Mapping of Transcription Factor Motifs in Active Chromatin Identifies IRF5 As Key Regulator in Classical Hodgkin Lymphoma

Total Page:16

File Type:pdf, Size:1020Kb

Mapping of Transcription Factor Motifs in Active Chromatin Identifies IRF5 As Key Regulator in Classical Hodgkin Lymphoma Mapping of transcription factor motifs in active PNAS PLUS chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma Stephan Krehera,b,1, M. Amine Bouhlelc,1, Pierre Cauchyd, Björn Lamprechta,b,e, Shuang Lia,b, Michael Grauf, Franziska Hummela,b, Karl Köcherta,b, Ioannis Anagnostopoulosg, Korinna Jöhrensg, Michael Hummele,g, John Hiscotth, Sören-Sebastian Wenzelb, Peter Lenzf, Markus Schneideri, Ralf Küppersi, Claus Scheidereita, Maciej Giefingj,k, Reiner Siebertj, Klaus Rajewskya, Georg Lenzb, Peter N. Cockerilld, Martin Janza,b, Bernd Dörkena,b,e, Constanze Boniferd,2, and Stephan Mathasa,b,e,2 aMax-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; bHematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; cLeeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom; dSchool of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; eGerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; fDepartment of Physics, Philipps University, 35052 Marburg, Germany; gInstitute of Pathology, Charité– Universitätsmedizin Berlin, 10117 Berlin, Germany; hVaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987; iInstitute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122 Essen, Germany; jInstitute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; and kInstitute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland Edited by Louis M. Staudt, National Cancer Institute, National Institutes of Health, Bethesda, MD, and approved September 4, 2014 (received for review April 17, 2014) Deregulated transcription factor (TF) activities are commonly ob- lineages. However, the nature of the TFs initiating and maintaining served in hematopoietic malignancies. Understanding tumorigene- HRS-specific gene expression remains poorly understood. sis therefore requires determining the function and hierarchical role As an unbiased approach for the identification of deregulated of individual TFs. To identify TFs central to lymphomagenesis, we TF activities central to lymphoma biology, we identified HL-specific identified lymphoma type-specific accessible chromatin by global accessible chromatin regions by global mapping of DNaseI hy- mapping of DNaseI hypersensitive sites and analyzed enriched TF- persensitive sites (DHSs). DHSs mark cis-regulatory elements MEDICAL SCIENCES binding motifs in these regions. Applying this unbiased approach to bound by TF complexes (9) and differ between normal and classical Hodgkin lymphoma (HL), a common B-cell–derived lym- malignant cells (10, 11). We then performed an unbiased genome- phoma with a complex pattern of deregulated TFs, we discovered wide search for TF binding motifs enriched within HRS-specific interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 Significance initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating Human lymphomas and leukemias are characterized by mo- with NF-κB to activate essential characteristic features of HL. Our lecular and structural alterations of transcription factors (TFs). strategy efficiently identified a lymphoma type-specific key regula- The identification of such deregulated TFs is therefore central tor and uncovered a tumor promoting role of IRF5. to the understanding of lymphomagenesis. We addressed this question in classical Hodgkin lymphoma (HL), a common B-cell– ranscription factor (TF) activities have to be tightly con- derived malignancy that is one of the most prominent examples trolled because their aberrant regulation alters tissue-specific for complex patterns of deregulated TFs including the activation T κ gene expression programs and contributes to cancer pathogenesis. of NF- B or AP-1 and a profound deregulation of lineage- κ Therefore, the identification of altered TF activities in malig- specific TFs. We found that IRF5 together with NF- Binduces nancies is of crucial importance to understand malignant trans- a number of HL characteristic features in non-Hodgkin cells, formation and to develop new treatment strategies. Deregulated such as expression of cytokines and chemokines or AP-1 acti- TF activities are commonly observed in hematopoietic malignan- vation. Our work exemplifies how the global lymphoma type- cies including human lymphomas and leukemias, and the link specific characterization of TF activities can improve the between structural or functional alterations in TFs and malignant understanding of tumor biology. transformation has been documented in various in vitro and in – Author contributions: S.K., M.A.B., P.C., S.L., G.L., P.N.C., M.J., C.B., and S.M. designed vivo studies (1 3). Apart from the direct modulation of cellular research; S.K., M.A.B., P.C., B.L., S.L., F.H., S.-S.W., and M.S. performed research; S.K., processes like cellular growth or cell death, alterations of the ac- M.A.B., P.C., B.L., S.L., M. Grau, F.H., K.K., I.A., K.J., M.H., J.H., S.-S.W., P.L., M.S., R.K., C.S., tivity of even single TFs might enforce malignant transformation M. Giefing, R.S., K.R., G.L., P.N.C., M.J., B.D., C.B., and S.M. analyzed data; C.B. and S.M. by switching differentiation programs and consequently altering wrote the paper; S.K., M.A.B., P.C., R.K., C.S., M. Giefing, R.S., K.R., G.L., P.N.C., M.J., and B.D. contributed to writing of the manuscript; K.K. analyzed microarray data; I.A. and K.J. the cellular fate of the respective cells, as exemplarily demon- performed and interpreted IHC analyses; J.H. provided material; J.H., C.S., R.S., K.R., and strated for the B-lymphoid TF PAX5 (4, 5). B.D. interpreted data; and C.B. and S.M. supervised the project. Among lymphoid malignancies, one of the most prominent The authors declare no conflict of interest. examples for complex patterns of deregulated TFs is classical This article is a PNAS Direct Submission. Hodgkin lymphoma (HL), a common B cell-derived malignancy (6). Freely available online through the PNAS open access option. Pathogenic hallmarks of the malignant Hodgkin/Reed-Sternberg Data deposition: The datasets reported in the manuscript have been deposited in the (HRS) cells of HL include the constitutive activation of TFs that Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession nos. are only transiently activated in normal B cells, such as nuclear GSE51726, GSE51813, GSE51717, and GSE51719). κ factor kappa B (NF- B) or activator protein-1 (AP-1), and a pro- 1S.K. and M.A.B. contributed equally to this work. – found deregulation of lineage-specific TFs such as E2A (6 8). 2To whom correspondence may be addressed. Email: [email protected] or stephan. Thus, although originating from B-lymphoid cells, HRS cells have [email protected]. lost their B cell-specific gene expression pattern and instead up- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. regulate expression of genes characteristic for other hematopoietic 1073/pnas.1406985111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1406985111 PNAS | Published online October 6, 2014 | E4513–E4522 Downloaded by guest on October 1, 2021 accessible chromatin and functionally analyzed the role of the Identification of TF-Binding Motifs Enriched in HRS Cell-Specific corresponding factors. The identification of binding motifs for the Accessible Chromatin Regions. To identify TFs responsible for TFs AP-1, NF-κB, and STAT in HL-specific accessible chromatin the HRS-specific gene expression program, we searched for TF confirmed their essential role for HL biology (6). In addition, we DNA binding motifs specifically enriched in HRS-specific DHSs, revealed that IFN regulatory factor (IRF) binding motifs are using both L1236 and L428 cells as references (Fig. 2 A and B). among the top enriched motifs in HL. We detected in HRS cells an In the B (NH)-specific DHS signature (Fig. 1D; A), binding abundant expression and increased activity of IRF5, which is an motifs for TFs important for the B-cell program such as E-box IRF TF family member that plays a central role in Toll-like re- and OCT motifs (18) were enriched (Fig. 2 A and B), in accor- ceptor (TLR)-mediated immune responses and is a key regulator dance with their role in maintaining the B-cell phenotype. In of TLR-induced proinflammatory gene expression (12, 13). IRF5 contrast, HRS-specific DHSs (Fig. 1D; C) were enriched in directed HL-specific cytokine expression in cooperation with NF- binding motifs for members of the inducible TF families AP-1, κB and protected HRS cells from cell death. Alone or in combi- NF-κB, STAT, and IRF (Fig. 2 A and B), whereas, as previously nation with NF-κB, IRF5 was capable of inducing gene expression demonstrated (19), TF motifs important for the B-cell program alterations in non-Hodgkin and primary murine splenic B cells that were found with decreased frequency. Mapping the different were reminiscent of those found in HL. Furthermore, we identified binding motifs back to enriched sequences showed their associ- a transcriptional cross-talk between IRF5 and AP-1, as IRF5 di- ation with NH- or HRS-specific DHSs, respectively, and dem- rected the activation of the known abundant and HL-specific AP-1 onstrated that they clustered around the central position of the complex. These data describe a powerful method for the identifi- DHS (SI Appendix, Fig. S2 A–D). Motif distribution was not cation of deregulated TF activities in human lymphoma, which led random, as AP-1, STAT, and IRF motifs showed a preferred to the identification of IRF5 as a key regulator of HRS cell biology.
Recommended publications
  • ZNF652, a Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription
    ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription Raman Kumar,1 Jantina Manning,1 Hayley E. Spendlove,3 Gabriel Kremmidiotis,4 Ross McKirdy,1 Jaclyn Lee,1 David N. Millband,1 Kelly M. Cheney,1 Martha R. Stampfer,5 Prem P. Dwivedi,2 Howard A. Morris,2 and David F. Callen1 1Breast Cancer Genetics Group, Dame Roma Mitchell Cancer Research Laboratories, Department of Medicine, University of Adelaide and Hanson Institute; 2Endocrine Bone Laboratory, Hanson Institute, Adelaide, South Australia, Australia; 3Department of Laboratory Genetics, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia; 4Bionomics, Ltd., Thebarton, South Australia, Australia; and 5Lawrence Berkeley National Laboratory, Berkeley, California Abstract gene effector zinc finger proteins may specifically The transcriptional repressor CBFA2T3is a putative interact with one or more of the ETO proteins to generate breast tumor suppressor. To define the role of CBFA2T3, a defined range of transcriptional repressor complexes. we used a segment of this protein as bait in a yeast (Mol Cancer Res 2006;4(9):655–65) two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer Introduction cell lines showed lower expression of ZNF652 than Tumor growth, characterized by unchecked cell division, normal tissues. Together with the location of this gene results from both the overexpression of growth-promoting on the long arm of chromosome 17q, a region of frequent oncogenes and the reduced expression of growth-inhibiting loss of heterozygosity in cancer, these results suggest tumor suppressor genes. These genes often encode proteins that In silico a possible role of ZNF652 in tumorigenesis.
    [Show full text]
  • Genetic Variability in the Italian Heavy Draught Horse from Pedigree Data and Genomic Information
    Supplementary material for manuscript: Genetic variability in the Italian Heavy Draught Horse from pedigree data and genomic information. Enrico Mancin†, Michela Ablondi†, Roberto Mantovani*, Giuseppe Pigozzi, Alberto Sabbioni and Cristina Sartori ** Correspondence: [email protected] † These two Authors equally contributed to the work Supplementary Figure S1. Mares and foal of Italian Heavy Draught Horse (IHDH; courtesy of Cinzia Stoppa) Supplementary Figure S2. Number of Equivalent Generations (EqGen; above) and pedigree completeness (PC; below) over years in Italian Heavy Draught Horse population. Supplementary Table S1. Descriptive statistics of homozygosity (observed: Ho_obs; expected: Ho_exp; total: Ho_tot) in 267 genotyped individuals of Italian Heavy Draught Horse based on the number of homozygous genotypes. Parameter Mean SD Min Max Ho_obs 35,630.3 500.7 34,291 38,013 Ho_exp 35,707.8 64.0 35,010 35,740 Ho_tot 50,674.5 93.8 49,638 50,714 1 Definitions of the methods for inbreeding are in the text. Supplementary Figure S3. Values of BIC obtained by analyzing values of K from 1 to 10, corresponding on the same amount of clusters defining the proportion of ancestry in the 267 genotyped individuals. Supplementary Table S2. Estimation of genomic effective population size (Ne) traced back to 18 generations ago (Gen. ago). The linkage disequilibrium estimation, adjusted for sampling bias was also included (LD_r2), as well as the relative standard deviation (SD(LD_r2)). Gen. ago Ne LD_r2 SD(LD_r2) 1 100 0.009 0.014 2 108 0.011 0.018 3 118 0.015 0.024 4 126 0.017 0.028 5 134 0.019 0.031 6 143 0.021 0.034 7 156 0.023 0.038 9 173 0.026 0.041 11 189 0.029 0.046 14 213 0.032 0.052 18 241 0.036 0.058 Supplementary Table S3.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • Single Cell Profiling of CRISPR/Cas9-Induced OTX2 Deficient Retinas Reveals Fate Switch from Restricted Progenitors
    bioRxiv preprint doi: https://doi.org/10.1101/538710; this version posted February 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Single cell profiling of CRISPR/Cas9-induced OTX2 deficient retinas reveals fate switch from restricted progenitors Miruna G. Ghinia Tegla1, Diego F. Buenaventura1, 2, Diana Y. Kim1, Cassandra Thakurdin1, Kevin C. Gonzalez1, 3, Mark M. Emerson1,2* 1 Department of Biology, The City College of New York, City University of New York, New York, NY, 10031; United States of America 2 Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, 10031; United States of America 3 Present address: Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032; United States of America *Corresponding author: [email protected] Email addresses: Miruna G. Ghinia Tegla: [email protected] Diego F. Buenaventura: [email protected] Diana Y. Kim: [email protected] Cassandra Thakurdin: [email protected] Kevin C. Gonzalez: [email protected] Mark M. Emerson: [email protected] Running title: Single cell analysis of retinal cell fate changes induced by OTX2 mutagenesis bioRxiv preprint doi: https://doi.org/10.1101/538710; this version posted February 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Development of the vertebrate eye, like many developmental systems, depends on genes that are used iteratively in multiple distinct processes.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Original Article a Database and Functional Annotation of NF-Κb Target Genes
    Int J Clin Exp Med 2016;9(5):7986-7995 www.ijcem.com /ISSN:1940-5901/IJCEM0019172 Original Article A database and functional annotation of NF-κB target genes Yang Yang, Jian Wu, Jinke Wang The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China Received November 4, 2015; Accepted February 10, 2016; Epub May 15, 2016; Published May 30, 2016 Abstract: Backgrounds: The previous studies show that the transcription factor NF-κB always be induced by many inducers, and can regulate the expressions of many genes. The aim of the present study is to explore the database and functional annotation of NF-κB target genes. Methods: In this study, we manually collected the most complete listing of all NF-κB target genes identified to date, including the NF-κB microRNA target genes and built the database of NF-κB target genes with the detailed information of each target gene and annotated it by DAVID tools. Results: The NF-κB target genes database was established (http://tfdb.seu.edu.cn/nfkb/). The collected data confirmed that NF-κB maintains multitudinous biological functions and possesses the considerable complexity and diversity in regulation the expression of corresponding target genes set. The data showed that the NF-κB was a central regula- tor of the stress response, immune response and cellular metabolic processes. NF-κB involved in bone disease, immunological disease and cardiovascular disease, various cancers and nervous disease. NF-κB can modulate the expression activity of other transcriptional factors. Inhibition of IKK and IκBα phosphorylation, the decrease of nuclear translocation of p65 and the reduction of intracellular glutathione level determined the up-regulation or down-regulation of expression of NF-κB target genes.
    [Show full text]
  • NFIA/CBFA2T3 Translocation Globin Accumulation
    CASE REPORTS firmed by flow cytometric immunophenotyping (Figure De novo primary central nervous system pure 2A-B). These cells showed scant to moderate basophilic erythroid leukemia/sarcoma with t(1;16)(p31;q24) to polychromatic cytoplasm, the latter likely from hemo- NFIA/CBFA2T3 translocation globin accumulation. Cytoplasmic blebbing was fre- quent. Multinucleation, nuclear budding and mitotic fig- We report an unusual case of de novo pure erythroid ures were seen. Flow cytometry detected an aberrant cell leukemia/sarcoma (PEL/PES) presenting solely as primary population (90%) expressing CD36 (bright), CD71, central nervous system (CNS) disease. This is the second heterogeneous CD117, heterogeneous glycophorin A; PEL case with confirmed t(1;16)(p31;q24) nuclear factor I A the population was negative for CD14, CD15, CD34, 1 (NFIA)/core binding factor A2T3 (CBFA2T3) translocation. CD38, CD45, and CD64. CSF findings prompted addi- We performed comprehensive molecular profiling from tional IHC staining of the brain biopsy. Tumor cells were tumor cells obtained from cerebrospinal fluid (CSF) positive for E-cadherin, CD71, and hemoglobin (variable) which identified a NFIA/CBFA2T3 fusion and somatic (Figure 1B). A definitive diagnosis of PEL/PES was ren- variation in EPOR, Janus kinase 2 (JAK2), and ARID1A. dered just over two weeks later. This 2-year-old female presented with vomiting. A Cytogenetic studies on CSF detected a hyperdiploid head computerized tomography (CT) scan and magnetic clonal cell population (Figure 2C): resonance imaging (MRI) showed a well-circumscribed 54,XX,+X,t(1;16)(p31;q24),+6,+7,+8,+8,+10,+14,+19[12] hyperdense mass (3.7x2.5x1.5 cm) within the posterior /55,sl,+15[8].
    [Show full text]
  • Overview Gene List Target Scan Vs DIANA Group a Group B Group A
    Overview Gene list Target scan vs DIANA Group A Group B Group A hsa-miR-181a hsa-miR-323 hsa-miR-326 Target scan Diana microT Overlap Target scan Diana microT Overlap Target scan SEPT3 SEPT3 SEPT3 SEPT7 ADARB1 HPCAL4 ABHD2 ABL2 ABHD13 ACVR2A ADCYAP1R1 AKAP13 PDPK1 ACRBP ACAN ABI1 ADAMTS1 ALAD APOBR ACVRL1 ACCN2 ABLIM1 ADAMTSL1 ANKRD52 ATXN1 ADAM19 ACER3 ACSL1 AKAP7 ARID2 C18orf23,RNF165 ADAM33 ACVR2A ACTN2 ANKRD43 ARL3 C20orf29 ADAMTS2 ADAMTS1 ACVR2A AP1S3 ARRB1 CACNG4 AHCYL2 ADAMTS18 ACVR2B ARID2 BBC3 CCNJL ALOX15B ADAMTS5 ADAM11 ATP11A BTG1 CYP2E1 ANK1 ADAMTSL1 ADAM22 ATXN1 C18orf62 GNB1L ANKS6 ADARB1 ADAMTS1 B4GALT1 C1orf21 GPR61 APBA1 AFAP1 ADAMTS6 BAG4 CADM4 GTSE1 ARCN1 AFTPH ADAMTSL1 BAI3 CALML4 HPCAL4 ARHGEF37 AK3 ADCY9 BNC2 CAPN6 KIAA0152 ARID3B AKAP7 ADRBK1 BRD1 CBFA2T2 KIF1A ARL8A ANAPC16 AFF2 BRWD1 CEBPA MACF1 ATP2B2 ANK1 AHCTF1,AHCTF1PBTBD3 CHD1 MYO1D ATP6V1G2 ANKRD12 AKAP2,PALM2 C13orf23 CIT PCNT AUP1 ANKRD33B AKAP6 C14orf43 CLASP2 PDPK1 BCL2L2 ANKRD43 AKAP7 CAPRIN1 CLCN5 PLEKHG4B BHLHE40 ANKRD44 AKAP9 CARM1 CLIP3 PPARA BTBD3 ANKRD52 AKT3 CBX4 COL5A2 PRB1,PRB2,PRB4 BTRC AP1S3 ALG9 CCDC117 CTNS PTPRT C10orf26 APBA1 ANKRD13C CCNJ DCTN4 PYCR1 C14orf1 APLP2 ANKRD20B CDH13 DCUN1D4 RAPGEF1 C16orf45 APOO ANKRD43 CDON DDB1 SRCAP C16orf54 ARID2 ANKRD50 CDYL DDX39B TMEM63C C1orf106 ARL3 AP1G1 CEP350 DIP2C C1orf27 ARRDC3 AP1S3 CHD7 DNAJB3 C22orf29 ATF7 API5 CHIC1 EEPD1 C9orf3 ATG2B ARFGEF2 CLIP1 EIF2C1 CACNA1E ATG7 ARHGAP12 CNOT6L ELFN2 CAPN12 ATP11A ARHGAP26 CNR1 ELK1 CASKIN1 ATP2B3 ARHGAP29 CNTN4 FAM172A CBFA2T3 ATP8B2 ARHGEF3 CNTNAP2
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Xo PANEL DNA GENE LIST
    xO PANEL DNA GENE LIST ~1700 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes (at 400 -500x average coverage on tumor) Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11
    [Show full text]