Requirements for Hazardous Waste Landfill Design, Construction, and Closure R—I

Total Page:16

File Type:pdf, Size:1020Kb

Requirements for Hazardous Waste Landfill Design, Construction, and Closure R—I I United States Office of .S^/ 7625/4-89/022 Environmental Protection Researcti and Development Atrgus5ust. 1989 7.7. /V Agency Washington, DC 20460 Cj^fLQCfkJ^f^Uf -^ . Pi^ • • - i - oiiOtFt^^rfun' a Kecords Center wEPA Seminar PublicatiOii^s^l^!:­ OTHER: IbStthl Requirements for Hazardous Waste Landfill Design, Construction, and Closure r—i SDMS DocID 463461 Technology Transfer EPA/625/4-89/022 Seminar Publication Requirements for Hazardous Waste Landfill Design, Construction, and Closure August 1989 Center for Environmental Research Information Office of Research and Development U.S. Environmental Protectin Agency Cincinnati, OH 45268 Printed on Recycled Paper NOTICE The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under Contract 68-C8-0011 to Eastern Research Group, Inc. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. CONTENTS Page Preface vi 1. Overview of Minimum Technology Guidance and Regulations for Hazardous Waste Landfills 1 Background 1 Double Liners and Leachate Collection and Removal Systems 2 Leak Detection Systems 6 Closure and Final Cover 9 Construction Quality Assurance 9 Summary of Minimum Technology Requirements 10 References 10 2. Liner Design: Clay Liners 11 Introduction 11 Materials 11 Clay Liners versus Composite Liners 12 Darcy's Law, Dispersion, and Diffusion 13 Laboratory Tests for Hydraulic Conductivity 17 Field Hydraulic Conductivity Testing 20 Field Tests versus Laboratory Tests 23 Attack by Waste Leachate 24 References 26 3. Flexible Membrane Liners 27 Introduction 27 Composite Liners: Clay versus Synthetic Components 27 Material Considerations 27 Design Elements 30 References 39 4. Elements of Liquid Management at Waste Containment Sites 53 Introduction 53 Overview 53 Primary Leachate Collection and Removal (PLCR) Systems 57 Leak Detection, Collection, and Removal (LDCR) Systems 62 Surface Water Collection and Removal (SWCR) Systems 65 Gas Collector and Removal Systems 66 References 70 5. Securing a Completed Landfill 75 Introduction 75 Flexible Membrane Caps 75 Surface Water Collection and Removal Systems 75 Gas Control Layer 76 Biotic Barriers 78 Vegetative Layer 78 Other Considerations 81 6. Construction, Quality Assurance, and Control: Construction of Clay Liners 89 Introduction 89 Compaction Variables 89 The Construction Process 94 Construction Quality Assurance (CQA) Testing 95 Test Fills 96 7. Construction of Flexible Membrane Liners 99 Introduction 99 Responsibility and Authority 99 CQA Personnel Qualifications 100 Inspection Activities 100 Sampling Strategies 101 Documentation 103 8. Liner Compatibility with Wastes 109 Introduction 109 Exposure Chamber 109 Representative Leachate 110 Compatibility Testing of Components 110 Blanket Approvals Il l Interpreting Data Il l 9. Long-Term Considerations: Problem Areas and Unknowns 113 Introduction 113 Flexible Membrane Liners 113 Clay Liners 118 Leachate Collection and Removal Systems 118 Cap/Closure Systems 119 10. Leak Response Action Plans 121 Background 121 Action Leakage Rate (ALR) 121 Rapid and Large Leakage (RLL) 122 Response Action Plans (RAPs) 124 Preparing and Submitting the RAP 124 Summary 125 List of Abbreviations 127 IV ACKNOWLEDGEMENTS This seminar publication is based wholly on presentations made at the U.S. Environmental Protection Agency (EPA) Technology Transfer seminars on Requirements for Hazardous Waste Landfill Design, Construction, and Closure. These seminars were held from June 20 to September 16, 1988 in San Francisco, California; Seattle, Washington; Dallas, Texas; Chicago, Illinois; Denver, Colorado; Kansas City, Missouri; Philadelphia, Pennsylvania; Atlanta, Georgia; New York, New York; and Boston, Massachusetts. The presenters were: Sarah A. Hokanson, the Earth Technology Corporation, Alexandria, Virginia (Chapters 1 and 10) Dr. David Daniel, University of Texas, Austin, Texas (Chapters 2 and 6) Dr. Gregory N. Richardson, Soil & Materials Engineers, Inc., Raleigh, North Carolina (Chapters 3, 5, arid 7). Dr. Robert M. Koerner, Drexel University, Geosynthetic Research Institute, Philadelphia, Pennsylvania (Chapters 4 and 9). Robert Landreth, U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Cincinnati, Ohio (Chapter 8) Susan Edwards, Linda Saunders, and Heidi Schultz of Eastern Research Group, Inc., Arlington, Massachusetts, prepared the text of this document based on the speakers' transcripts and slides. Orville Macomber (EPA Center for Environmental Research Information, Cincinnati, Ohio) provided substantive guidance and review. PREFACE The U.S. Environmental Protection Agency's (EPA's) minimum technological require­ ments for hazardous waste landfill design were set forth by Congress in the 1984 Hazard­ ous and Solid Waste Amendments (HSWA). HSWA covered requirements for landfill lin­ ers and leachate collection and removal systems, as well as leak detection systems for landfills, surface impoundments, and waste piles. In response to HSWA and other Con­ gressional mandates, EPA has issued proposed regulations and guidance on the design of these systems, and on construction quality assurance, (final cover, and response action plans for responding to landfill leaks. This seminar publication outlines in detail the provisions of the minimum technology guidance and proposed regulations, and offers practical and detailed information on the construction of hazardous waste facilities that comply with these requirements. Chapter One presents a broad overview of the minimum technology guidance and regulations. Chapter Two describes the use of clay liners in hazardous waste landfills, including the selection and testing of materials for the clay component of double liner systems. Chap­ ter Three discusses material and design considerations for flexible membrane liners, and the impact ofthe proposed regulations on these considerations. Chapter Four presents an overview ofthe three parts of a liquid management system, including the leachate collec­ tion and removal system; the secondary leak detection, collection, and removal system; and the surface water collection system. Chapter Five describes the elements of a closure system for a completed landfill, including flexible membrane caps, surface water collec­ tion and removal systems, gas control layers, biotic barriers, and vegetative top covers. Chapters Six and Seven discuss the construction, quality assurance, and control criteria for clay liners and flexible membrane liners, respectively. Chapter Eight discusses the chemical compatibility of geosynthetic and natural liner materials with waste leachates. Chapter Nine presents an overview of long-term considerations regarding hazardous waste landfills, surface impoundments, and waste piles, including flexible membrane and clay liner durability, potential problems in liquid management systems, and aesthet­ ic concerns. Chapter Ten reviews proposed requirements for response action plans for leaks in hazardous waste landfills. This publication is not a design manual nor does it include all of the latest knowledge concerning hazardous waste landfill design and construction; additional sources should be consulted for more detailed information. Some of these useful sources can be located in the reference sections at the end of several chapters. In addition, State and local authori­ ties should be contacted for regulations and good management practices applicable to lo­ cal areas. 1. OVERVIEW OF MINIMUM TECHNOLOGY GUIDANCE AND REGULATIONS FOR HAZARDOUS WASTE LANDFILLS This chapter presents a summary of existing and to maximize leachate collection and removal through proposed regulations and guidance on the design of use ofthe lining system and LCRS. double liners and leachate collection and removal systems, leak detection systems, final cover, and To date, EPA has issued regulations and guidance construction quality assurance. An overview of primarily focusing on double liners and leachate proposed regulations concerning leak response collection and removal systems. Four Federal action plans is given in Chapter Ten. More technical Register notices and guidance documents have been discussion of these and other components of landfill published by EPA in the last 4 years in this area (see design and construction are given in Chapters Two Table 1-1). EPA has issued proposed regulations through Nine. and/or guidance in the additional areas listed in Table 1-2. The draft guidance on the final cover Background issued in July 1982, which was never widely distributed, is being revised for reissuance by the end EPA's minimum technological requirements for of 1989. EPA also plans to issue final regulations for hazardous waste landfill design and construction double liners and for leak detection systems, were introduced by Congress in the 1984 Hazardous including construction quality assurance and and Solid Waste Amendments (HSWA). In HSWA response action plans. Section 3004(o)(l)(A), Congress required all new landfills and surface impoundments to have double liners and leachate collection and removal systems (LCRS). In Section 3004(o)(4), Congress also required Table 1-1. Guidance and Regulations Issued to Date leak detection systems at all new land disposal units, (Double Liners and LCRS) including landfills, surface impoundments, and waste piles. In response
Recommended publications
  • From the Past to the Future of Landfill Engineering Through Case Histories
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (1998) - Fourth International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 08 Mar 1998 - 15 Mar 1998 From the Past to the Future of Landfill Engineering Through Case Histories R. Kerry Rowe University of Western Ontario, London, Ontario, Canada Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Rowe, R. Kerry, "From the Past to the Future of Landfill Engineering Through Case Histories" (1998). International Conference on Case Histories in Geotechnical Engineering. 4. https://scholarsmine.mst.edu/icchge/4icchge/4icchge-session00/4 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. 145 Proceedings: Fourth International Conference on Case Histories in Geotechnical Engineering~ St. Louis, Missouri, March 9-12, 1998. FROM THE PAST TO THE FUTURE OF LANDFILL ENGINEERING THROUGH CASE HISTORIES R. Kerry Rowe Paper No. SOA-9 Dept. of Civil & Environmental Engineering University of Western Ontario London, Ontario, Canada N6A 5B9 AIISTRACT The advances in landfill engineering are outlined based on a number of case histories illustrating past problems, hydraulic performance of clay liners, diffusive transport through liners, hydraulic containment and clogging of leachate collection systems.
    [Show full text]
  • Alternative Bottom Liner System
    Engineering Report: Appendix C Volume 2 Alternative Bottom Liner System COWLITZ COUNTY HEADQUARTERS LANDFILL PROJECT COWLITZ COUNTY, WASHINGTON Alternative Bottom Liner System COWLITZ COUNTY HEADQUARTERS LANDFILL PROJECT COWLITZ COUNTY, WASHINGTON Prepared for COWLITZ COUNTY DEPARTMENT OF PUBLIC WORKS November 2012 Prepared by Thiel Engineering P.O. Box 1010 Oregon House, CA 95962 Table of Contents 1 INTRODUCTION ................................................................................................................... 1 1.1 Purpose and Scope ......................................................................................................................... 1 1.2 Background .................................................................................................................................... 1 1.3 Proposed Alternative ..................................................................................................................... 2 1.4 Description of GCLs ...................................................................................................................... 3 2 TECHNICAL EQUIVALENCY AND PERFORMANCE ................................................. 5 2.1 The Theory of Composite Liners with Reference to GCLs ....................................................... 5 2.2 Technical Equivalency Issues ....................................................................................................... 6 2.3 Hydraulic Issues ...........................................................................................................................
    [Show full text]
  • Integration of Resource Recovery Into Current Waste Management Through
    INTEGRATION OF RESOURCE RECOVERY INTO CURRENT WASTE MANAGEMENT THROUGH (ENHANCED) LANDFILL MINING Juan Carlos Hernández Parrodi 1,2,*, Hugo Lucas 3, Marco Gigantino 4, Giovanna Sauve 5, John Laurence Esguerra 6,7, Paul Einhäupl 5,7, Daniel Vollprecht 2, Roland Pomberger 2, Bernd Friedrich 3, Karel Van Acker 5, Joakim Krook 6, Niclas Svensson 6 and Steven Van Passel 7 1 Renewi Belgium SA/NV, NEW-MINE project, 3920 Lommel, Belgium 2 Montanuniversität Leoben, Department of Environmental and Energy Process Engineering, 8700 Leoben, Austria 3 RWTH Aachen University, Process Metallurgy and Metal Recycling, 52056 Aachen, Germany 4 ETH Zürich, Department of Mechanical and Process Engineering, 8092 Zürich, Switzerland 5 Katholieke Universiteit Leuven, Department of Materials Engineering, 3001 Leuven, Belgium 6 Linköping University, Environmental Technology and Management, 58183 Linköping, Sweden 7 Universiteit Antwerpen, Department of Engineering Management, 2000 Antwerpen, Belgium Article Info: ABSTRACT Received: Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimat- 1 November 2019 Accepted: ed 90% of them being “non-sanitary” landfills, predating the EU Landfill Directive of 15 November 2019 1999/31/EC. These older landfills tend to be filled with municipal solid waste and Available online: often lack any environmental protection technology. “Doing nothing”, state-of-the- 23 December 2019 art aftercare or remediating them depends largely on technical, societal and eco- Keywords: nomic conditions which vary between countries. Beside “doing nothing” and land- Landfill mining strategies fill aftercare, there are different scenarios in landfill mining, from re-landfilling the Enhanced landfill mining waste into “sanitary landfills” to seizing the opportunity for a combined resource-re- Resource recovery covery and remediation strategy.
    [Show full text]
  • Geosynthetic Liner Systems for Municipal Solid Waste Landfills: an Inadequate Technology for Protection of Groundwater Quality
    Geosynthetic Liner Systems for Municipal Solid Waste Landfills: An Inadequate Technology for Protection of Groundwater Quality G. Fred Lee, PhD, PE and Anne Jones-Lee, PhD G. Fred Lee & Associates El Macero, California Published in: Waste Management & Research 11:354-360 (1993) Waste Management & Research published a paper by Fluet et al. entitled, "A Review of Geosynthetic Liner System Technology" in its March 1992 issue. The geosynthetic liner system technology that they addressed was an engineered containment system for use in lined "dry tomb" landfills in which are placed untreated municipal solid waste (MSW). The "dry tomb" landfilling approach relies on a cover system to in theory keep the wastes dry and a liner system (liner and leachate collection and removal system) to collect and remove leachate. The performance of a "dry tomb" landfill depends on the functioning of the cover and of the liner system for as long as the wastes represent a threat. The Fluet et al. review suggests to the reader that flexible membrane liner systems of the type being constructed today in municipal solid waste landfills will protect groundwater quality from pollution by landfill leachate. Critical examination of the Fluet et al. (1992) review article, however, reveals that they omitted from their discussion some of the most important topics that need to be considered in an evaluation of the efficacy of landfill liner systems in providing truly long-term protection of groundwater quality. Those neglected topics contribute to the assessment of: whether the liner system will prevent groundwater pollution for as long as the wastes represent a threat to groundwater quality.
    [Show full text]
  • Influence of Bentonite on Clayey Soil As a Landfill Baseliner Materials
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Recent citations Influence of bentonite on clayey soil as a landfill - Vulnerability Assessment of Groundwater Contamination from an Open dumpsite: baseliner materials Labete Dumpsite as a Case study R A Olaoye et al To cite this article: R A Olaoye et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 640 012107 - A review of the mineralogical and geotechnical properties of some residual soils in relation to the problems of road failures: A case study of Nigeria R O Sani et al View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.126 on 25/09/2021 at 12:24 1st International Conference on Sustainable Infrastructural Development IOP Publishing IOP Conf. Series: Materials Science and Engineering 640 (2019) 012107 doi:10.1088/1757-899X/640/1/012107 Influence of bentonite on clayey soil as a landfill baseliner materials R A Olaoye 1 O D Afolayan 2 V O Oladeji 1 R O Sani 2 1Department of Civil Engineering, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria. 2Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria Corresponding Author: [email protected] Abstract. With the geometric population growth in developing nations comes increase in waste generation, these wastes ranging from industrial to agricultural to municipal solid waste calls for measure for its effective management and disposal so as to preserve the ecosystem. An effective measure of containing this large waste generated, is through the use of landfills which are designed and built to protect infiltration of leachates from decomposed waste to the groundwater.
    [Show full text]
  • EPA-P1-500, Needham, the Likely Medium to Long-Term Generation
    R&D Technical Report P1-500/1/TR The likely medium to long-term generation of defects in geomembrane liners Environment Agency Likely medium to long-term generation of defects in geomembranes 1 The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. Published by: Authors: Environment Agency Needham, A., Gallagher, E., Peggs, I., Howe, G. & Norris, J. Rio House EDGE Consultants UK Ltd, in association with I-Corp International Waterside Drive, Aztec West Inc., Nottingham Trent University and RAPRA Technology Ltd. Almondsbury, Bristol BS32 4UD Tel: 01454 624400 Fax: 01454 624409 Statement of use: This report presents a review of the processes and rates of ISBN: 1 84432 180 0 geomembrane degradation reported from laboratory and field studies. It reviews landfill monitoring data and research © Environment Agency, January 2004 from related fields to predict future rates of defect generation in geomembrane liners, for use in risk and performance All rights reserved. This document may be reproduced assessment of new landfill sites. This report should be used with prior permission of the Environment Agency. in conjunction with the Agency’s guidance on hydrogeological risk assessment for landfills and LandSim This report is printed on Cyclus Print, a 100% recycled v2.5+.
    [Show full text]
  • Environmental Management of Landfill Facilities
    Environment Protection Authority Environmental management of landfill facilities Solid waste disposal South Australia Environmental management of landfill facilities – solid waste disposal This guideline supersedes and replaces the Environmental management of landfill facilities (municipal solid waste and commercial and industrial waste) [EPA 2007]. Any reference to the 2007 guidelines in any statutory instrument or other publication should now be read as a reference to the Environmental management of landfill facilities – solid waste disposal (EPA 2019). For further information please contact: Information Officer Environment Protection Authority GPO Box 2607 Adelaide SA 5001 Telephone: (08) 8204 2004 Facsimile: (08) 8124 4670 Free call (country): 1800 623 445 Website: https://www.epa.sa.gov.au Email: [email protected] ISBN 978-1-921125-34-8 Issued December 2007 Updated April 2019 Disclaimer This publication is a guide only and does not necessarily provide adequate information in relation to every situation. This publication seeks to explain your possible obligations in a helpful and accessible way. In doing so, however, some detail may not be captured. It is important, therefore, that you seek information from the EPA itself regarding your possible obligations and, where appropriate, that you seek your own legal advice. © Environment Protection Authority This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to it not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Environment Protection Authority. Contents Abbreviations ...................................................................................................................................................................... 1 1 Introduction ..................................................................................................................................................................
    [Show full text]
  • Strength and Hydraulic Conductivity Characteristics of Sand-Bentonite Mixtures Designed As a Landfill Liner
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Landmark University Repository Jordan Journal of Civil Engineering, Volume 11, No. 4, 2017 Strength and Hydraulic Conductivity Characteristics of Sand-Bentonite Mixtures Designed As a Landfill Liner 1) 2) Oluwapelumi Ojuri and Opeyemi Oluwatuyi 1) Federal University of Technology, Akure, Nigeria. E-Mail: [email protected] 2) Engineer, Landmark University, Omu-Aran, Nigeria. E-Mail: [email protected] ABSTRACT Compacted sandy soils with addition of bentonite have been used in a variety of geotechnical structures as engineered barriers, such as in landfill liners and hydraulic containment structures. In this study, Igbokoda sand was mixed with bentonite at varying percentages of 0%, 2%, 4%, 6%, 8% and 10% by weight of sand. Strength tests, which include compaction test, California Bearing Ratio (CBR) test and direct shear test, were performed on various sand-bentonite mixtures using standard methods. Hydraulic conductivity tests were also performed on various sand-bentonite mixtures in order to determine their suitability as landfill liner. Results from the tests showed that 8% of bentonite with sand mixture had a hydraulic conductivity below 1×10-7 cm/s, a cohesion value of 250 kN/m3 and a reasonable strength (CBR) value of 54.07% using the West Africa standard compactive method, hence being the safest of the selected varying percentages for the design of a landfill liner. KEYWORDS: Bentonite, California Bearing Ratio (CBR), Compacted landfill liner, Hydraulic conductivity, Igbokoda sand. INTRODUCTION and Glatstein, 2010). Sand-bentonite mixture could therefore meet the hydraulic conductivity requirement Waste containment systems, such as landfills, and without suffering from shrinkage cracking.
    [Show full text]
  • Design Considerations for Slip Interfaces on Steep-Wall Liner Systems
    Design Considerations for Slip Interfaces on Steep-Wall Liner Systems R. Thiel Thiel Engineering, P.O. Box 1010, Oregon House, California 95962, USA E. Kavazanjian and X. Wu Arizona State University, 501 E. Tyler Mall, ECG-252, MS 5306, Tempe, Arizona 85287, USA ABSTRACT: This paper presents a methodology for designing side slope liner systems to accommodate downdrag due to waste settlement. Settlement and downdrag along steep-lined slopes in landfills and other waste or mining containment facilities (e.g. heap leach pads, mine tailings impoundments) will oc- cur to varying degrees during initial construction, waste placement, and post-placement. Two key ques- tions in this regard with respect to the design of the side slope liner system are: “how much downdrag will occur?” and “at what degree of slope inclination does downdrag become an engineering concern?” The little field monitoring and limited research that has been done on this subject indicates that at a slope inclination of perhaps 2H:1V (Horizontal:Vertical) or steeper, downdrag could be a significant concern, but it could occur on flatter slopes as well, depending on the forces and the relative interface shear re- sistances within the liner system. The methodology presented herein combines a slip interface above the primary geomembrane with an underlying high-strength geotextile that is anchored at the benches and side slope crest and that extends part-way down the slope to sustain tensile forces induced by downdrag. Finite difference analyses were performed that demonstrate the feasibility of this approach to meet design goals using commercially available geosynthetic material. Keywords: Geosynthetics, containment, side slopes, downdrag, settlement 1 INTRODUCTION Figure 1 shows a conceptual cross section of a landfill side slope, including final grades at the end of waste placement and the ultimate grades due to the settlement that occurs following the end of waste placement.
    [Show full text]
  • Effect of Bentonite on Hydraulic Conductivity of Landfill Liner
    Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 03, March-2016 Effect of Bentonite on Hydraulic Conductivity of Landfill Liner Chinju Vijayan Hashmi Dev C. Assistant Professor B.Tech Student, Civil Engineering Department Civil Engineering Department Royal College of engineering & Technology Royal College of engineering & Technology Akkikavu, Thrissur, Kerala, India Akkikavu, Thrissur, Kerala, India Roshny Johny Swathi P.V. B.Tech Student, Civil Engineering Department B.Tech Student, Civil Engineering Department Royal College of engineering & Technology Royal College of engineering & Technology Akkikavu, Thrissur, Kerala, India Akkikavu, Thrissur, Kerala, India Abstract—A large amount of waste is produced by the The main property that is to be satisfied by a liner is that human activity. Rapid urbanization and social behavior are the his hydraulic conductivity must be less than 1 x 10-7 cm/s. major reason for generation of Municipal Solid Waste (MSW). laboratory studies have demonstrated that low permeability is There for there is an urgent necessity of improve planning and easiest to achieve when the soil is compacted to wet off implementation of comprehensive MSW management. And its optimum water content. The minimum requirements disposal by landfilling is one of the best methods. It is the most recommended to achieve a hydraulic conductivity less than efficient and economical method to control the surface dumping or equal to 1 x 10-7 cm/s for most soil liner materials are as of waste. Nowadays landfill becoming less due to the lack of follows. [2] space available and leachate leakage into ground water.
    [Show full text]
  • Submission Instructions No
    SOLID WASTE PERMITTING SUBMISSION INSTRUCTION NO. 2 DESIGN PLANS AND REPORT FOR SOLID WASTE DISPOSAL FACILITIES Developed by: Virginia Department of Environmental Quality Office of Waste Permitting and Compliance 629 East Main Street Richmond, Virginia 23219 V. 12/2011 Solid Waste Permitting Submission Instruction No. 2 TABLE OF CONTENTS I. DESIGN PLANS ...............................................................................................................................3 A. TITLE SHEET ..................................................................................................................................... 3 B. EXISTING SITE CONDITIONS PLAN SHEET ............................................................................................... 3 C. BASE GRADE PLAN SHEET ................................................................................................................... 4 D. ENGINEERING MODIFICATION PLAN SHEET ............................................................................................ 4 E. PHASING PLAN SHEETS ....................................................................................................................... 4 F. FINAL SITE TOPOGRAPHY PLAN SHEET .................................................................................................. 4 G. SITE MONITORING PLAN .................................................................................................................... 4 H. CROSS-SECTION PLAN SHEETS ............................................................................................................
    [Show full text]
  • Geosynthetic Clay Liners
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/257099466 Geosynthetic clay liners Article in Geotextiles and Geomembranes · February 2002 DOI: 10.1016/S0266-1144(01)00025-5 CITATIONS READS 84 375 1 author: Abdelmalek Bouazza Monash University (Australia) 199 PUBLICATIONS 1,797 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Abdelmalek Bouazza letting you access and read them immediately. Retrieved on: 16 November 2016 Geotextiles and Geomembranes 20 (2002) 3–17 Review Article Geosynthetic clay liners A. Bouazza* Department of Civil Engineering, Monash University, Wellington Road, Clayton, Melbourne, Vic. 3168, Australia Received 1 September 2001; received in revised form 24 September 2001 Abstract Over the past decade, geosynthetic clay liners (GCLs) have gained widespread popularity as a substitute for compacted clay liners in cover systems and composite bottom liners. They are also used as environmental protection barriers in transportation facilities or storage tanks, and as single liners for canals, ponds or surface impoundments. As a result, they are being investigated intensively, especially in regard to their hydraulic and diffusion characteristics, chemical compatibility, mechanical behaviour, durability and gas migration. In this paper, a review of the main findings is presented with the focus on the critical aspects affecting the service life of GCLs. From this work, a general insight is gained
    [Show full text]