Gravitational Waves from Binary Black Hole Mergers

Total Page:16

File Type:pdf, Size:1020Kb

Gravitational Waves from Binary Black Hole Mergers Gravitational Waves from Binary Black Hole Mergers Insights from a Rapidly Growing Observational Field David Keitel (Universitat de les Illes Balears) for the LIGO Scientific Collaboration and Virgo Collaboration XII. Jornada CPAN, 2020-10-22 LIGO-G2001811-v3 Gravitational Waves - the long road to observational reality ● 100 years from Einstein’s prediction to the first LIGO-Virgo detection announcement in 2016 ● General relativity: “Spacetime tells matter how to move, and matter tells spacetime how to curve.” ● Time-varying quadrupolar mass distributions lead to propagating ripples in spacetime: GWs. ● Spacetime is “a very stiff fabric”→ only extreme astrophysical sources yield detectable GWs. ● Experimental search started with J. Weber’s bar antennas, later on larger scales, also in Europe (Glasgow, Italy, …). ● Laser interferometers first proposed in 1960s. ● Large US and European projects began in 1980s. ● Initial LIGO & Virgo took data until 2010, set upper limits on compact binary merger rates and on GWs from galactic neutron stars, supernovae, stochastic backgrounds, ... ● Advanced LIGO observing since 2015 (two detectors in US), joined by Virgo (Italy) in 2017 and KAGRA (Japan) in 2020. 2 [LVC, PRL 116,061102] GW150914: the chirp heard around the world ● Twin Advanced LIGO detectors in Hanford (Washington) and Livingston (Louisiana) started observing in September 2015. ● First detection: GWs from two ~30 solar mass black holes, merging ~400 Mpc from Earth (z~0.1). 56 ● ~3 M⊙ radiated in GWs, peak luminosity ~3.6x10 erg/s, -21 peak strain at the detectors: 10 (relative length change of the 4km arms) ● Identified as highly significant by both matched-filter and unmodelled analysis pipelines. ● Observed waveform beautifully matches full Numerical Relativity solutions of Einstein’s equations. 3 Gravitational Waves from Binary Black Holes: the basics ● Higher masses mean mergers at lower frequencies. ● Stellar-mass BHs O(3--100 M⊙): with current ground-based detectors, we observe the final moments of the inspiral, the merger, and the ringdown. ● Analytical, perturbative and numerical relativity together yield the efficient calibrated waveform models used in most analyses. ● Source parameters extracted by Bayesian inference. ● Besides masses, we can also infer spins, distance, sky location, inclination, and final state (merger remnant) properties. [LVC PRL 116,061102 / PRL 116,241102] 4 Advanced LIGO O1: 3 detections, first hints of diversity ● GW150914: the first detection, loudest signal in O1 and most massive source [LVC, PRX 6,041015 (2016)] ● GW151012 (née LVT151012): much weaker (half the mass and ~1Gpc away) ● GW151226: even lower masses, but similar distance as GW150914; also gold-plated from the start; first hints of measurable spin ● First 3 events already established that we were uncovering a diverse population of stellar-mass BBHs in the universe. 5 GWTC-1: LIGO-Virgo transient catalog from O1+O2 [LVC, PRX 9,031040 (2019)] O1: 20150912-20160119; O2: 20161130-20170825 (Virgo joined 20170801) 10 binary black holes, 1 binary neutron star 6 GWTC-1: LIGO-Virgo transient catalog from O1+O2 [LVC, PRX 9,031040 (2019)] The 10 BBHs span a range of masses, but all “fairly vanilla”: ● consistent with equal masses ● weak imprints of spin ● no evidence for spin precession ● fully consistent with GR 7 GWTC-1: LIGO-Virgo transient catalog from O1+O2 ● We have clearly started to uncover a population of heavy BHs not seen in EM before. ● So what have we learned from the catalog as a whole? 8 [LVC, ApJL 882:L24 (2019)] GWTC-1: population inference ● BBH merger rate: ● mass distribution of merging BBHs: consistent with different parameterized models, some support for sharp drop past ~45 M⊙ ● spin distribution: large aligned spins disfavoured, no strong constraints in favour of or against precession ● rate evolution with redshift: flat or increasing ● This was from only 10 detections. ● With larger catalogs, we will be able to better constrain models and compare with predictions for different formation channels. ● E.g. grossly simplifying: isolated binary evolution tends to produce more equal masses and aligned spins, while dynamic capture in dense environments can produce more generic BBHs. But details are very subtle and models are flexible, see ApJL 882:L24 (2019) for a balanced account. 9 [LVC, PRD 100,104036 (2019)] GWTC-1: tests of GR ● All events detected so far fit very well to waveforms predicted by GR. ● But how well can the observations constrain deviations from GR if it’s not the true theory of gravity? ● Residual tests: any significant signal power after subtracting the best-fit GR template? No. ● Inspiral-merger-ringdown consistency: do remnant properties inferred from the low- and high-frequency parts of each signal match? Yes. ● Parametrized tests of GW generation and GW dispersion relation → theory-independent upper bounds, complementary to tests with binary pulsars, GW170817, solar system ● Polarization tests: GWs in GR are pure tensor modes, other theories allow for scalar and vector modes. No evidence for those. ● Generally, LVC focuses on theory-independent tests, but wider community has also used constraints (and GW open data) for testing specific alternatives to GR. 10 ...and one Binary Neutron Star Merger, of course [A.Simonnet/LVC] [LVC+ PRL 119,161101 / ApJL 848:L12 / ApJL 848:L13] ● HLV rapid alert and GRB coincidence → spectacular multimessenger campaign ● Hubble constant standard siren measurement ● GW constraints on tidal deformability → neutron star maximum mass, equation of state of high-density nuclear matter [LVC2019] ● And so much more... ● ...but enough said: back to black holes. [LVC+2019] 11 O1, O2 and beyond: the world of GW open data ● gw-openscience.org ● full strain data of observing runs through O2 [arXiv:1912.11716] ● short data stretches for published O3 events ● posterior samples for all significant events just two examples: ● full O1&O2 open data reanalysed by external groups, several more BBH candidates reported with varying significance [Nitz+2020] [Venumadhav+2020] ● Many other works from the wider community: reanalysis of individual events, tests of GR, search for signatures of exotic compact objects, search for gravitational lensing signatures, ... 12 The present: O3 ● third observing run: 20190401-20200327 (cut 1 month short by Covid), break in 2019/10 ● sensitivity significantly improved over O2 ● Virgo part of whole run ● Public alerts: gracedb.ligo.org | chirp.sr.bham.ac.uk emfollow.docs.ligo.org/userguide ● threshold: false-alarm rate > ½ months for CBC alerts ● O3a: 41 alerts (33 not retracted); O3b: 39 alerts (23 not retracted) ● alerts contained 3D localization, source classifications ● no promising low-latency electromagnetic counterparts ● 4 “special events” published so far ● full results to be reported in two catalog updates (up first: O3a-only) 13 GW190425 ● Only a brief honorable mention - low-mass event, by all standards not a BBH! ● No promising EM counterpart; search hindered by large distance and bad sky localization (LV data only). ● No significant tidal constraints from GW data. ● But masses make this event exciting: both components in range of known neutron stars, but total mass a clear outlier compared to known galactic BNSs. systems. ● Possible formation channels under debate. [LVC, ApJL 892:L3] 14 GW190412: the discovery ● HLV joint observation ● m1, m2 squarely within GWTC-1 population ● But: first BBH with clearly unequal masses! [LVC, PRD102, 043015 (2020)] 15 GW190412: the implications ● For O1/O2 events, waveform models including only the dominant quadrupolar mode had been largely sufficient. ● Unequal masses allow first clear measurement of higher multipoles. (Bayes factors > 1000 for their presence, with multiple waveform models.) ● Once again, fully consistent with GR predictions. ● HMs help break distance-inclination degeneracy. ● Unequal masses also an interesting challenge for formation models: ○ Still consistent with both isolated binary evolution or dynamic capture in dense environments. ○ But discovery triggered lots of work on detailed models and rates predictions... [LVC, PRD102, 043015 (2020)] ○ ...and on more exotic alternatives. 16 GW190814: the discovery [LVC, ApJL 896:L44 (2020)] ● HLV observation, excellent sky localization. ● Even more extreme mass ratio than GW190412, lighter object inside the expected “lower mass gap”: extremely heavy for a NS, lighter than expected for any BHs. ● Another clear detection of higher multipoles. 17 GW190814: the implications [LVC, ApJL 896:L44 (2020)] ● lighter object in the “mass gap” expected between NSs and BHs -3 -1 ● inferred rate of similar events, 1-23 Gpc yr , challenges all standard [R.Hurt/Caltech] formation models (isolated binaries, dynamical capture, hierarchical mergers) ● exotic possibilities for the nature of the secondary ● tests of GR in a new regime, best yet “dark siren” H0 measurement 18 GW190521: the discovery ● HLV observation, extremely short signal ending at low frequencies → high masses! ● Largest component masses ever measured in a GW event, remnant can be considered an Intermediate-Mass Black Hole (IMBH). ● higher-mode content [LVC, PRL 125,101102 (2020)] ● hints of spin precession ● ringdown-only measurement of remnant properties consistent with GR expectaction from full IMR 19 GW190521: the implications [LVC, ApJL 900:L13 (2020)] ● Likely at least one component BH in the “upper mass gap” expected due to pair instability supernovae. ● How to form this system? ○ modified stellar evolution models
Recommended publications
  • Detection of Gravitational Collapse J
    Detection of gravitational collapse J. Craig Wheeler and John A. Wheeler Citation: AIP Conference Proceedings 96, 214 (1983); doi: 10.1063/1.33938 View online: http://dx.doi.org/10.1063/1.33938 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/96?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Chaos and Vacuum Gravitational Collapse AIP Conf. Proc. 1122, 172 (2009); 10.1063/1.3141244 Dyadosphere formed in gravitational collapse AIP Conf. Proc. 1059, 72 (2008); 10.1063/1.3012287 Gravitational Collapse of Massive Stars AIP Conf. Proc. 847, 196 (2006); 10.1063/1.2234402 Analytical modelling of gravitational collapse AIP Conf. Proc. 751, 101 (2005); 10.1063/1.1891535 Gravitational collapse Phys. Today 17, 21 (1964); 10.1063/1.3051610 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.83.205.78 On: Mon, 02 Mar 2015 21:02:26 214 DETECTION OF GRAVITATIONAL COLLAPSE J. Craig Wheeler and John A. Wheeler University of Texas, Austin, TX 78712 ABSTRACT At least one kind of supernova is expected to emit a large flux of neutrinos and gravitational radiation because of the collapse of a core to form a neutron star. Such collapse events may in addition occur in the absence of any optical display. The corresponding neutrino bursts can be detected via Cerenkov events in the same water used in proton decay experiments. Dedicated equipment is under construction to detect the gravitational radiation.
    [Show full text]
  • LIGO Detector and Hardware Introduction
    LIGO Detector and Hardware Introduction Virtual Open Data Workshop May 2020 LIGO-G2000795 Outline • Introduction 45W • Interferometry 40W 1.6kW 200kW Locking Optical cavities • Hardware • Noise Fundamental Technical • Commissioning/Observation Runs • Future Detector Plans • Bibliography Gravitational Waves • Metric tensor perturbation in GR = + 2 polarization in GR Scalar and other possible waves ℎ • Free falling masses • Change in laser propagation time • Phase difference in light ∝ ℎ • Interferometry detects phase difference ∝ ℎ • Astronomical Sources Modeling Modeled Unmodeled /Length Modeled vs Unmodeled Short Inspirals (BBH, Bursts Short vs Long BNS, BH/NS) (Supernova) Long Continuous Waves Stochastic Known vs Unknown (Pulsars) Background Sensitivity Estimate • Strain from single photon: = 10 2 • Need strain 10 � −10 ℎ ≅ • Shot noise SNR− 22 = 10 improvement,∝ � 10 photons At1 1002 Hz equivalent to power24 of 20 MW • • With 200 W of input laser power, 45W 200kW 40W 1.6kW requires power gain of 100,000 Total optical gain in LIGO is ~50,000 Ignores other noise sources Gravitational Wave Detector Network GEO 600: Germany Virgo: Italy KAGRA: Japan Interferometry • Book by Peter Saulson • Michelson interferometer Fringe splitting • Fabry-Perot arms Cavity pole, = ⁄4ℱ • Pound-Drever-Hall locking 45W 200kW 40W 1.6kW Match laser frequency to cavity length RF modulation with EOM • Feedback and controls Other LIGO Cavities • Mode cleaners Input and output 45W 200kW 40W 1.6kW Single Gauss-Laguerre mode • Power recycling Output dark
    [Show full text]
  • LIGO Listens for Gravitational Waves
    Probing Physics and Astrophysics with Gravitational Wave Observations Peter Shawhan Mid-Atlantic Senior Physicists’ Group January 18, 2017 GOES-8 image produced by M. Jentoft-Nilsen, F. Hasler, D. Chesters LIGO-G1600320-v10 (NASA/Goddard) and T. Nielsen (Univ. of Hawaii) NEWS FLASH: We detected gravitational waves 2 We = the LIGO Scientific Collaboration ))) together with the Virgo Collaboration ))) … using the LIGO* Observatories * LIGO = Laser Interferometer Gravitational-wave Observatory LIGO Hanford LIGO Livingston 4 ))) … after the Advanced LIGO Upgrade Comprehensive upgrade of Initial LIGO instrumentation in same vacuum system Higher-power laser Larger mirrors First Advanced LIGO Higher finesse arm cavities observing run, “O1”, was Stable recycling cavities Sep 2015 to Jan 2016 Signal recycling mirror Output mode cleaner Improvements and more … 5 ))) GW150914 Signal arrived 7 ms earlier at L1 Bandpassfiltered 6 ))) Looks just like a binary black hole merger! Bandpass filtered Matches well to BBH template when filtered the same way 7 ))) Announcing the Detection 8 ))) A Big Splash in February with both the scientific community and the general public! • Press conference • PRL web site • Twitter • Facebook • Newspapers & magazines • YouTube videos • The Late Show, SNL, … 9 A long-awaited confirmation 10 ((( Gravitational Waves ))) Predicted to exist by Einstein’s general theory of relativity … which says that gravity is really an effect of “curvature” in the geometry of space-time, caused by the presence of any object with mass Expressed
    [Show full text]
  • Joseph Weber's Contribution to Gravitational Waves and Neutrinos
    Firenze University Press www.fupress.com/substantia Historical Article New Astronomical Observations: Joseph Weber’s Contribution to Gravitational Waves Citation: S. Gottardo (2017) New Astronomical Observations: Joseph and Neutrinos Detection Weber’s Contribution to Gravitational Waves and Neutrinos Detection. Sub- stantia 1(1): 61-67. doi: 10.13128/Sub- stantia-13 Stefano Gottardo Copyright: © 2017 S. Gottardo.This European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino (Flor- is an open access, peer-reviewed arti- ence), Italy cle published by Firenze University E-mail: [email protected] Press (http://www.fupress.com/substan- tia) and distribuited under distributed under the terms of the Creative Com- Abstract. Joseph Weber, form Maryland University, was a pioneer in the experimen- mons Attribution License, which per- tal research of gravitational waves and neutrinos. Today these two techniques are very mits unrestricted use, distribution, and promising for astronomical observation, since will allow to observe astrophysical phe- reproduction in any medium, provided nomena under a new light. We review here almost 30 years of Weber’s career spent the original author and source are on gravity waves and neutrinos; Weber’s experimental results were strongly criticized credited. by the international community, but his research, despite critics, boosted the brand Data Availability Statement: All rel- new (in mid-sixties of last century) research field of gravity waves to become one of evant data are within the paper and its the most important in XXI century. On neutrino side, he found an unorthodox way Supporting Information files. to reduce the size of detectors typically huge and he claimed to observe neutrinos flux with a small pure crystal of sapphire.
    [Show full text]
  • Current Status of GW Detection Wei-Tou Ni 倪维斗 National Tsing Hua University Refs: (I) S
    Current Status of GW Detection Wei-Tou Ni 倪维斗 National Tsing Hua University Refs: (i) S. Kuroyanagi, L-W Luo and WTN, GW sensitivities over all frequency band (ii) K Kuroda, WTN, WP Pan, IJMPD 24 (2015) 1530031 (iii) LIGO/Virgo Collaborations, GWTC-1: A GW Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo O1 & O2 (iv) LIGO/Virgo Collaborations, BBH Population Properties Inferred from O1 & O2 Observing Runs (v) WTN, GW detection in space IJMPD 25 (2016) 1530002 ……… 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 1 Among other things, 20th Century will be memorized by the advancement of fundamental physical theory and the experimental precision • 1915 General Relativity, 1916 Gravitational Waves (Einstein) • Early 1900’s: Strain Measurement precision 10-6 • 1960’s: Strain Measurement precision 10-16 Weber Bar (50 Years ago) 10 orders of gap abridged • Cryogenic Resonators; Laser Interferometry • Early 2000’s: Strain Measurement precision 10-21 • 2015: 10-22 strain precision on Detection of GWs 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 2 LIGO Ground-based GW detectors KAGRA VIRGO ET 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 3 2016 February 11 Announcement of first (direct) detection of Black Holes and GWs 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 4 2017.08.17 NSB coalescence, ApJ 848 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 5 - Population model: A. Power law p(m) m , mmin=5M, B. Power law m-, C. A mixture of a power law and a Gaussian distribution
    [Show full text]
  • Full TIPP 2011 Program Book
    Second International Conference on Technology and Instrumentation in Particle Physics June 9-14, 2011 Program & Abstracts Sheraton Chicago Hotel and Towers, Chicago IL ii TIPP 2011 — June 9-14, 2011 Table of Contents Acknowledgements .................................................................................................................................... v Session Conveners ...................................................................................................................................vii Session Chairs .......................................................................................................................................... ix Agenda ....................................................................................................................................................... 1 Abstracts .................................................................................................................................................. 35 Poster Abstracts ..................................................................................................................................... 197 Abstract Index ........................................................................................................................................ 231 Poster Index ........................................................................................................................................... 247 Author List .............................................................................................................................................
    [Show full text]
  • Gravitational Waves in the LIGO - VIRGO Era Or Listening to the Symphony of the Universe
    Gravitational Waves in the LIGO - VIRGO era or listening to the symphony of the Universe L.Milano Department of Physical Sciences University of Federico II Naples & INFN Napoli Calloni, E., Capozziello,S., De Rosa,R., De Laurentis, M.,Di Fiore L.,Forte,L.,Garufi,F. The emerging science of gravitational wave astronomy is optimistically named! Astronomy depends ultimately on observations, yet the only output of gravitational wave detectors has so far been noise generated within the instruments. Actually we can be called noise hunters! There is good reason, based on experimental and theoretical progress, to believe that things are about to change. As an example of progress on the theoretical side there are simulations of neutron star mergers that reveal new details of the gravitational waves they are expected to emit IMR waveforms The effort to detect gravitational waves started humbly fifty years ago with Joe Weber’s bar detectors and great efforts were made mainly in Italy to develop such kind of detectors. They opened the way to the actual interferometric detectors: starting from a bandwidth of a maximum of 50 Hertz around 960 Hz(bar criogenic antennas) nowdays we realized antennas with useful bandwidth of thosandths of Hz, namely 10-10 kHz (Virgo) 40-10 kHz Ligo BUT No yet detection of GW signal notwithstanding the target sensitivity was reached either for VIRGO or for LIGO: let us see now what is the state of art GW in rough pills Indirect evidences of the GW existence The Global Network of earth based detectors The GW sources zoo & Results up to now Multifrequency Observations and GWs understanding astrophysical processes multi-messenger astronomy The space based detec.: LISA Pathfinder ,LISA The Near Future.The new proposals Conclusions Gravitational Waves in rough pills The GW Amplitude in TT system For a GW propagating along X3 we obtain the amplitude: The polarizations + and x are exchanged with a π/4 rotation around x3 axis i.e.
    [Show full text]
  • Arxiv:2107.00120V1 [Gr-Qc] 30 Jun 2021 with Low-Noise Transduction [10–12]
    Prototype Superfluid Gravitational Wave Detector V. Vadakkumbatt,1 M. Hirschel,1 J. Manley,2 T.J. Clark,1 S. Singh,2 and J.P. Davis1 1Department of Physics, University of Alberta, Edmonton, AB T6G 2E9, Canada 2Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA We study a cross-shaped cavity filled with superfluid 4He as a prototype resonant-mass gravi- tational wave detector. Using a membrane and a re-entrant microwave cavity as a sensitive op- tomechanical transducer, we were able to observe the thermally excited high-Q acoustic modes of 19 1=2 the helium at 20 mK temperature and achieved a strain sensitivity of 8 10− Hz− to gravita- tional waves. To facilitate the broadband detection of continuous gravitational× waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz=bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for GWs in the 1 30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard− Model. I. INTRODUCTION Notably, because of the dependence of the helium speed of sound on pressure, we are able to continuously tune the acoustic frequency of the resonant-mass detector, up Following the breakthrough observation of gravita- to 173 Hz=bar, something that cannot be done in con- tional waves (GW) with LIGO [1], and the subsequent temporary GW observatories and is a major limitation observation of numerous additional GW sources [2–4], of solid Weber-bar antennas [13]. gravitational astronomy is set to become an important A tunable, narrowband GW detector made of super- facet of multi-messenger astronomy [5, 6].
    [Show full text]
  • ~J-"I " Seen but Know Exists, ~Ll " E,,, Bj' \.-=:''2..-> '~~9~ a New Era in Astronomy
    310 I I ' I I I I "I' Ly <'U 410Tr~~5tO~Li-'-LU61~ '~7iO' 810 2-9-8076/Gravity waves/~pril WS/Head I ' i The tantalizing quest for 2 gravity waves 3 4' When scientists finally detect s a form of energy they have never ~J-"I " seen but know exists, ~ll " e,,, bJ' \.-=:''2..-> '~~9~ a new era in astronomy By Arthur Fisher , , i2 • ~ I 15! 16 17' 18 J 20 1 ElITE UJ 1111 III II III III II UliJ+lill : IillJ~-,--;L-i-Wj~_'_LUjljLLI-LWjJJLj_LU1LUllj-L--'-;:;l-L-- 10 2 10 310,4 10' 5 1 0 "610 70 28 I 2-9-8076/Gravity Waves/April PS ! Overline for box: 21 ~~Jrn](~XOOOfXJ(~n~~~l!OOd:roiti::nn)q{ I 31 Two indirect proofs for gravity waves I ! 4,, 5 Overline I u Battling the limits of modern technology 8 Quote for p. 88 ;',1 ~iDC~KXl>lli~ "In about fifteen years, we , ? '"I will want big, space-based 13 1 laser systems, using, say a J,4 frame. I! lO-kilometer R~H~R 1"1 16 1 17' I 181 J 2°1 E L,' TE I~---.l-LJ.'" I' "J"""" 1~~,-,----+---LJ_-.l ~t .. --,-1 --t-.l--,,-~I ' I . - 1 0 21(.' 3 I 298076/gravity waves/af/apr/caps-l I 11 L!iWto credi t--uper photo with man=:> 1f)2 Alan J. Knapp 3 G cre::.t--lower photo :0::::> 4 Cliff Olson 1. 1 ~ 151 I 16 1 lJ 18 i t 19 20 -- 2--+ .-~"+--'~--' ~- 3 '.' .
    '~~9~ a New Era in Astronomy" class="panel-rg color-a">[Show full text]
  • Primordial Backgrounds of Relic Gravitons Arxiv:1912.07065V2 [Astro-Ph.CO] 19 Mar 2020
    Primordial backgrounds of relic gravitons Massimo Giovannini∗ Department of Physics, CERN, 1211 Geneva 23, Switzerland INFN, Section of Milan-Bicocca, 20126 Milan, Italy Abstract The diffuse backgrounds of relic gravitons with frequencies ranging between the aHz band and the GHz region encode the ultimate information on the primeval evolution of the plasma and on the underlying theory of gravity well before the electroweak epoch. While the temperature and polarization anisotropies of the microwave background radiation probe the low-frequency tail of the graviton spectra, during the next score year the pulsar timing arrays and the wide-band interferometers (both terrestrial and hopefully space-borne) will explore a much larger frequency window encompassing the nHz domain and the audio band. The salient theoretical aspects of the relic gravitons are reviewed in a cross-disciplinary perspective touching upon various unsettled questions of particle physics, cosmology and astrophysics. CERN-TH-2019-166 arXiv:1912.07065v2 [astro-ph.CO] 19 Mar 2020 ∗Electronic address: [email protected] 1 Contents 1 The cosmic spectrum of relic gravitons 4 1.1 Typical frequencies of the relic gravitons . 4 1.1.1 Low-frequencies . 5 1.1.2 Intermediate frequencies . 6 1.1.3 High-frequencies . 7 1.2 The concordance paradigm . 8 1.3 Cosmic photons versus cosmic gravitons . 9 1.4 Relic gravitons and large-scale inhomogeneities . 13 1.4.1 Quantum origin of cosmological inhomogeneities . 13 1.4.2 Weyl invariance and relic gravitons . 13 1.4.3 Inflation, concordance paradigm and beyond . 14 1.5 Notations, units and summary . 14 2 The tensor modes of the geometry 17 2.1 The tensor modes in flat space-time .
    [Show full text]
  • Arxiv:1804.00453V2 [Astro-Ph.HE] 23 May 2018 Aiyo Eetr Ol Epae a Wyi Space, in Away If Far These Wish Placed from Would Signals Be One Then Could and Detectors
    Pulsars as Weber gravitational wave detectors Arpan Das,1,2, ∗ Shreyansh S. Dave,1,2, † Oindrila Ganguly,1, ‡ and Ajit M. Srivastava1,2, § 1Institute of Physics, Bhubaneswar 750115, India 2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India A gravitational wave passing through a pulsar will lead to a variation in the moment of inertia of the pulsar affecting its rotation. This will affect the extremely accurately measured spin rate of the pulsar as well as its pulse profile (due to induced wobbling depending on the source direction). The effect will be most pronounced at resonance and should be detectable by accurate observations of the pulsar signal. The pulsar, in this sense, acts as a remotely stationed Weber detector of gravitational waves whose signal can be monitored on earth. With possible gravitational wave sources spread around in the universe, pulsars in their neighborhoods can provide us a family of remote detectors all of which can be monitored on earth. Even if GW are detected directly by earth based conventional detectors, such pulsar detectors can provide additional information for accurate determination of the source location. This can be of crucial importance for sources which do not emit any other form of radiation such as black hole mergers. For the gravitational wave events already detected by LIGO (and VIRGO), our proposal suggests that one should look for specific pulsars which would have been disturbed by these events, and will transmit this disturbance via their pulse signals in any foreseeable future. If these future pulsar events can be predicted with accuracy then a focused effort can be made to detect any possible changes in the signals of those specific pulsars.
    [Show full text]
  • Detection of Gravitational Waves Could Be Assured by the Requirement That They Must Be Seen When, and Only When, They Were Being Emitted
    PHYSICS OF GRAVITATIONAL WAVE DETECTION: RESONANT AND INTERFEROMETRIC DETECTORS Peter R. Saulson Department of Physics Syracuse University, Syracuse, NY 13244-1130 ABSTRACT I review the physics of ground-based gravitational wave detectors, and summarize the history of their development and use. Special attention is paid to the historical roots of today’s detectors. Supported by the National Science Foundation, under grant PHY-9602157. c 1998 by Peter R. Saulson. 1 The nature of gravitational waves 1.1 What is a gravitational wave? There is a rich, if imperfect, analogy between gravitational waves and their more fa- miliar electromagnetic counterparts. A nice heuristic derivation of the necessity for the existence of electromagnetic waves and of some of their properties can be found in, for example, Purcell’s Electricity and Magnetism.1 A key idea from special relativity is that no signal can travel more quickly than the speed of light. Consider the case of an electrically charged particle that is subject to a sudden acceleration of brief duration. It is clear that the electric field can not be everywhere oriented in a precisely radial di- rection with respect to its present position; otherwise information could be transmitted instantaneously to arbitrary distances simply by modulating the position of the charge. What happens instead is that the field of a charge that has been suddenly accelerated has a kink in it that propagates away from the charge at the speed of light. Outside of the kink, the field is the one appropriate to the charge’s position and velocity before the sudden acceleration, while inside it is the field appropriate to the charge subsequent to the acceleration.
    [Show full text]