Expression of FLT4 and Its Ligand VEGF-C in Acute Myeloid Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Expression of FLT4 and Its Ligand VEGF-C in Acute Myeloid Leukemia Leukemia (1997) 11, 1234–1237 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia W Fielder1, U Graeven1,2, S Ergu¨n3, S Verago, N Kilic3, M Stockschla¨der1 and DK Hossfeld1 Department of 1Hematology/Oncology and 3Institute of Anatomy, University Hospital Eppendorf, Hamburg, Germany FLT4 represents a recently cloned member of class III receptor in angioblasts of head mesenchym, the cardinal vein and tyrosine kinases which include receptors for the angiogenic extra-embryonally in the allantois.10 In late embryos and growth factor VEGF, namely FLT1 and KDR. The ligand of FLT4 has been identified as VEGF-C which shares sequence homo- adults FLT4 expression seems to be restricted to endothelial logy with VEGF and P1GF. In the adult FLT4 shows a restricted cells of lymph vessels and to some high endothelial venules 9 expression pattern that is limited to lymphatic endothelia and (HEV). Additionally FLT4 has been found in pericardium, endothelia of some high endothelial venules (HEV). FLT4 has pleura, lung, kidneys and placenta.7,11 FLT4 is also expressed also been detected in some tumor cell lines including the hema- in a variety of cell lines derived from Wilms’ tumor, retino- topoietic line HEL. We therefore investigated expression of blastoma and teratocarcinoma.12 Since the leukemic hemato- FLT4 and its ligand VEGF-C in fresh samples from patients with 12 AML. Using a sensitive PCR method we detected FLT4 m-RNA poietic cell line HEL is positive for FLT4, we investigated in 15 of 41 patients with de novo AML at diagnosis or relapse expression of FLT4 and its ligand VEGF-C in human bone and in three of 12 patients with secondary AML. FLT4 marrow or peripheral blood samples from normal volunteers expression was confirmed by immunocytochemistry in a sub- and patients with acute myeloid leukemia (AML) with the PCR group of the studied patient population. FLT4 was also found technique and immunocytochemistry. This may lead to in leukemic cell line U937, but not TF-1 and KG1a. VEGF-C possible new insights into autocrine or paracrine growth expression was found in leukemic samples of four of seven FLT4-positive and four of six FLT4-negative patients. U937 cells mechanisms. also produced VEGF-C m-RNA. Interestingly, FLT4 expression was not detected in bone marrow samples of 15 normal volun- teer donors or in CD34-positive cells from three additional Material and methods donors. Possible autocrine and paracrine growth stimulation of leukemic blasts by VEGF-C is currently being investigated in our laboratory. Isolation of peripheral blood or bone marrow Keywords: AML; VEGF-C; FLT4; angiogenesis mononuclear cells Peripheral blood or bone marrow samples from 53 consecu- Introduction tive patients with newly diagnosed or relapsed AML were obtained prior to chemotherapy. Mononuclear cells were sep- Several members of closely related receptor tyrosine kinases arated by density gradient centrifugation on Ficoll–Hypaque (RTK), involved in angiogenesis, have recently been cloned (Pharmacia, Uppsala, Sweden). These preparations contained by virtue of their homology to the FMS oncogene, as has been at least 90% myeloblasts as judged by morphological criteria recently reviewed.1 They include FLT1 and KDR/FLK1 which on Papenheim smears. A control group of 15 healthy volun- are the receptors for vascular endothelial growth factor teer bone marrow donors was included. (VEGF).2 A third RTK, FLT3, has been shown to be expressed by leukemia cells as has been reviewed in this journal.3 FLT4, another member of this class of receptors, forms the high Preparation of CD 34-positive cells affinity binding site for VEGF-C.4 The latter represents a novel angiogenic growth factor with sequence homology to VEGF Mononuclear cells from about 30 ml of bone marrow from and placenta growth factor (P1GF).4 The genes coding for sev- normal human volunteers were recovered from a Ficoll– eral members of this class of RTKs such as FLT4, KIT, FMS, Hypaque gradient, washed twice and counted. To select for FLT3, PDGFRA have presumably been derived from a com- CD34-positive cells about 108 mononuclear cells were mon ancestor by duplications of immunoglobulin-like applied to the MiniMacs column (Miltenyi Biotech, Bergisch domains.5 FLT4, like other RTKs, has been mapped to the long Gladbach, Germany) according to the directions of the sup- arm of chromosome 5.6 plier. Recovered cells were evaluated for purity by FACS Two transcripts of FLT4 with a size of 4.5 kb and 5.8 kb are analysis employing a CD34 monoclonal antibody recognizing expressed in adult and fetal tissues leading to a short and a a different epitope from the one used for the MiniMacs col- long form of the FLT4 protein.7,8 The long form possesses 65 umn (Anti HPCA-2; Becton Dickinson, San Jose, CA, USA). additional amino acids including three tyrosine residues. One Purity of obtained cells was at least 93% (not shown). of these, tyrosine 1337, seems to be necessary for ligand- dependent transformation and signal transduction to the cyto- 9 plasmatic factors GRB2 and SHC. Source of cell lines Expression of FLT4 has been studied in mouse embryos and in adult human tissues. In early embryos FLT4 can be detected All three cell lines, TF-1, U937 and KG-1a, were kindly pro- vided by W Ostertag, Heinrich-Pette Institute, Hamburg, Ger- many. U937 and KG-1a were cultured in RPMI 1640 sup- Correspondence: W Fiedler, Dept Oncology/Hematology, University plemented with 10% fetal calf serum. TF-1 cells were grown Hospital, Eppendorf, Martinistraße 52, 20246 Hamburg, Germany 2Present address: Medizinische Universita¨tsklinik Knappschaftskrank- in the same medium after addition of 100 ng/ml GM-CSF enhaus, In der Schornau 23-25, D-44892 Bochum/Germany (kindly provided by E Henning, Essex Pharma GmbH, Received 21 December 1996; accepted 3 April 1997 Mu¨nchen, Germany). FLT4 and VEGF-C in AML W Fiedler et al 1235 Preparation of c-DNA and RT-PCR activity was visualized by means of the nickel-glucose oxidase technique.15,16 Controls included: blocking of anti-FLT4 anti- Mononuclear cells were washed twice in PBS and collected body by specific peptide, replacement of primary and second- by centrifugation. Total cellular RNA was prepared using ary antibody with PBS, visualization of peroxidase only, incu- Qiagen minicolumns (Qiagen, Hilden, Germany) as described bation of cells with normal rabbit serum (Sigma, Deisenhofen, by the manufacturer. One microgram of RNA was used for c- Germany) in concentrations ranging from 0.1% to 0.01% DNA synthesis employing avian myeloblastosis virus (AMV) instead of primary antiserum. reverse transcriptase and oligo dT as primer. RT reactions were diluted to 100 ml with distilled water and heated to 95°C for 10 min. Results Different aliquots of c-DNA were amplified with specific primers for FLT4, VEGF-C and actin as control for successful FLT4 expression was studied with a sensitive nested RT-PCR c-DNA synthesis. For FLT4 and VEGF-C two rounds and for reaction. The limit of detection is at least one FLT4-positive actin one round of 35 cycles of PCR were performed in a cell in 105 bone marrow cells (data not shown). With this programmable heat block at 94°C for 1.5 min, at 60°C for method c-DNA samples from bone marrow cells of 15 healthy 3 min and at 72°C for 4 min. For the first round 1 ml of the donors were investigated. None was positive for FLT4 RT reaction and for the second round of RCR 1 ml of a 1:100 expression. To confirm further the lack of FLT4 formation in dilution of the first round was used. Five microliters of PCR normal bone marrow cells, CD34-positive cells were prepared products were separated on 1% agarose gels, stained with by use of a mini MACS column from three additional normal ethidium bromide and visualized under UV light. Primer donors yielding a suspension of CD34-positive cells of at least sequences were as follows: FLT4: outer sense primer 59- 93% purity (not shown). FLT4 specific amplification products CTGCTGGAGGAAAAGTCTGG-39; outer antisense primer 59- were not found in the three samples (Figure 1). CTTGCAGAACTCCACGATCA-39; inner sense primer 59- A series of 53 consecutive patients with AML and the leu- CGTATCTGTGCAGCGTGTG-39; inner antisense primer 59- kemic cell lines KG1a, TF-1 and U937 were investigated for GGTTGACCACGTTGAGGTG-39; VEGF-C: outer sense primer expression of FLT4 by PCR analysis. U937, but not TF-1 and 59-AGCTAAGGAAAGGAGGCTGG-39; outer antisense primer KG1a cells were found to be positive for FLT4 m-RNA. Forty- 59-TGTGTTTTCATCAAATTCTCGG-39; inner sense primer 59- one samples originated from patients with de novo AML at TGAACACCAGCACGAGCTAC-39; inner antisense primer 59- diagnosis or at relapse and 12 samples from patients with CATAAAATCTTCCTGAGCCAGG-39. Actin: sense primer 59- secondary AML. From the 53 AML patients overall 34% CGCTGCGCTGGTCGTCGACA-39; antisense primer 59- expressed FLT4. A representative example of a PCR analysis GTCACGCACGATTTCCCGCT-39. The size of the PCR pro- is demonstrated in Figure 1. Table 1 shows the relative per- ducts corresponds to 625 bp for FLT4 outer primer pair, centages of FLT4 positivity of AML samples according to 500 bp inner primer pair, VEGF-C outer primer pair 764 bp, FAB type. inner primer pair 269 bp and for actin 619 bp. To avoid cross- The cell lines U937 and TF-1 and leukemic blasts from contamination the set-up of PCR reactions and gel electro- eight patients were investigated for FLT4 protein expression phoresis were carried out in different rooms using different sets of pipettes.
Recommended publications
  • Human FLT4 / VEGFR3 ELISA Kit (ARG82047)
    Product datasheet [email protected] ARG82047 Package: 96 wells Human FLT4 / VEGFR3 ELISA Kit Store at: 4°C Summary Product Description Human FLT4 / VEGFR3 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human FLT4 / VEGFR3 in serum, plasma and cell culture supernatants. Tested Reactivity Hu Tested Application ELISA Target Name FLT4 / VEGFR3 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 78 pg/ml Sample Type Serum, plasma and cell culture supernatants. Standard Range 156 - 10000 pg/ml Sample Volume 100 µl Alternate Names FLT-4; FLT41; Vascular endothelial growth factor receptor 3; VEGFR3; VEGFR-3; PCL; Tyrosine-protein kinase receptor FLT4; LMPH1A; EC 2.7.10.1; Fms-like tyrosine kinase 4 Application Instructions Assay Time 4.5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C. Keep microplate wells sealed in a dry bag with desiccants. Do not expose test reagents to heat, sun or strong light during storage and usage. Please refer to the product user manual for detail temperatures of the components. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol FLT4 Gene Full Name fms-related tyrosine kinase 4 Background This gene encodes a tyrosine kinase receptor for vascular endothelial growth factors C and D. The protein is thought to be involved in lymphangiogenesis and maintenance of the lymphatic endothelium. Mutations in this gene cause hereditary lymphedema type IA. [provided by RefSeq, Jul 2008] Function Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFC and VEGFD, and plays an essential role in adult lymphangiogenesis and in the development of the vascular network and the cardiovascular system during embryonic development.
    [Show full text]
  • Rat FLT4 / VEGFR3 ELISA Kit (ARG82090)
    Product datasheet [email protected] ARG82090 Package: 96 wells Rat FLT4 / VEGFR3 ELISA Kit Store at: 4°C Component Cat. No. Component Name Package Temp ARG82090-001 Antibody-coated 8 X 12 strips 4°C. Unused strips microplate should be sealed tightly in the air-tight pouch. ARG82090-002 Standard 2 X 10 ng/vial 4°C ARG82090-003 Standard/Sample 30 ml (Ready to use) 4°C diluent ARG82090-004 Antibody conjugate 1 vial (100 µl) 4°C concentrate (100X) ARG82090-005 Antibody diluent 12 ml (Ready to use) 4°C buffer ARG82090-006 HRP-Streptavidin 1 vial (100 µl) 4°C concentrate (100X) ARG82090-007 HRP-Streptavidin 12 ml (Ready to use) 4°C diluent buffer ARG82090-008 25X Wash buffer 20 ml 4°C ARG82090-009 TMB substrate 10 ml (Ready to use) 4°C (Protect from light) ARG82090-010 STOP solution 10 ml (Ready to use) 4°C ARG82090-011 Plate sealer 4 strips Room temperature Summary Product Description ARG82090 Rat FLT4 / VEGFR3 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Rat FLT4 / VEGFR3 in serum and cell culture supernatants. Tested Reactivity Rat Tested Application ELISA Specificity There is no detectable cross-reactivity with other relevant proteins. Target Name FLT4 / VEGFR3 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 78 pg/ml Sample Type Serum and cell culture supernatants. Standard Range 156 - 10000 pg/ml Sample Volume 100 µl www.arigobio.com 1/3 Precision Intra-Assay CV: 5.2%; Inter-Assay CV: 6.2% Alternate Names FLT-4; FLT41; Vascular endothelial growth factor receptor 3; VEGFR3; VEGFR-3; PCL; Tyrosine-protein kinase receptor FLT4; LMPH1A; EC 2.7.10.1; Fms-like tyrosine kinase 4 Application Instructions Assay Time ~ 5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C.
    [Show full text]
  • 60+ Genes Tested FDA-Approved Targeted Therapies & Gene Indicators
    ® 60+ genes tested ABL1, ABL2, ALK, AR, ARAF, ATM, ATR, BRAF, BRCA1*, BRCA2*, BTK, CCND1, CCND2, CCND3, CDK4, Somatic mutation detection CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, DDR1, DDR2, EGFR, ERBB2 (HER2), ESR1, FGFR1, FGFR2, for approved cancer therapies FGFR3, FGFR4, FLCN, FLT1, FLT3, FLT4, GNA11, GNAQ, HDAC1, HDAC2, HRAS, JAK1, JAK2, KDR, KIT, in solid tumors KRAS, MAP2K1, MET, MTOR, NF1, NF2, NRAS, PALB2, PARP1, PDGFRA, PDGFRB, PIK3CA, PIK3CD, PTCH1, PTEN, RAF1, RET, ROS1, SMO, SRC, STK11, TNK2, TSC1, TSC2 FDA-approved Targeted Therapies & Gene Indicators Abiraterone AR Necitumumab EGFR Ado-Trastuzumab ERBB2 (HER2) Nilotinib ABL1, ABL2, DDR1, DDR2, KIT, PDGFRA, PDGFRB Emtansine FGFR1, FGFR2, FGFR3, FLT1, FLT4, KDR, PDGFRA, Afatinib EGFR, ERBB2 (HER2) Nintedanib PDGFRB Alectinib ALK Olaparib ATM, ATR, BRCA1*, BRCA2*, PALB2, PARP1 Anastrozole ESR1 Osimertinib EGFR Axitinib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB CDK4, CDK6, CCND1, CCND2, CCND3, CDKN1A, Palbociclib Belinostat HDAC1, HDAC2 CDKN1B, CDKN2A, CDKN2B Panitumumab EGFR Bicalutamide AR Panobinostat HDAC1, HDAC2 Bosutinib ABL1, SRC Pazopanib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB Cabozantinib FLT1, FLT3, FLT4, KDR, KIT, MET, RET Pertuzumab ERBB2 (HER2) Ceritinib ALK ABL1, FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT3, FLT4, Cetuximab EGFR Ponatinib KDR, KIT, PDGFRA, PDGFRB, RET, SRC Cobimetinib MAP2K1 Ramucirumab KDR Crizotinib ALK, MET, ROS1 Regorafenib ARAF, BRAF, FLT1, FLT4, KDR, KIT, PDGFRB, RAF1, RET Dabrafenib BRAF Ruxolitinib JAK1, JAK2 Dasatinib ABL1, ABL2, DDR1, DDR2, SRC, TNK2
    [Show full text]
  • RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients Shumei Kato1, Vivek Subbiah2, Erica Marchlik3, Sheryl K
    Published OnlineFirst September 28, 2016; DOI: 10.1158/1078-0432.CCR-16-1679 Personalized Medicine and Imaging Clinical Cancer Research RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients Shumei Kato1, Vivek Subbiah2, Erica Marchlik3, Sheryl K. Elkin3, Jennifer L. Carter3, and Razelle Kurzrock1 Abstract Purpose: Aberrations in genetic sequences encoding the tyrosine (52/88)], cell cycle–associated genes [39.8% (35/88)], the PI3K kinase receptor RET lead to oncogenic signaling that is targetable signaling pathway [30.7% (27/88)], MAPK effectors [22.7% with anti-RET multikinase inhibitors. Understanding the compre- (20/88)], or other tyrosine kinase families [21.6% (19/88)]. hensive genomic landscape of RET aberrations across multiple RET fusions were mutually exclusive with MAPK signaling cancers may facilitate clinical trial development targeting RET. pathway alterations. All 72 patients harboring coaberrations Experimental Design: We interrogated the molecular portfolio had distinct genomic portfolios, and most [98.6% (71/72)] of 4,871 patients with diverse malignancies for the presence of had potentially targetable coaberrations with either an FDA- RET aberrations using Clinical Laboratory Improvement Amend- approved or an investigational agent. Two cases with lung ments–certified targeted next-generation sequencing of 182 or (KIF5B-RET) and medullary thyroid carcinoma (RET M918T) 236 gene panels. thatrespondedtoavandetanib(multikinase RET inhibitor)- Results: Among diverse cancers, RET aberrations were iden- containing regimen are shown. tified in 88 cases [1.8% (88/4, 871)], with mutations being Conclusions: RET aberrations were seen in 1.8% of diverse the most common alteration [38.6% (34/88)], followed cancers, with most cases harboring actionable, albeit dis- by fusions [30.7% (27/88), including a novel SQSTM1-RET] tinct, coexisting alterations.
    [Show full text]
  • Functional Analysis of Somatic Mutations Affecting Receptor Tyrosine Kinase Family in Metastatic Colorectal Cancer
    Author Manuscript Published OnlineFirst on March 29, 2019; DOI: 10.1158/1535-7163.MCT-18-0582 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Functional analysis of somatic mutations affecting receptor tyrosine kinase family in metastatic colorectal cancer Leslie Duplaquet1, Martin Figeac2, Frédéric Leprêtre2, Charline Frandemiche3,4, Céline Villenet2, Shéhérazade Sebda2, Nasrin Sarafan-Vasseur5, Mélanie Bénozène1, Audrey Vinchent1, Gautier Goormachtigh1, Laurence Wicquart6, Nathalie Rousseau3, Ludivine Beaussire5, Stéphanie Truant7, Pierre Michel8, Jean-Christophe Sabourin9, Françoise Galateau-Sallé10, Marie-Christine Copin1,6, Gérard Zalcman11, Yvan De Launoit1, Véronique Fafeur1 and David Tulasne1 1 Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T – Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France. 2 Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, F-59000 Lille, France 3 TCBN - Tumorothèque Caen Basse-Normandie, F-14000 Caen, France. 4 Réseau Régional de Cancérologie – OncoBasseNormandie – F14000 Caen – France. 5 Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, F-76000 Rouen, France. 6 Tumorothèque du C2RC de Lille, F-59037 Lille, France. 7 Department of Digestive Surgery and Transplantation, CHU Lille, Univ Lille, 2 Avenue Oscar Lambret, 59037, Lille Cedex, France. 8 Department of hepato-gastroenterology, Rouen University Hospital, Normandie Univ, UNIROUEN, Inserm U1245, IRON group, F-76000 Rouen, France. 9 Department of Pathology, Normandy University, INSERM 1245, Rouen University Hospital, F 76 000 Rouen, France. 10 Department of Pathology, MESOPATH-MESOBANK, Centre León Bérard, Lyon, France. 11 Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hôpital Bichat-Claude Bernard, Paris, France.
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Functional Genomic and Proteomic Analysis of Highly Drug Resistant Chronic Myeloid Leukemia Derrick Matthew Ao Xaca University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2014-01-01 Functional Genomic and Proteomic Analysis of Highly Drug Resistant Chronic Myeloid Leukemia Derrick Matthew aO xaca University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Cell Biology Commons, and the Oncology Commons Recommended Citation Oaxaca, Derrick Matthew, "Functional Genomic and Proteomic Analysis of Highly Drug Resistant Chronic Myeloid Leukemia" (2014). Open Access Theses & Dissertations. 1310. https://digitalcommons.utep.edu/open_etd/1310 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. FUNCTIONAL GENOMIC AND PROTEOMIC ANALYSIS OF HIGHLY DRUG RESISTANT CHRONIC MYELOID LEUKEMIA DERRICK MATTHEW OAXACA Department of Biological Sciences APPROVED: Robert A. Kirken, Ph.D., Chair Marc B. Cox, Ph.D. Ming-Ying Leung, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copy Right © By Derrick Oaxaca 2014 Dedication Page I dedicate this thesis to three important people in my life. The first two being both my parents David and Yvette Oaxaca, for their endless love and support. They have provided me lifelong lessons of how we must work hard for everything we want in life. I also dedicate this thesis to my best friend, and girlfriend, Sarah Chenausky who
    [Show full text]
  • Heparin-Binding VEGFR1 Variants As Long-Acting VEGF Inhibitors for Treatment of Intraocular Neovascular Disorders
    Heparin-binding VEGFR1 variants as long-acting VEGF inhibitors for treatment of intraocular neovascular disorders Hong Xina, Nilima Biswasa, Pin Lia, Cuiling Zhonga, Tamara C. Chanb, Eric Nudlemanb, and Napoleone Ferraraa,b,1 aDepartment of Pathology, University of California San Diego, La Jolla, CA 92093; and bDepartment of Ophthalmology, University of California San Diego, La Jolla, CA 92093 Contributed by Napoleone Ferrara, April 20, 2021 (sent for review December 4, 2019; reviewed by Jayakrishna Ambati and Lois E. H. Smith) Neovascularization is a key feature of ischemic retinal diseases and VEGF inhibitors have become a standard of therapy in mul- the wet form of age-related macular degeneration (AMD), all lead- tiple tumors and have transformed the treatment of intraocular ing causes of severe vision loss. Vascular endothelial growth factor neovascular disorders such as the neovascular form of age-related (VEGF) inhibitors have transformed the treatment of these disor- macular degeneration (AMD), proliferative diabetic retinopathy, ders. Millions of patients have been treated with these drugs and retinal vein occlusion, which are leading causes of severe vision worldwide. However, in real-life clinical settings, many patients loss and legal blindness (3, 5, 18). Currently, three anti-VEGF drugs do not experience the same degree of benefit observed in clinical are widely used in the United States for ophthalmological indica- trials, in part because they receive fewer anti-VEGF injections. tions: bevacizumab, ranibizumab, and aflibercept (3). Bevacizumab Therefore, there is an urgent need to discover and identify novel is a full-length IgG antibody targeting VEGF (19). Even though long-acting VEGF inhibitors.
    [Show full text]
  • Beyond Traditional Morphological Characterization of Lung
    Cancers 2020 S1 of S15 Beyond Traditional Morphological Characterization of Lung Neuroendocrine Neoplasms: In Silico Study of Next-Generation Sequencing Mutations Analysis across the Four World Health Organization Defined Groups Giovanni Centonze, Davide Biganzoli, Natalie Prinzi, Sara Pusceddu, Alessandro Mangogna, Elena Tamborini, Federica Perrone, Adele Busico, Vincenzo Lagano, Laura Cattaneo, Gabriella Sozzi, Luca Roz, Elia Biganzoli and Massimo Milione Table S1. Genes Frequently mutated in Typical Carcinoids (TCs). Mutation Original Entrez Gene Gene Rate % eukaryotic translation initiation factor 1A X-linked [Source: HGNC 4.84 EIF1AX 1964 EIF1AX Symbol; Acc: HGNC: 3250] AT-rich interaction domain 1A [Source: HGNC Symbol;Acc: HGNC: 4.71 ARID1A 8289 ARID1A 11110] LDL receptor related protein 1B [Source: HGNC Symbol; Acc: 4.35 LRP1B 53353 LRP1B HGNC: 6693] 3.53 NF1 4763 NF1 neurofibromin 1 [Source: HGNC Symbol;Acc: HGNC: 7765] DS cell adhesion molecule like 1 [Source: HGNC Symbol; Acc: 2.90 DSCAML1 57453 DSCAML1 HGNC: 14656] 2.90 DST 667 DST dystonin [Source: HGNC Symbol;Acc: HGNC: 1090] FA complementation group D2 [Source: HGNC Symbol; Acc: 2.90 FANCD2 2177 FANCD2 HGNC: 3585] piccolo presynaptic cytomatrix protein [Source: HGNC Symbol; Acc: 2.90 PCLO 27445 PCLO HGNC: 13406] erb-b2 receptor tyrosine kinase 2 [Source: HGNC Symbol; Acc: 2.44 ERBB2 2064 ERBB2 HGNC: 3430] BRCA1 associated protein 1 [Source: HGNC Symbol; Acc: HGNC: 2.35 BAP1 8314 BAP1 950] capicua transcriptional repressor [Source: HGNC Symbol; Acc: 2.35 CIC 23152 CIC HGNC:
    [Show full text]
  • FLT4 Gene Fms Related Tyrosine Kinase 4
    FLT4 gene fms related tyrosine kinase 4 Normal Function The FLT4 gene provides instructions for making a protein called vascular endothelial growth factor receptor 3 (VEGFR-3), which regulates the development and maintenance of the lymphatic system. The lymphatic system produces and transports fluids and immune cells throughout the body. VEGFR-3 is turned on (activated) by two proteins called vascular endothelial growth factor C (VEGF-C) and vascular endothelial growth factor D (VEGF-D). When VEGF-C and VEGF-D attach (bind) to VEGFR-3, chemical signals are produced that regulate the growth, movement, and survival of lymphatic cells. Health Conditions Related to Genetic Changes Milroy disease At least 19 mutations in the FLT4 gene have been found to cause Milroy disease. Most mutations in this gene change a single protein building block (amino acid) in regions known as tyrosine kinase domains. Mutations in these regions disrupt VEGFR-3 signaling and cause the tubes that carry lymph fluid (lymphatic vessels) to be small or absent. If lymph fluid is not properly transported, it builds up in the body's tissues and causes swelling (lymphedema). It is not known how mutations in the FLT4 gene lead to the other signs and symptoms of Milroy disease. Other Names for This Gene • FLT41 • fms-related tyrosine kinase 4 • vascular endothelial growth factor receptor 3 • VEGFR3 • VGFR3_HUMAN Additional Information & Resources Tests Listed in the Genetic Testing Registry Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) 1 • Tests of
    [Show full text]
  • FLT4, Active FLT4, Active
    Catalogue # Aliquot Size F13-11G -05 5 µg F13-11G -10 10 µg F13-11G -20 20 µg FLT4, Active Recombinant protein expressed in Sf9 cells Catalog # F13-11G Lot # I254 -1 Product Description Specific Activity Recombinant human FLT4 (800-end) was expressed by 460,000 baculovirus in Sf9 insect cells using an N-terminal GST tag. The FLT4 gene accession number is NM_002020 . 345,000 230,000 Gene Aliases 115,000 VEGFR3; FLT41; LMPH1A; PCL (cpm) Activity 0 Formulation 0 100 200 300 400 Protein (ng) Recombinant protein stored in 50mM Tris-HCl, pH 7.5, The specific activity of FLT4 was determined to be 68 nmol 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM /min/mg as per activity assay protocol. DTT, 0.1mM PMSF, 25% glycerol. Purity Storage and Stability Store product at –70 oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable The purity of FLT4 was determined performance, avoid repeated handling and multiple to be >80% by densitometry, freeze/thaw cycles. approx. MW 85 kDa . Scientific Background FLT4 or fms-related tyrosine kinase 4 is a tyrosine kinase receptor for vascular endothelial growth factors C and D and highly expressed in lymphangiogenesis and maintenance of the lymphatic endothelium. FLT4 is a marker for lymphatic vessels and some high endothelial FLT4, Active venules in human adult tissues and also supported the Recombinant human protein expressed in Sf9 cells theory of the venous origin of lymphatic vessels (1). FLT4 plays an essential role in the development of the Catalog Number F13-11G embryonic cardiovascular system before the emergence Specific Activity 68 nmol/min/mg of the lymphatic vessels (2).
    [Show full text]
  • Amplification of the Human Epidermal Growth Factor Receptor 2 (HER2) Gene Is Associated with a Microsatellite Stable Status in Chinese Gastric Cancer Patients
    387 Original Article Amplification of the human epidermal growth factor receptor 2 (HER2) gene is associated with a microsatellite stable status in Chinese gastric cancer patients He Huang1#, Zhengkun Wang2#, Yi Li2, Qun Zhao3, Zhaojian Niu2 1Department of Gastrointestinal Surgery, The First Hospital of Shanxi Medical University, Shanxi, China; 2Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China; 3Department of Gastrosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China Contributions: I) Conception and design: Z Niu, Q Zhao, H Huang; (II) Administrative support: Z Niu, H Huang, Z Wang; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: Z Wang, Q Zhao; (V) Data analysis and interpretation: Z Niu, H Huang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Zhaojian Niu. Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao 260003, China. Email: [email protected]; Qun Zhao. Department of Gastrosurgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, China. Email: [email protected]. Background: Gastric cancer (GC) is one of the most common cancers worldwide. However, little is known about the combination of HER2 amplification and microsatellite instability (MSI) status in GC. This study aimed to analyze the correlation of HER2 amplification with microsatellite instability (MSI) status, clinical characteristics, and the tumor mutational burden (TMB) of patients. Methods: A total of 192 gastric cancer (GC) patients were enrolled in this cohort. To analyze genomic alterations (GAs), deep sequencing was performed on 450 target cancer genes.
    [Show full text]