New Insights Into the Activation of Radiation Desiccation Response Regulon in Deinococcus Radiodurans

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into the Activation of Radiation Desiccation Response Regulon in Deinococcus Radiodurans J Biosci (2021)46:10 Ó Indian Academy of Sciences DOI: 10.1007/s12038-020-00123-5 (0123456789().,-volV)(0123456789().,-volV) New insights into the activation of Radiation Desiccation Response regulon in Deinococcus radiodurans 1,2 1,2 ANAGANTI NARASIMHA and BHAKTI BASU * 1Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India 2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India *Corresponding author (Email, [email protected]) MS received 3 September 2020; accepted 17 November 2020 The highly radiation-resistant bacterium Deinococcus radiodurans responds to gamma radiation or desiccation through the coordinated expression of genes belonging to Radiation and Desiccation Resistance/Response (RDR) regulon. RDR regulon is operated through cis-acting sequence RDRM (Radiation Desiccation Response Motif), trans-acting repressor DdrO and protease IrrE (also called PprI). The present study evaluated whether RDR regulon controls the response of D. radiodurans to various other DNA damaging stressors, to which it is resistant, such as UV rays, mitomycin C (MMC), methyl methanesulfonate (MMS), ethidium bromide (EtBr), etc. Activation of 3 RDR regulon genes (ddrB, gyrB and DR1143) was studied by tagging their promoter sequences with a highly sensitive GFP reporter. Here we demonstrated that all the DNA damaging stressors elicited activation of RDR regulon of D. radiodurans in a dose-dependent and RDRM-/ IrrE-dependent manner. However, ROS-mediated indirect effects [induced by hydrogen peroxide (H2O2), methyl viologen (MV), heavy metal/metalloid (zinc or tellurite), etc.] did not activate RDR regulon. We also showed that level of activation was inversely proportional to cellular abundance of repressor DdrO. Our data strongly suggests that direct DNA damage activates RDR regulon in D. radiodurans. Keywords. Deinococcus radiodurans; Radiation Desiccation Response regulon; Radiation Desiccation Response Motif; promoter; DdrO; dose-response dynamics 1. Introduction genome from severely damaged DNA, especially through the error-free repair of hundreds of lethal double-strand Microorganisms rapidly respond to environmental breaks (DSBs) (Blasius et al. 2008). This extraordinary stresses by coordinated expression of a number of radioresistance emanates from an efficient repair of DNA genes, either arranged in operon(s) in prokaryotes or strand breaks, proteome-protective antioxidant functions, non-contiguous in eukaryotes, operated through a multiplicity and compact structure of genome, etc. (Daly common regulatory mechanism called regulon (Geisel et al. 2010; Krisko and Radman 2010). 2011). Transcriptional coordination of a regulon is D. radiodurans responds to gamma irradiation or mediated through trans-acting protein(s) that specifi- desiccation stresses by upregulating the expression of a cally binds to cis-acting regulatory sequence(s) in the number of genes during the post-stress recovery phase. promoter region of the operon(s)/genes it regulates Transcriptomic and proteomic analyses during recovery (Alkema et al. 2004; Zhang et al. 2012). An extremo- of D. radiodurans from gamma irradiation or desicca- phile Deinococcus radiodurans displays remarkable tion unraveled a coordinated induction of genes/ proteins resistance to gamma radiation (Battista 1997). The that contribute to DNA recombination/repair, cellular organism is capable of reconstituting a functional detoxification and a few hypothetical Deinococcus- Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s12038-020-00123-5) contains supplementary material, which is available to authorized users. http://www.ias.ac.in/jbiosci 10 Page 2 of 16 A Narasimha and B Basu specific proteins (Gutman et al. 1993;Liuet al. 2003; study. The dose-response relationship established for the Tanaka et al. 2004;Luet al. 2009; Bentchikou et al. RDR regulon genes revealed intrinsic differences 2010; Basu and Apte 2012). RDR (Radiation and Des- between different genes. Further, we probed the role of iccation Resistance/Response) regulon was predicted ROS mediated indirect effects in regulation by RDR through comparative genomics (Makarova et al. 2007). regulon. We found that RDR regulon was not induced A 17 bp palindromic cis-regulatory sequence called by oxidizing agents [hydrogen peroxide (H2O2), methyl RDRM (Radiation Desiccation Response Motif) was viologen (MV), heavy metal/metalloid (zinc or tellu- revealed from the comparison of genome sequences of rite)]. We demonstrate that the degree of RDR regulon D. radiodurans and D. geothermalis, and analyzing activation is inversely proportional to DdrO abundance. flanking sequences of genes that were strongly upregu- The data presented here expands the scope of RDR lated by gamma radiation in D. radiodurans,severalof regulon of D. radiodurans beyond radiation and desic- which displayed radiation-sensitive phenotype upon cation response. inactivation (Tanaka et al. 2004; Makarova et al. 2007). In D. radiodurans, RDR regulon comprises 29 ORFs, mostly arranged non-contiguously, except for cinA and 2. Materials and methods hut operons (Makarova et al. 2007). RDRM sequence, essential for basal repression as well as gamma radia- 2.1 The bacterial strains and growth conditions tion-induced expression of several RDR regulon genes in D. radiodurans (Ujaoney et al. 2010; Anaganti et al. All the bacterial strains used in this study are listed in 2016; Anaganti et al. 2017)isoperatedthroughtrans- table 1. D. radiodurans cells were grown in TGY acting repressor DdrO that suppresses expression of medium (1% tryptone, 0.1 glucose and 0.5% yeast RDR regulon genes under non-stress conditions (Devi- extract) at 32°C either in broth with constant shaking at gne et al. 2015; Anaganti et al. 2016). Activation of 150 rpm or on TGY agar plates (TGY with 1.5% bacto RDR regulon genes upon gamma irradiation is achieved agar). E. coli cells were grown in Luria Bertani (LB) through cleavage of DdrO protein by metalloprotease medium at 37°C, in broth with constant shaking at 150 IrrE (also called PprI) (Wang et al. 2015). The level of rpm or on agar plates at static conditions. Media were activation of different RDR regulon genes is governed supplemented with appropriate antibiotics (5 lg/ml of by sequence conservation and location of RDRM with Kanamycin for D. radiodurans and 50 lg/ml of respect to the core promoter, etc. (Anaganti et al. 2017). Kanamycin or 100 lg/ml of carbenicillin for E. coli) In addition to gamma rays and desiccation, D. whenever required. Growth was monitored either by radiodurans is resistant to very high doses of UV rays, measuring optical density at 600nm at appropriate time chemical mutagens, oxidizing agents etc. (Battista 1997; points or by counting the colony-forming units (CFU) Makarova et al. 2001;Blasiuset al. 2008). However, on agar plates following 48 h of incubation at 32°C. mapping of RDR regulon genes expression in response to these stressors is limited. Only a few genes such as ssb, recA, etc. are reported upregulated following 2.2 Stress conditions exposure to UV rays, MMC, etc. (Ujaoney et al. 2010; Selvam et al. 2013;Dulermoet al. 2015). Additionally, D. radiodurans cells were grown overnight to the early the expression of RDR regulon genes at sub-lethal stationary phase (OD600 = 2.5 ± 0.2). The cells were concentrations of all these stressors also remains com- resuspended in fresh TGY at a cell density of OD600 = pletely unexplored. In the present study, we systemati- 3.0. The cell suspension was exposed to various cally investigated the response of D. radiodurans to six genotoxic stressors as per details given below. Fol- DNA damaging stressors that include ionizing radiations lowing each stress, the cells were resuspended in fresh (gamma rays and UV rays), desiccation, and chemical TGY broth (at starting OD600 = 0.5) and allowed to mutagens [mitomycin C (MMC), methyl methanesul- recover under standard growth conditions for 6 h. fonate (MMS) and ethidium bromide (EtBr)]. We chose i) Gamma irradiation: The cells were exposed to 3 RDR regulon genes, viz. ddrB (DR0070), gyrB various doses of gamma radiation (0 kGy–6kGy) in a (DR0906) and DR1143 to evaluate their activation pat- gamma irradiator (GC-5000, BRIT, India) at a dose rate tern using promoter-reporter fusions. Activation of gene of 2 kGy/h, as per the protocol described earlier expression was recorded through highly sensitive green (Anaganti et al. 2017). Similarly treated cells, except fluorescent proteins (GFP) expression. Here we report for gamma radiation, acted as the control. Following that all the stressors activated RDR regulon genes under stress, cells were recovered. RDR regulon in D. radiodurans Page 3 of 16 10 Table 1. List of bacterial strains and plasmids used in this study Strain/Plasmid Description References Bacterial strains D. radiodurans DirrE ATCC BAA-816, Wild type strain A gift from M. Daly (Daly et al. 2010) D. radiodurans The irrE gene knock out mutant of D. radiodurans Anaganti et al. (2016) E. coli DH5a F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoRnupG Lab collection - ? U80dlacZDM15 D(lacZYA-argF)U169, hsdR17(rKmK), k– - - - R E. coli BL21 F ompT gal dcmhsdSB(rB mB) k(DE3) pLysS(cm ) Lab collection Plasmids pKG Promoter probe shuttle vector 4745 bp, KanR Anaganti et al. (2016) pKG-PDR0070–1 pKG carrying ddrB (DR_0070) gene promoter of D. radiodurans Anaganti et al. (2016) (EcoRI/SpeI), KanR pKG-PDR0906–1 pKG with gyrB (DR_0906) gene promoter of D. radiodurans Anaganti et al. (2016) (EcoRI/SpeI), KanR pKG-PDR0906–2 Same as pKG- PDR0906–1 but with 17bp RDRM sequence deleted Anaganti et al. (2017) pKG-PDR1143 pKG with DR_1143 gene promoter of D. radiodurans (EcoRI/SpeI), Anaganti et al. (2016) KanR pKG-PDR0606–1 pKG with groESL (DR_0606) gene promoter of D. radiodurans Anaganti et al. (2016) (EcoRI/SpeI), KanR pET21-ddrO pET21a(?) vector with ddrO (DR2475) gene (NdeI/HindIII), AmpR Anaganti et al. (2016) ii) UV irradiation: The cells (OD600 = 5.0) were lM)for1hat32°Cwithshakingat150rpm.Following deposited onto a filter membrane (0.45 micron, Milli- stress, cells were recovered. pore, 47 mm diameter) to form a thin cell layer on the membrane.
Recommended publications
  • Deinococcus Antarcticus Sp. Nov., Isolated from Soil
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 331–335 DOI 10.1099/ijs.0.066324-0 Deinococcus antarcticus sp. nov., isolated from soil Ning Dong,1,2 Hui-Rong Li,1 Meng Yuan,1,2 Xiao-Hua Zhang2 and Yong Yu1 Correspondence 1SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, Yong Yu PR China [email protected] 2College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m”2) and slightly more sensitive to desiccation as compared with Deinococcus radiodurans. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. Highest sequence similarities were with Deinococcus ficus CC-FR2-10T (93.5 %), Deinococcus xinjiangensis X-82T (92.8 %), Deinococcus indicus Wt/1aT (92.5 %), Deinococcus daejeonensis MJ27T (92.3 %), Deinococcus wulumuqiensis R-12T (92.3 %), Deinococcus aquaticus PB314T (92.2 %) and T Deinococcus radiodurans DSM 20539 (92.2 %). Major fatty acids were C18 : 1v7c, summed feature 3 (C16 : 1v7c and/or C16 : 1v6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus Deinococcus, for which the name Deinococcus antarcticus sp.
    [Show full text]
  • The First Recorded Incidence of Deinococcus Radiodurans R1 Biofilm
    bioRxiv preprint doi: https://doi.org/10.1101/234781; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The first recorded incidence of Deinococcus radiodurans R1 biofilm 2 formation and its implications in heavy metals bioremediation 3 4 Sudhir K. Shukla1,2, T. Subba Rao1,2,* 5 6 Running title : Deinococcus radiodurans R1 biofilm formation 7 8 1Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, 9 BARC Facilities, Kalpakkam, 603 102 India 10 11 2Homi Bhabha National Institute, Mumbai 400094, India 12 13 *Corresponding Author: T. Subba Rao 14 Address: Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, 15 BARC Facilities, Kalpakkam, 603 102 India 16 E-mail: [email protected] 17 Phone: +91 44 2748 0203, Fax: +91 44 2748 0097 18 1 bioRxiv preprint doi: https://doi.org/10.1101/234781; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Significance and Impact of this Study 20 This is the first ever recorded study on the Deinococcus radiodurans R1 biofilm. This 21 organism, being the most radioresistant micro-organism ever known, has always been 22 speculated as a potential bacterium to develop a bioremediation process for radioactive heavy 23 metal contaminants. However, the lack of biofilm forming capability proved to be a bottleneck 24 in developing such technology. This study records the first incidence of biofilm formation in a 25 recombinant D.
    [Show full text]
  • Protection of Chemolithoautotrophic Bacteria Exposed to Simulated
    Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils To cite this version: Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils. Pro- tection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions. Icarus, Elsevier, 2010, 209 (2), pp.482. 10.1016/j.icarus.2010.05.027. hal-00676214 HAL Id: hal-00676214 https://hal.archives-ouvertes.fr/hal-00676214 Submitted on 4 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars En‐ vironmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils PII: S0019-1035(10)00220-4 DOI: 10.1016/j.icarus.2010.05.027 Reference: YICAR 9450 To appear in: Icarus Received Date: 11 August 2009 Revised Date: 14 May 2010 Accepted Date: 28 May 2010 Please cite this article as: Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J., Amils, R., Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions, Icarus (2010), doi: 10.1016/j.icarus.2010.05.027 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • DNA Gyrase of Deinococcus Radiodurans Is Characterized As Type II Bacterial Topoisomerase and Its Activity Is Differentially Regulated by Ppra in Vitro
    Extremophiles (2016) 20:195–205 DOI 10.1007/s00792-016-0814-1 ORIGINAL PAPER DNA Gyrase of Deinococcus radiodurans is characterized as Type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro Swathi Kota1 · Yogendra S. Rajpurohit1 · Vijaya K. Charaka1,4 · Katsuya Satoh2 · Issay Narumi3 · Hari S. Misra1 Received: 8 October 2015 / Accepted: 20 January 2016 / Published online: 5 February 2016 © Springer Japan 2016 Abstract The multipartite genome of Deinococcus radio- W183R, which formed relatively short oligomers did not durans forms toroidal structure. It encodes topoisomerase interact with GyrA. The size of nucleoid in PprA mutant IB and both the subunits of DNA gyrase (DrGyr) while (1.9564 0.324 µm) was significantly bigger than the wild ± lacks other bacterial topoisomerases. Recently, PprA a plei- type (1.6437 0.345 µm). Thus, we showed that DrGyr ± otropic protein involved in radiation resistance in D. radio- confers all three activities of bacterial type IIA family DNA durans has been suggested for having roles in cell division topoisomerases, which are differentially regulated by PprA, and genome maintenance. In vivo interaction of PprA with highlighting the significant role of PprA in DrGyr activity topoisomerases has also been shown. DrGyr constituted regulation and genome maintenance in D. radiodurans. from recombinant gyrase A and gyrase B subunits showed decatenation, relaxation and supercoiling activities. Wild Keywords Deinococcus · DNA gyrase · Genome type PprA stimulated DNA relaxation activity while inhib- maintenance · PprA · Radioresistance ited supercoiling activity of DrGyr. Lysine133 to glutamic acid (K133E) and tryptophane183 to arginine (W183R) replacements resulted loss of DNA binding activity in Introduction PprA and that showed very little effect on DrGyr activi- ties in vitro.
    [Show full text]
  • Ionizing Radiation Resistance in Deinococcus Radiodurans
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CSCanada.net: E-Journals (Canadian Academy of Oriental and Occidental Culture,... ISSN 1715-7862 [PRINT] Advances in Natural Science ISSN 1715-7870 [ONLINE] Vol. 7, No. 2, 2014, pp. 6-14 www.cscanada.net DOI: 10.3968/5058 www.cscanada.org Ionizing Radiation Resistance in Deinococcus Radiodurans LI Wei[a]; MA Yun[a]; XIAO Fangzhu[a]; HE Shuya[a],* [a]Institute of Biochemistry and Molecular Biology, University of South Treatment of D. radiodurans with an acute dose of 5,000 China, Hengyang, China. Gy of ionizing radiation with almost no loss of viability, *Corresponding author. and an acute dose of 15,000 Gy with 37% viability (Daly, Supported by the National Natural Science Foundation of China 2009; Ito, Watanabe, Takeshia, & Iizuka, 1983; Moseley (81272993). & Mattingly, 1971). In contrast, 5 Gy of ionizing radiation can kill a human, 200-800 Gy of ionizing radiation will Received 12 March 2014; accepted 2 June 2014 Published online 26 June 2014 kill E. coli, and more than 4,000 Gy of ionizing radiation will kill the radiation-resistant tardigrade. D. radiodurans can survive 5,000 to 30,000 Gy of ionizing radiation, Abstract which breaks its genome into hundreds of fragments (Daly Deinococcus radiodurans is unmatched among all known & Minton, 1995; Minton, 1994; Slade & Radman, 2011). species in its ability to resist ionizing radiation and other Surprisingly, the genome is reassembled accurately before DNA-damaging factors. It is considered a model organism beginning of the next cycle of cell division.
    [Show full text]
  • Major Soluble Proteome Changes in Deinococcus Deserti Over The
    Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradiation Alain Dedieu, Elodie Sahinovic, Philippe Guerin, Laurence Blanchard, Sylvain Fochesato, Bruno Meunier, Arjan de Groot, J. Armengaud To cite this version: Alain Dedieu, Elodie Sahinovic, Philippe Guerin, Laurence Blanchard, Sylvain Fochesato, et al.. Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradia- tion. Proteome Science, BioMed Central, 2013, 11 (1), pp.3. 10.1186/1477-5956-11-3. hal-02011060 HAL Id: hal-02011060 https://hal.archives-ouvertes.fr/hal-02011060 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dedieu et al. Proteome Science 2013, 11:3 http://www.proteomesci.com/content/11/1/3 RESEARCH Open Access Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradiation Alain Dedieu1*, Elodie Sahinovic1, Philippe Guérin1, Laurence Blanchard2,3,4, Sylvain Fochesato2,3,4, Bruno Meunier5, Arjan de Groot2,3,4 and Jean Armengaud1 Abstract Background: Deinococcus deserti VCD115 has been isolated from Sahara surface sand. This radiotolerant bacterium represents an experimental model of choice to understand adaptation to harsh conditions encountered in hot arid deserts.
    [Show full text]
  • Impact of Solar Radiation on Gene Expression in Bacteria
    Proteomes 2013, 1, 70-86; doi:10.3390/proteomes1020070 OPEN ACCESS proteomes ISSN 2227-7382 www.mdpi.com/journal/proteomes Review Impact of Solar Radiation on Gene Expression in Bacteria Sabine Matallana-Surget 1,2,* and Ruddy Wattiez 3 1 UPMC Univ Paris 06, UMR7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer F-66650, France 2 CNRS, UMR7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer F-66650, France 3 Department of Proteomics and Microbiology, Research Institute for Biosciences, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons B-7000, Belgium; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-4-68-88-73-18. Received: 2 May 2013; in revised form: 21 June 2013 / Accepted: 2 July 2013 / Published: 16 July 2013 Abstract: Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another. Keywords: transcriptomic; proteomic; gene regulation; radiation; bacteria 1. Introduction Bacteria present a wide diversity of tolerances to damaging radiation and are the simplest model organisms for studying their response and strategies of defense in terms of gene regulation.
    [Show full text]
  • Biology of Extreme Radiation Resistance: the Way of Deinococcus Radiodurans
    Biology of Extreme Radiation Resistance: The Way of Deinococcus radiodurans Anita Krisko1 and Miroslav Radman1,2 1Mediterranean Institute for Life Sciences, 21000 Split, Croatia 2Faculte´ de Me´decine, Universite´ Rene´ Descartes—Paris V, INSERM U1001, 75015 Paris, France Correspondence: [email protected] The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage. A well-protected functional proteome ensures cell recovery from extensive radiation damage to other cellular constituents by molecular repair and turnover processes, including an efficient repair of disintegrated DNA. Therefore, cell death correlates with radiation- induced protein damage, rather than DNA damage, in both robust and standard species. From the reviewed biology of resistance to radiation and other sources of oxidative damage, we conclude that the impact of protein damage on the maintenance of life has been largely underestimated in biology and medicine. everal recent reviews comprehensively pres- rather than the genome. A cell that instantly Sent the extraordinary bacterium Deinococ- loses its genome can function for some time, cus radiodurans, best known for its biological unlike one that loses its proteome. In other robustness involving an extremely efficient words, the proteome sustains and maintains DNA repair system (Cox and Battista 2005; Bla- life, whereas the genome ensures the perpetua- sius et al. 2008; Daly 2009; Slade and Radman tion of life by renewing the proteome, a process 2011). The aim of this short review of the biol- contingent on a preexisting proteome that re- ogy of D. radiodurans is to single out a general pairs, replicates, and expresses the genome.
    [Show full text]
  • On the Stability of Deinoxanthin Exposed to Mars Conditions During a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets
    fmicb-08-01680 September 14, 2017 Time: 15:33 # 1 ORIGINAL RESEARCH published: 15 September 2017 doi: 10.3389/fmicb.2017.01680 On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets Stefan Leuko1*, Maria Bohmeier1, Franziska Hanke2, Ute Böettger2, Elke Rabbow1, Andre Parpart1, Petra Rettberg1 and Jean-Pierre P. de Vera3 1 German Aerospace Center, Research Group “Astrobiology”, Radiation Biology Department, Institute of Aerospace Medicine, Köln, Germany, 2 German Aerospace Center, Institute of Optical Sensor Systems, Berlin, Germany, 3 German Aerospace Center, Institute of Planetary Research, Berlin, Germany Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part Edited by: of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the Baolei Jia, Chung-Ang University, South Korea integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to Reviewed by: search for remnants of life on other planets. Survival was investigated by evaluating James A. Coker, colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, University of Maryland University College, United States and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure Haitham Sghaier, to space conditions had a strong detrimental effect on the survival of the strains and the Centre National des Sciences et 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions Technologies Nucléaires, Tunisia as they prevail on Mars.
    [Show full text]
  • Metabolic Engineering of Extremophilic Bacterium Deinococcus Radiodurans for the Production of the Novel Carotenoid Deinoxanthin
    microorganisms Article Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin Sun-Wook Jeong 1 , Jun-Ho Kim 2, Ji-Woong Kim 2, Chae Yeon Kim 2, Su Young Kim 2 and Yong Jun Choi 1,* 1 School of Environmental Engineering, University of Seoul, Seoul 02504, Korea; [email protected] 2 Material Sciences Research Institute, LABIO Co., Ltd., Seoul 08501, Korea; [email protected] (J.-H.K.); [email protected] (J.-W.K.); [email protected] (C.Y.K.); [email protected] (S.Y.K.) * Correspondence: [email protected]; Tel.: +82-02-6490-2873; Fax: +82-02-6490-2859 Abstract: Deinoxanthin, a xanthophyll derived from Deinococcus species, is a unique organic com- pound that provides greater antioxidant effects compared to other carotenoids due to its superior scavenging activity against singlet oxygen and hydrogen peroxide. Therefore, it has attracted signifi- cant attention as a next-generation organic compound that has great potential as a natural ingredient in a food supplements. Although the microbial identification of deinoxanthin has been identified, mass production has not yet been achieved. Here, we report, for the first time, the development of an engineered extremophilic microorganism, Deinococcus radiodurans strain R1, that is capable of produc- ing deinoxanthin through rational metabolic engineering and process optimization. The genes crtB and dxs were first introduced into the genome to reinforce the metabolic flux towards deinoxanthin. The optimal temperature was then identified through a comparative analysis of the mRNA expression of the two genes, while the carbon source was further optimized to increase deinoxanthin production.
    [Show full text]
  • Single-Molecule Insights Into ATP-Dependent Conformational Dynamics of Nucleoprotein Filaments of Deinococcus Radiodurans Reca
    International Journal of Molecular Sciences Article Single-Molecule Insights into ATP-Dependent Conformational Dynamics of Nucleoprotein Filaments of Deinococcus radiodurans RecA Aleksandr Alekseev 1, Galina Cherevatenko 1, Maksim Serdakov 1, Georgii Pobegalov 1,* , Alexander Yakimov 1,2 , Irina Bakhlanova 2, Dmitry Baitin 2 and Mikhail Khodorkovskii 1,3 1 Peter the Great St Petersburg Polytechnic University, St Petersburg 195251, Russia; [email protected] (A.A.); [email protected] (G.C.); [email protected] (M.S.); [email protected] (A.Y.); [email protected] (M.K.) 2 Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute (B.P. Konstantinov of National Research Centre ‘Kurchatov Institute’), Gatchina 188300, Russia; [email protected] (I.B.); [email protected] (D.B.) 3 Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia * Correspondence: [email protected]; Tel.: +7 950 0191425 Received: 1 September 2020; Accepted: 4 October 2020; Published: 7 October 2020 Abstract: Deinococcus radiodurans (Dr) has one of the most robust DNA repair systems, which is capable of withstanding extreme doses of ionizing radiation and other sources of DNA damage. DrRecA, a central enzyme of recombinational DNA repair, is essential for extreme radioresistance. In the presence of ATP, DrRecA forms nucleoprotein filaments on DNA, similar to other bacterial RecA and eukaryotic DNA strand exchange proteins. However, DrRecA catalyzes DNA strand exchange in a unique reverse pathway. Here, we study the dynamics of DrRecA filaments formed on individual molecules of duplex and single-stranded DNA, and we follow conformational transitions triggered by ATP hydrolysis. Our results reveal that ATP hydrolysis promotes rapid DrRecA dissociation from duplex DNA, whereas on single-stranded DNA, DrRecA filaments interconvert between stretched and compressed conformations, which is a behavior shared by E.
    [Show full text]
  • Bacterial Adaptation to Temperature Stress: Molecular Responses in Two Gram-Positive Species from Distinct Ecological Niches
    Bacterial adaptation to temperature stress: molecular responses in two Gram-positive species from distinct ecological niches Dong XUE Promoteur: Prof. Marc ONGENA Co-promoteur: Prof. Jin WANG 2020 COMMUNAUTÉ FRANÇAISE DE BELGIQUE UNIVERSITÉ DE LIÈGE – GEMBLOUX AGRO-BIO TECH Bacterial adaptation to temperature stress: molecular responses in two Gram-positive species from distinct ecological niches Dong XUE Dissertation originale présentée en vue de l’obtention du grade de docteur en sciences agronoMiques et ingénierie biologique Promoteurs: Prof. Marc Ongena & Prof. Jin Wang Année civile: 2020 © Dong XUE – February 2020 Résumé Dong XUE (2020) Adaptation bactérienne au stress thermique : réponses moléculaires chez deux espèces Gram-positives de niches écologiques distinctes (thèse de doctorat). Gembloux, Belgique, Liège Université, Gembloux Agro-Bio Tech, 133 p., 14 Tableaux, 44 Figures. Résumé : Les Micro-organisMes sont souvent affectés par divers facteurs environnementaux. Ces facteurs environneMentaux affectent leurs fonctions physiologiques et biochiMiques. ParMi ces facteurs environnementaux, la teMpérature joue un rôle important dans les activités physiologiques norMales des micro-organisMes. Pour s'adapter à différents environnements de température, les bactéries ont développé de nombreux MécanisMes adaptatifs pour coordonner une gamMe de changements dans l'expression génique et l'activité protéines. Dans cette étude, nous avons étudié les MécanisMes d'adaptation de deux bactéries GraM-positives à différentes températures. Les principaux résultats de cette thèse sont les suivants : (1) Deinococcus radiodurans est une bactérie Gram-positive, pigmentée de rose et à haut G + C. La réponse thermique de D. radiodurans est considérée comme un système de régulation classique induit par le stress qui se caractérise par une reprogrammation transcriptionnelle étendue.
    [Show full text]