Compositions, Methods and Kits for Determining the Presence of Trichomonas Vaginalis in a Test Sample
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. -
Novel Lineages of Oxymonad Flagellates from the Termite Porotermes Adamsoni (Stolotermitidae): the Genera Oxynympha and Termitim
Protist, Vol. 170, 125683, December 2019 http://www.elsevier.de/protis Published online date 21 October 2019 ORIGINAL PAPER Novel Lineages of Oxymonad Flagellates from the Termite Porotermes adamsoni (Stolotermitidae): the Genera Oxynympha and Termitimonas a,1 b a c b,1 Renate Radek , Katja Meuser , Samet Altinay , Nathan Lo , and Andreas Brune a Evolutionary Biology, Institute for Biology/Zoology, Freie Universität Berlin, 14195 Berlin, Germany b Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany c School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia Submitted January 21, 2019; Accepted October 9, 2019 Monitoring Editor: Alastair Simpson The symbiotic gut flagellates of lower termites form host-specific consortia composed of Parabasalia and Oxymonadida. The analysis of their coevolution with termites is hampered by a lack of informa- tion, particularly on the flagellates colonizing the basal host lineages. To date, there are no reports on the presence of oxymonads in termites of the family Stolotermitidae. We discovered three novel, deep-branching lineages of oxymonads in a member of this family, the damp-wood termite Porotermes adamsoni. One tiny species (6–10 m), Termitimonas travisi, morphologically resembles members of the genus Monocercomonoides, but its SSU rRNA genes are highly dissimilar to recently published sequences of Polymastigidae from cockroaches and vertebrates. A second small species (9–13 m), Oxynympha loricata, has a slight phylogenetic affinity to members of the Saccinobaculidae, which are found exclusively in wood-feeding cockroaches of the genus Cryptocercus, the closest relatives of termites, but shows a combination of morphological features that is unprecedented in any oxymonad family. -
Molecular Identification and Evolution of Protozoa Belonging to the Parabasalia Group and the Genus Blastocystis
UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari Abstract My thesis was conducted on the study of two groups of protozoa: the Parabasalia and Blastocystis . The first part of my work was focused on the identification, pathogenicity, and phylogeny of parabasalids. We showed that Pentatrichomonas hominis is a possible zoonotic species with a significant potential of transmission by the waterborne route and could be the aetiological agent of gastrointestinal troubles in children. -
Supporting Material
Supporting Text Recursions. We developed a model to investigate the evolution of ploidy levels in the presence of host-parasite interactions between a focal and nonfocal species. The focal species is assumed to have two loci, a ploidy modifier locus with alleles C1 and C2 and an interaction locus with alleles A and a. Thus there are four haploid gamete types in the focal species: AC1 with frequency X1, aC1 with frequency X2, AC2 with frequency X3, and aC2 with frequency X4. The modifier locus influences ploidy levels by altering the timing of meiosis; diploid zygotes of genotype CiCj have a probability, dij, of undergoing meiosis late in life, thus experiencing host-parasite selection as a diploid, versus early in life, thus experiencing selection as a haploid (Fig. 2). The nonfocal species is assumed to be a sexual diploid, having only a brief haploid stage, although results derived with a haploid nonfocal species were similar. For clarity, we assume that the A locus in the focal species interacts with a B locus in the nonfocal species, with alleles B and b. Note that Table 1 differs from this convention by referring to alleles in both species as A and a. We use a different notation here to avoid additional subscripts in the equations. The frequencies of alleles are denoted by pA, pa, pC1, and pC2 in the focal species and pB and pb in the nonfocal species, all measured at the gamete stage of the life cycle (Fig. 2). Also measured at this stage is D = (X1 X4 - X2 X3), the disequilibrium between the modifier and selected loci in the focal species. -
Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34). -
Systema Naturae. the Classification of Living Organisms
Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5). -
The Glycolytic Pathway of Trimastix Pyriformis Is an Evolutionary Mosaic Alexandra Stechmann*1, Manuela Baumgartner1,2, Jeffrey D Silberman1,3 and Andrew J Roger1,4
BMC Evolutionary Biology BioMed Central Research article Open Access The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic Alexandra Stechmann*1, Manuela Baumgartner1,2, Jeffrey D Silberman1,3 and Andrew J Roger1,4 Address: 1Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada, 2Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstraße 67, D-80638 München, Germany, 3Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA and 4Canadian Institute for Advanced Research, Evolutionary Biology Program, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada Email: Alexandra Stechmann* - [email protected]; Manuela Baumgartner - [email protected]; Jeffrey D Silberman - [email protected]; Andrew J Roger - [email protected] * Corresponding author Published: 23 November 2006 Received: 09 August 2006 Accepted: 23 November 2006 BMC Evolutionary Biology 2006, 6:101 doi:10.1186/1471-2148-6-101 This article is available from: http://www.biomedcentral.com/1471-2148/6/101 © 2006 Stechmann et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. -
Marine Biological Laboratory) Data Are All from EST Analyses
TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878. -
Complex Coevolutionary History of Symbiotic Bacteroidales Bacteria Of
BMC Evolutionary Biology BioMed Central Research article Open Access Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites Satoko Noda1,3, Yuichi Hongoh1,4, Tomoyuki Sato1,5 and Moriya Ohkuma*1,2 Address: 1Ecomolecular Biorecycling Science Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, 2Microbe Division/Japan Collection of Microorganisms, RIKEN Bioresource Center, Wako, Saitama 351-0198, Japan, 3Current address: Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 400-8510, Japan, 4Current address: Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo 152-8550, Japan and 5Current address: Research Institute of Genome-based Biofactory, Advanced Industrial Science and Technology (AIST), Hokkaido 062-8517, Japan Email: Satoko Noda - [email protected]; Yuichi Hongoh - [email protected]; Tomoyuki Sato - [email protected]; Moriya Ohkuma* - [email protected] * Corresponding author Published: 9 July 2009 Received: 18 December 2008 Accepted: 9 July 2009 BMC Evolutionary Biology 2009, 9:158 doi:10.1186/1471-2148-9-158 This article is available from: http://www.biomedcentral.com/1471-2148/9/158 © 2009 Noda et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. -
The Hydrogenosomes of Psalteriomonas Lanterna
BMC Evolutionary Biology BioMed Central Research article Open Access The hydrogenosomes of Psalteriomonas lanterna Rob M de Graaf†1, Isabel Duarte†2, Theo A van Alen1, Jan WP Kuiper1,4, Klaas Schotanus1,5, Jörg Rosenberg3, Martijn A Huynen2,6 and Johannes HP Hackstein*1 Address: 1Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, 2Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525GA Nijmegen, The Netherlands, 3Sommerhaus 45, D-50129 Bergheim, Germany, 4CIHR Group in Matrix Dynamics, University of Toronto, 150 College Street, Toronto, Ontario, Canada M5S 3E2, 5Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton NJ 08554-2016, USA and 6Netherlands Bioinformatic Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands Email: Rob M de Graaf - [email protected]; Isabel Duarte - [email protected]; Theo A van Alen - [email protected]; Jan WP Kuiper - [email protected]; Klaas Schotanus - [email protected]; Jörg Rosenberg - [email protected]; Martijn A Huynen - [email protected]; Johannes HP Hackstein* - [email protected] * Corresponding author †Equal contributors Published: 9 December 2009 Received: 20 July 2009 Accepted: 9 December 2009 BMC Evolutionary Biology 2009, 9:287 doi:10.1186/1471-2148-9-287 This article is available from: http://www.biomedcentral.com/1471-2148/9/287 © 2009 de Graaf et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Ophirina Amphinema N. Gen., N. Sp., a New Deeply Branching Discobid
www.nature.com/scientificreports OPEN Ophirina amphinema n. gen., n. sp., a New Deeply Branching Discobid with Phylogenetic Afnity to Received: 11 April 2018 Accepted: 17 October 2018 Jakobids Published: xx xx xxxx Akinori Yabuki1, Yangtsho Gyaltshen2, Aaron A. Heiss 2, Katsunori Fujikura 1 & Eunsoo Kim2 We report a novel nanofagellate, Ophirina amphinema n. gen. n. sp., isolated from a lagoon of the Solomon Islands. The fagellate displays ‘typical excavate’ morphological characteristics, such as the presence of a ventral feeding groove with vanes on the posterior fagellum. The cell is ca. 4 µm in length, bears two fagella, and has a single mitochondrion with fat to discoid cristae. The fagellate exists in two morphotypes: a suspension-feeder, which bears fagella that are about the length of the cell, and a swimmer, which has longer fagella. In a tree based on the analysis of 156 proteins, Ophirina is sister to jakobids, with moderate bootstrap support. Ophirina has some ultrastructural (e.g. B-fbre associated with the posterior basal body) and mtDNA (e.g. rpoA–D) features in common with jakobids. Yet, other morphological features, including the crista morphology and presence of two fagellar vanes, rather connect Ophirina to non-jakobid or non-discobid excavates. Ophirina amphinema has some unique features, such as an unusual segmented core structure within the basal bodies and a rightward-oriented dorsal fan. Thus, Ophirina represents a new deeply-branching member of Discoba, and its mosaic morphological characteristics may illuminate aspects of the ancestral eukaryotic cellular body plan. Te origin of eukaryotes, and their subsequent early diversifcation into major extant lineages, are each funda- mentally important yet challenging topics in evolutionary biological studies. -
The Phylogenetic Position of the Oxymonad Saccinobaculus Based on SSU Rrna
ARTICLE IN PRESS Protist, Vol. ], ]]]—]]], ]] ]]]] http://www.elsevier.de/protis Published online date 10 July 2006 ORIGINAL PAPER The Phylogenetic Position of the Oxymonad Saccinobaculus Based on SSU rRNA Aaron A. Heiss, and Patrick J. Keeling1 Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6 T 1Z4 Submitted April 12, 2006; Accepted May 30, 2006 Monitoring Editor: Michael Melkonian The oxymonads are a group of structurally complex anaerobic flagellates about which we know very little. They are found in association with complex microbial communities in the guts of animals. There are five recognized families of oxymonads; molecular data have been acquired for four of these. Here, we describe the first molecular data from the last remaining group, represented by Saccinobaculus, an organism that is found exclusively in the hindgut of the wood-eating cockroach Cryptocercus.We sequenced small subunit ribosomal RNA (SSU rRNA) from total gut DNA to describe Saccinobaculus SSU rRNA diversity. We also sequenced SSU rRNA from manually isolated cells of the two most abundant and readily identifiable species: the type species Saccinobaculus ambloaxostylus and the taxonomically contentious Saccinobaculus doroaxostylus. We inferred phylogenetic trees including all five known oxymonad subgroups in order to elucidate the internal phylogeny of this poorly studied group, to resolve some outstanding issues of the taxonomy and identification of certain Saccinobaculus species, and to investigate the evolution of character states within it. Our analysis recovered strong support for the existence of the five subgroups of oxymonads, and consistently united the subgroups containing Monocercomonoides and Streblomastix, but was unable to resolve any further higher-order branching patterns.