-Ciphering the Algorithm-DECRYPTION Block Cipher Modes of Operation Avalanche Effect Simulation in MATLAB Conclusion & Future Work References 3 A BRIEF HISTORY OF AES 4 In January 1997, researchers world-over were invited by NIST to submit proposals for a new standard to be called Advanced Encryption Standard (AES). From 15 serious proposals, the Rijndael algorithm proposed by Vincent Rijmen and Joan Daemen, two Belgian cryptographers won the contest. The Rijndael algorithm supported plaintext sizes of 128, 192 and 256 bits, as well as, key-lengths of 128, 192 and 256 bits. The Rijndael algorithm is based on the Galois field theory and hence it gives the algorithm provable 5 security properties. GALOIS FIELD 6 GALOIS FIELD - GROUP Group/Albelian Group: A group G or {G, .} is a set of elements with a binary operation denoted by . , that associates to each ordered pair (a, b) of elements in G an element (a . b) such that the following properties are obeyed: Closure: If a & b belong to G, then a . b also belongs to G.
    [Show full text]
  • Block Ciphers
    Block Ciphers Chester Rebeiro IIT Madras CR STINSON : chapters 3 Block Cipher KE KD untrusted communication link Alice E D Bob #%AR3Xf34^$ “Attack at Dawn!!” message encryption (ciphertext) decryption “Attack at Dawn!!” Encryption key is the same as the decryption key (KE = K D) CR 2 Block Cipher : Encryption Key Length Secret Key Plaintext Ciphertext Block Cipher (Encryption) Block Length • A block cipher encryption algorithm encrypts n bits of plaintext at a time • May need to pad the plaintext if necessary • y = ek(x) CR 3 Block Cipher : Decryption Key Length Secret Key Ciphertext Plaintext Block Cipher (Decryption) Block Length • A block cipher decryption algorithm recovers the plaintext from the ciphertext. • x = dk(y) CR 4 Inside the Block Cipher PlaintextBlock (an iterative cipher) Key Whitening Round 1 key1 Round 2 key2 Round 3 key3 Round n keyn Ciphertext Block • Each round has the same endomorphic cryptosystem, which takes a key and produces an intermediate ouput • Size of the key is huge… much larger than the block size. CR 5 Inside the Block Cipher (the key schedule) PlaintextBlock Secret Key Key Whitening Round 1 Round Key 1 Round 2 Round Key 2 Round 3 Round Key 3 Key Expansion Expansion Key Key Round n Round Key n Ciphertext Block • A single secret key of fixed size used to generate ‘round keys’ for each round CR 6 Inside the Round Function Round Input • Add Round key : Add Round Key Mixing operation between the round input and the round key. typically, an ex-or operation Confusion Layer • Confusion layer : Makes the relationship between round Diffusion Layer input and output complex.
    [Show full text]
  • Visualization of the Avalanche Effect in CT2
    University of Mannheim Faculty for Business Informatics & Business Mathematics Theoretical Computer Science and IT Security Group Bachelor's Thesis Visualization of the Avalanche Effect in CT2 as part of the degree program Bachelor of Science Wirtschaftsinformatik submitted by Camilo Echeverri [email protected] on October 31, 2016 (2nd revised public version, Apr 18, 2017) Supervisors: Prof. Dr. Frederik Armknecht Prof. Bernhard Esslinger Visualization of the Avalanche Effect in CT2 Abstract Cryptographic algorithms must fulfill certain properties concerning their security. This thesis aims at providing insights into the importance of the avalanche effect property by introducing a new plugin for the cryptography and cryptanalysis platform CrypTool 2. The thesis addresses some of the desired properties, discusses the implementation of the plugin for modern and classic ciphers, guides the reader on how to use it, applies the proposed tool in order to test the avalanche effect of different cryptographic ciphers and hash functions, and interprets the results obtained. 2 Contents Abstract .......................................... 2 Contents .......................................... 3 List of Abbreviations .................................. 5 List of Figures ...................................... 6 List of Tables ....................................... 7 1 Introduction ..................................... 8 1.1 CrypTool 2 . 8 1.2 Outline of the Thesis . 9 2 Properties of Secure Block Ciphers ....................... 10 2.1 Avalanche Effect . 10 2.2 Completeness . 10 3 Related Work ..................................... 11 4 Plugin Design and Implementation ....................... 12 4.1 General Description of the Plugin . 12 4.2 Prepared Methods . 14 4.2.1 AES and DES . 14 4.3 Unprepared Methods . 20 4.3.1 Classic Ciphers, Modern Ciphers, and Hash Functions . 20 4.4 Architecture of the Code . 22 4.5 Limitations and Future Work .
    [Show full text]
  • A Block Cipher Algorithm to Enhance the Avalanche Effect Using Dynamic Key- Dependent S-Box and Genetic Operations 1Balajee Maram and 2J.M
    International Journal of Pure and Applied Mathematics Volume 119 No. 10 2018, 399-418 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu A Block Cipher Algorithm to Enhance the Avalanche Effect Using Dynamic Key- Dependent S-Box and Genetic Operations 1Balajee Maram and 2J.M. Gnanasekar 1Department of CSE, GMRIT, Rajam, India. Research and Development Centre, Bharathiar University, Coimbatore. [email protected] 2Department of Computer Science & Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tamil Nadu. [email protected] Abstract In digital data security, an encryption technique plays a vital role to convert digital data into intelligible form. In this paper, a light-weight S- box is generated that depends on Pseudo-Random-Number-Generators. According to shared-secret-key, all the Pseudo-Random-Numbers are scrambled and input to the S-box. The complexity of S-box generation is very simple. Here the plain-text is encrypted using Genetic Operations and S-box which is generated based on shared-secret-key. The proposed algorithm is experimentally investigates the complexity, quality and performance using the S-box parameters which includes Hamming Distance, Balanced Output and the characteristic of cryptography is Avalanche Effect. Finally the comparison results motivates that the dynamic key-dependent S-box has good quality and performance than existing algorithms. 399 International Journal of Pure and Applied Mathematics Special Issue Index Terms:S-BOX, data security, random number, cryptography, genetic operations. 400 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction In public network, several types of attacks1 can be avoided by applying Data Encryption/Decryption2.
    [Show full text]
  • FPGA Implementation and Analysis of the Block Cipher Mode Architectures for the PRESENT Light Weight Encryption Algorithm
    ISSN (Print) : 0974-6846 Indian Journal of Science and Technology, Vol 9(38), DOI: 10.17485/ijst/2016/v9i38/90314, October 2016 ISSN (Online) : 0974-5645 FPGA Implementation and Analysis of the Block Cipher Mode Architectures for the PRESENT Light Weight Encryption Algorithm A. Prathiba* and V. S. Kanchana Bhaaskaran School of Electronics Engineering, VIT University Chennai, Chennai - 600127, India; prathi_communication@yahoo. co.in, [email protected] Abstract Objective: This paper presents the Field Programmable Gate Array (FPGA) implementations of the different block cipher mode architectures of the ISO standardized light weight block cipher PRESENT, designed for resource constrained devices. Methods/ Statistical Analysis: The performance evaluations compare the implementations of the different block cipher modes, namely Electronic Code Book (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher Feedback Mode (CFB), Output Feed Back Mode (OFB) and CounTeR (CTR) mode for the PRESENT cipher. The throughput of encryption of three successive 64 bit blocks of data ranges from 565.312Mbps to 574.784Mbps for the modes other than the cipher feedback arrives as 68.912 Mbps, 155.392Mbps and300.8 Mbps for a 64 bit block of data for the input streams of size 8 bits, 16 bits andmode 32 in bits the respectively.Spartan-3 FPGA. Findings: The throughput The throughput for providing of the confidentialityblock cipher mode through hardware encryption architectures in the cipher of the feedback light weight mode cipher PRESENT demonstrates the high speed performance of the cipher in encryption/decryption of data as blocks and streams. Application/ Improvement: different modes of operation for the light weight block cipher PRESENT.
    [Show full text]
  • FPGA Implementation Using VHDL of the AES-GCM 256-Bit Authenticated Encryption Algorithm
    NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS THESIS FPGA Implementation using VHDL of the AES-GCM 256-bit Authenticated Encryption Algorithm Ioannis-T. - Stavrou Supervisor: Antonis Paschalis, Professor ATHENS NOVEMBER 2016 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υλοποίηση σε FPGA με τη Χρήση VHDL του Αλγόριθμου Κρυπτογράφησης με Πιστοποίηση Αυθεντικότητας AES-GCM 256-bit Ιωάννης - Θ. - Σταύρου Επιβλέπων: Αντώνης Πασχάλης, Καθηγητής ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 2016 THESIS FPGA Implementation using VHDL of the AES-GCM 256-bit Authenticated Encryption Algorithm Ioannis - T. - Stavrou Α.Μ.: 1115200700128 Supervisor: Antonis Paschalis, Professor ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υλοποίηση σε FPGA με τη Χρήση VHDL του Αλγόριθμου Κρυπτογράφησης με Πιστοποίηση Αυθεντικότητας AES-GCM 256-bit Ιωάννης - Θ. - Σταύρου Α.Μ.:1115200700128 Επιβλέπων: Αντώνης Πασχάλης, Καθηγητής ABSTRACT Achieving high-speed network performance along with data integrity and security was always a challenge. The necessity to communicate through public channels securely led to the use of asymmetric key cryptography algorithms that commonly use a “hand- shake” mechanism allowing the implementation of a “trust” system that could quarantine the security of the transaction and the integrity of the data as long as the algorithm could provide strong resistance to cryptographic attacks. Although, there is no mathematical proof that these algorithms are invulnerable to attacks there is strong indication that they are highly resistant to most of them, making brute force the only attack that can have a 100% success rate which is countered by the huge computational power someone needs to succeed. While asymmetric key cryptography algorithms where the solution to public communication, the ongoing demand for higher bandwidth made the use of them inefficient, because the complexity of the algorithms demanded a processing cost that were creating latency gaps.
    [Show full text]
  • A Novel Construction of Efficient Substitution-Boxes Using Cubic
    entropy Article A Novel Construction of Efficient Substitution-Boxes Using Cubic Fractional Transformation Amjad Hussain Zahid 1,2, Muhammad Junaid Arshad 2 and Musheer Ahmad 3,* 1 Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan; [email protected] 2 Department of Computer Science, University of Engineering and Technology, Lahore 54000, Pakistan; [email protected] 3 Department of Computer Engineering, Jamia Millia Islamia, New Delhi 110025, India * Correspondence: [email protected]; Tel.: +91-112-698-0281 Received: 27 January 2019; Accepted: 28 February 2019; Published: 5 March 2019 Abstract: A symmetric block cipher employing a substitution–permutation duo is an effective technique for the provision of information security. For substitution, modern block ciphers use one or more substitution boxes (S-Boxes). Certain criteria and design principles are fulfilled and followed for the construction of a good S-Box. In this paper, an innovative technique to construct substitution-boxes using our cubic fractional transformation (CFT) is presented. The cryptographic strength of the proposed S-box is critically evaluated against the state of the art performance criteria of strong S-boxes, including bijection, nonlinearity, bit independence criterion, strict avalanche effect, and linear and differential approximation probabilities. The performance results of the proposed S-Box are compared with recently investigated S-Boxes to prove its cryptographic strength. The simulation and comparison analyses validate that the proposed S-Box construction method has adequate efficacy to generate efficient candidate S-Boxes for usage in block ciphers. Keywords: substitution box; cubic fractional transformation; block ciphers; security 1. Introduction Cryptography helps individuals and organizations to protect their data.
    [Show full text]
  • A Fast New Cryptographic Hash Function Based on Integer Tent Mapping System
    JOURNAL OF COMPUTERS, VOL. 7, NO. 7, JULY 2012 1671 A Fast New Cryptographic Hash Function Based on Integer Tent Mapping System Jiandong Liu Information Engineering College, Beijing Institute of Petrochemical Technology, Beijing, China [email protected] Xiahui Wang, Kai Yang, Chen Zhao Information Engineering College, Beijing Institute of Petrochemical Technology, Beijing, China {Wnagxiahui, Yangkai0212, zhao_chen}@bipt.edu.cn Abstract—This paper proposes a novel one-way Hash collisions by SHA-1” by Wang and Yu is another function which is based on the Coupled Integer Tent breakthrough in the hash functions history [11]. Mapping System and termed as THA (THA-160, THA-256). Based on the MD iteration structure [3], the The THA-160 compresses a message of arbitrary length into conventional Hash functions (MDx and SHA) have many a fingerprint of 160 bits, well the THA-256 compresses a common design guidelines. The designs of their mixed message of arbitrary length into a fingerprint of 256 bits. The algorithm adopts a piecewise message expansion operations for each round are very similar, and all of scheme. Compared with SHA-1 and SHA-256 message them adopt integer modulo addition and logic function; expansion, the message expansion scheme has enhanced the therefore, many Hash functions have been breached degree of nonlinear diffusion of the message expansion, and successively within a short period of time, which thus increased the computation efficiency. In addition, as indicates the defects in the design of the Hash functions. the major nonlinear component of compression function, the In recent years, in order to obtain more secure hash traditional logic functions are replaced by the integer tent functions, the research on constructing one-way hash map, and so the scheme has ideal properties of diffusion and function has been carried out and it has achieved progress confusion.
    [Show full text]
  • Data Encryption Standard (DES)
    6 Data Encryption Standard (DES) Objectives In this chapter, we discuss the Data Encryption Standard (DES), the modern symmetric-key block cipher. The following are our main objectives for this chapter: + To review a short history of DES + To defi ne the basic structure of DES + To describe the details of building elements of DES + To describe the round keys generation process + To analyze DES he emphasis is on how DES uses a Feistel cipher to achieve confusion and diffusion of bits from the Tplaintext to the ciphertext. 6.1 INTRODUCTION The Data Encryption Standard (DES) is a symmetric-key block cipher published by the National Institute of Standards and Technology (NIST). 6.1.1 History In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem. A proposal from IBM, a modifi cation of a project called Lucifer, was accepted as DES. DES was published in the Federal Register in March 1975 as a draft of the Federal Information Processing Standard (FIPS). After the publication, the draft was criticized severely for two reasons. First, critics questioned the small key length (only 56 bits), which could make the cipher vulnerable to brute-force attack. Second, critics were concerned about some hidden design behind the internal structure of DES. They were suspicious that some part of the structure (the S-boxes) may have some hidden trapdoor that would allow the National Security Agency (NSA) to decrypt the messages without the need for the key. Later IBM designers mentioned that the internal structure was designed to prevent differential cryptanalysis.
    [Show full text]
  • RAGHAV a New Low Power S-P Network Encryption Design for Resource Constrained Environment
    RAGHAV A new low power S-P network encryption design for resource constrained environment Gaurav Bansod Associate Professor [email protected] Pune Institute of Computer Technology(PICT), Pune India Abstract— This paper proposes a new ultra lightweight cipher considered to be the workhorse in the cryptographic RAGHAV. RAGHAV is a Substitution-Permutation (SP) environment. The most ignored metric in design of a network, which operates on 64 bit plaintext and supports a lightweight cipher is power dissipation which is a very crucial 128/80 bit key scheduling. It needs only 994.25 GEs by using in the environments like IoT and Wireless Sensor Networks 0.13µm ASIC technology for a 128 bit key scheduling. It also (WSN). In Wireless Sensor Network, most of the nodes are needs less memory i.e. 2204 bytes of FLASH memory , which is less as compared to all existing S-P network lightweight ciphers. battery powered and there is a need to protect these nodes This paper presents a complete security analysis of RAGHAV, against external attacks. The versatile cipher like AES, Triple which includes basic attacks like linear cryptanalysis and DES fails in such kind of environment as they need huge differential cryptanalysis. This paper also covers advanced attack memory space as well as they dissipated more power. There is like zero correlation attack, Biclique attack, Algebraic attack, urgent need to secure these nodes without incurring more Avalanche effect, key collision attack and key schedule attack. In power to make the technologies like IoT feasible. This paper this cipher,use of block permutation helps the design to improve presents a cipher RAGHAV which has less GE’s, needs less the throughput.
    [Show full text]
  • CRYPTREC Report 2001
    CRYPTREC 2001 CRYPTREC Report 2001 March 2002 Information-technology Promotion Agency, Japan Telecommunications Advancement Organization of Japan CRYPTREC 2001 Contents Introduction 1 On the CRYPTREC Evaluation Committee Report 3 Note on the use of this report 7 1 Overview of Cryptographic Technique Evaluation 8 1.1 Evaluation Organs and Schedule ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8 1.2 How cryptography evaluation was carried out. ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12 1.3 Terminology ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13 1.4 Evaluation Committee Members ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14 2 Evaluation of public key cryptographic techniques 17 2.1 Target of Evaluation and Evaluation Method ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17 2.1.1 Evaluated Cryptographic Techniques ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17 2.1.2 Evaluation Policy・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17 2.1.3 Evaluation Method ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・19 2.2 Evaluation result ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21 2.2.1 Outline of evaluation result ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21 2.2.2 General Evaluation of the Difficulty of Arithmetic Problems・・・・・・・・・・・・・・・・・23 2.2.3 Overall Judgment of Cryptographic Techniques that were the Target of Detailed Evaluation ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23 2.2.4 Overall Judgment of Cryptographic Techniques under Observation ・・・・・・・・・・・26 2.2.5 Overall Judgment of Cryptosystems that were Targets of Screening Evaluations in 2001
    [Show full text]
  • Modified Advanced Encryption Standard Algorithm for Information
    S S symmetry Article Modified Advanced Encryption Standard Algorithm for Information Security Oluwakemi Christiana Abikoye 1 , Ahmad Dokoro Haruna 2 , Abdullahi Abubakar 1, Noah Oluwatobi Akande 3,* and Emmanuel Oluwatobi Asani 3 1 Computer Science Department, University of Ilorin, Ilorin 240103, Kwara State, Nigeria; [email protected] (A.O.C.); [email protected] (A.A.) 2 Computer Science Department, Gombe State University, Gombe 760214, Gombe State, Nigeria; [email protected] 3 Data and Information Security Research Group, Computer Science Department, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; [email protected] * Correspondence: [email protected] Received: 19 July 2019; Accepted: 9 September 2019; Published: 5 December 2019 Abstract: The wide acceptability of Advanced Encryption Standard (AES) as the most efficient of all of the symmetric cryptographic techniques has further opened it up to more attacks. Efforts that were aimed at securing information while using AES is still being undermined by the activities of attackers This has further necessitated the need for researchers to come up with ways of enhancing the strength of AES. This article presents an enhanced AES algorithm that was achieved by modifying its SubBytes and ShiftRows transformations. The SubBytes transformation is modified to be round key dependent, while the ShiftRows transformation is randomized. The rationale behind the modification is to make the two transformations round key dependent, so that a single bit change in the key will produce a significant change in the cipher text. The conventional and modified AES algorithms are both implemented and evaluated in terms avalanche effect and execution time.
    [Show full text]