IN-CORE FUEL MANAGEMENT BENCHMARKS for Phwrs IAEA, VIENNA, 1996 IAEA-TECDOC-887 ISSN 1011-4289 © IAEA, 1996 Printed by the IAEA in Austria June 1996 FOREWORD
Total Page:16
File Type:pdf, Size:1020Kb
IAEA-TECDOC-887 In-core fuel management benchmarks PHWRsfor INTERNATIONAL ATOMIC ENERGY AGENCY June 1996 The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 0 10 P.Ox Bo . A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100,- for e forcheque th a mf th IAEf mo n i o n i r Aeo microfiche service coupons which may be ordered separately from the I MIS Clearinghouse. The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria IN-CORE FUEL MANAGEMENT BENCHMARKS FOR PHWRs IAEA, VIENNA, 1996 IAEA-TECDOC-887 ISSN 1011-4289 © IAEA, 1996 Printed by the IAEA in Austria June 1996 FOREWORD In the framework of its reactor physics activities conducted within its nuclear power programme e IAEth , s lonAha g provide Membes dit r States wit exchang e hforua th r mfo e of technical information on in-core fuel management. This has mainly been achieved through the organizatio specialisf no technicad tan l committee meeting publicatioe th d san f technicano l documents. Under its in-core fuel management activities, the IAEA set up two co-ordinated research programmes(CRPs) on complete in-core fuel management code packages. At a consultant meetin Novemben gi in-corn o r P 198e CR outlin fuee 8e th th l f managemeneo t benchmarks for PHWRs was prepared, three benchmarks were specified and the corresponding parameters were defined. At the first research co-ordination meeting in December 1990, seven more benchmarks were specified. objective Th thif eo s TECDO provido t Cs i e referenc everificatioe caseth r sfo codf no e packages used for reactor physics and fuel management of PHWRs. IAEe Th their gratefuAs i l fo participant ral P dedicateo t lCR e th sn di efforts leading thio t s report. Special thank P.Do t o sg . Krishnan . SrivenkatesaR d an i collectinr nfo e th l gal material and drafting this report. EDITORIAL NOTE preparingIn this publication press,for IAEAthe staff of have pages madethe up from the original manuscripts submittedas authors.the viewsby The expressed necessarilynot do reflect those of the governments of the nominating Member States or of the nominating organizations. Throughout textthe names of Member States retainedare theyas were when textthe was compiled. The use of particular designations of countries or territories does not imply any judgement by publisher,the legalthe IAEA, to status the as of such countries territories,or of their authoritiesand institutions or of the delimitation of their boundaries. The mention of names of specific companies productsor (whether indicatednot or registered)as does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate materialuse or from sources already protected copyrights.by CONTENTS 1. INTRODUCTION ........................................ 9 . BASI2 C COMPUTER CODES USE ANALYSIR DFO S .................2 1 . 2.1. Lattice analysis codes ................................... 12 2.1.1. POWDERPUFS-V(PPV) ............................. 12 2.1.2. WIMSD-4 .....................................2 1 . 2.1.3. CLUB .......................................2 1 . 2.1.4. CLIMAX .....................................3 1 . 2.1.5. RHEA ........................................ 13 2.2. Computer codes for supercell calculations ...................... 13 2.2.1. MULTICELL .................................... 13 2.2.2. SHETAN .....................................4 1 . 2.2.3. BOXER-3 ...................................... 14 2.2.4. PHANTOM ....................................4 1 . 2.2.5. 3D-FAST .....................................5 1 . 2.2.6. CALC ........................................ 15 2.2.7. MONALI .....................................5 1 . 2.2.8. KENO-IV ...................................... 15 2.3. Computer codes use corr dfo e calculations ......................6 1 . 2.3.1. PUMA-C ...................................... 16 2.3.2. OHRFSP ...................................... 16 2.3.3. DIMENTRI ....................................6 1 . 2.3.4. TRIVENI ...................................... 16 2.3.5. CEMESH .....................................6 1 . 2.3.6. ANAMIKA ..................................... 17 2.3.7. CITATION ..................................... 17 2.3.8. CHEBY ......................................7 1 . computee 2.4Th . r code ORIGE decar Nfo y heat calculation ..............7 1 . 2.5. Computer code FEMXE simulatior Nfo f xenono n transient ...........7 1 . DESCRIPTIO3 BENCHMARKF NO RESULTD SAN S .................8 1 . 3.1. Taskl: Lattice cell benchmark problems ........................ 18 3.1.1. Description of the lattice cell benchmark problems ............. 18 3.1.1.1. Basic cell data ............................. 18 3.1.1.2. Cases to be analysed ......................... 18 3.1.1.3. Results to be provided ........................ 22 3.1.2. Compariso maie th nf no result s ........................2 2 . 3.1.2.1. Infinite multiplication factors ...................2 2 . 3.1.2.2. Effective multiplication factors ................... 25 3.1.2.3. U-235 number densities (g/kg initial U) ............. 26 3.1.2.4. Pu-239 number densities (g/kg initia ) ............U l 7 2 . 3.1.2.5. Relative power in the outer ring rods ............... 28 3.1.2.6. Void-induced reactivity ......................8 2 . 3.1.2.7. Fuel temperature induced reactivity ...............0 3 . 3.1.2.8. Moderator purity induced reactivity ...............1 3 . 3.1.2.9. Boron moderator induced reactivity ...............1 3 . 3.1.2.10. Weight of U/bundle induced reactivity .............. 33 3.1.2.11. Enrichment induced reactivity ..................3 3 . 3.1.3. Access to complete information ......................... 35 3.1.4. Conclusions ..................................... 35 3.2. Task 2: Benchmark on supercell calculations ..................... 36 3.2.1. Descriptio supercelf no l benchmark .....................6 3 . 3.2.2. Supercell modelling and computer codes used ................ 36 3.2.2.1. MULTICELL and SHETAN: Argentina ............ 36 3.2.2.2. MULTICELL: Canada ......................9 3 . 3.2.2.3. BOXER-3, PHANTOM, 3D-FAS CALCd Tan : India ...9 .3 3.2.2.4 MULTICELL: Romania ...................... 39 3.2.3. Results and discussions .............................. 39 3.2.3A. Worth of reactivity devices in supercell ............. 39 3.2.3.2. Reaction rate varioun si s region supercelf so l .........0 4 . 3.2.3.3. Incremental cross-section variour sfo s reactivity3 4 device . .. s 3.3 core . TaseTh benchmar: k3 k ..............................3 4 . 3.3.1. Description of the benchmark .......................... 43 3.3.2. Core modelling and computer codes used ................... 54 3.3.2.1. Mathematical model ........................4 5 . 3.3.2.2. Computer codes used .......................6 5 . 3.3.3. Results and comparison .............................. 57 3.3.3.1. General ................................. 57 3.3.3.2. Reference cases with the given burnup distribution ....... 58 3.3.3.3. A time step of 1 day with respect to Case 1 ........... 58 3.3.3.4. Cas wit e1 lefe core htth th hale f voideo f d ..........0 7 . 3.3.3.5. Fresh core case ...........................0 7 . 3.3.3.6. Effect of various reactivity devices ................ 70 3.3.4. Comments and conclusions ............................ 70 3.4. Task 4: Loss of regulation benchmark problem for PHWRs ............ 70 3.4.1. Specification of the problem ........................... 71 3.4.1.1. Reactor model ............................1 7 . 3.4.1.2. Incremental cross-sections .....................2 7 . 3.4.1.3. Kinetic parameters .......................... 73 3.4.1.4. Reactivity transient .........................4 7 . 3.4.1.5. Detector representation ......................4 7 . 3.4.1.6. Required results ...........................4 7 . 3.4.2. Descriptio calculationaf no l models ......................4 7 . 3.4.2.1. Argentina ................................ 75 3.4.2.2. India-ThPD .............................. 76 3.4.2.3. Romania ...............................6 7 . 3.4.3. Result discussiond san s .............................6 7 . 3.4.3.1. Dynamic reactivity .......................... 76 3.4.3.2. Total reactor power ......................... 78 3.4.3.3. Tim trif eo p .............................8 7 . 3.4.3.4. Maximum channel and bundle powers .............. 79 3.4.4. Conclusions ....................................2 8 . 3.5. Tas : Influenck5 f isotopeo voin eo d reactivity ...................2 8 . 3.5.1. Descriptio benchmare th f no k problem ....................3 8 . 3.5.1.1. Basic cell data ............................. 83 3.5.1.2. Cases to be analysed ......................... 83 3.5.1.3. Results to be provided ........................ 84 3.5.2. Computer codes used ............................... 84 3.5.3. Compariso maie th nf no result s ........................4 8 . 3.5.3.1. Multiplication factors .......................5 8 . 3.5.3.2. Void reactivities ...........................7 8 . 3.5.3.3. WIMS reaction rates ........................9 8 . 3.5.3.4. Fuel neutron temperature problem ................1 9 . 3.5.4. Conclusions and recommendations