Structural Analysis of the Cohesin Complex Yan Li

Total Page:16

File Type:pdf, Size:1020Kb

Structural Analysis of the Cohesin Complex Yan Li Structural analysis of the cohesin complex Yan Li To cite this version: Yan Li. Structural analysis of the cohesin complex. Structural Biology [q-bio.BM]. Université Grenoble Alpes, 2019. English. NNT : 2019GREAV012. tel-03187406 HAL Id: tel-03187406 https://tel.archives-ouvertes.fr/tel-03187406 Submitted on 1 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESIS / THÈSE To obtain the title of / Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Discipline / Spécialité : Structure Biology and Nanotechnology Arrêté ministériel : 7 août 2006 Presented by / Présentée par Yan LI Thesis supervisor / Thèse dirigée par Dr. Daniel Panne Thesis prepared at / Thèse préparée au sein du European Molecular Biology Laboratory (EMBL), Grenoble/ In / Dans l'École Doctorale de Chimie et Science du Vivant Structural analysis of the Cohesin Complex / Analyse structurale du complexe de la cohésine Public defense on / Thèse soutenue publiquement le 01/04/2019 Jury members / devant le jury composé de : Dr. Benjamin ROWLAND Reviewer / Rapporteur Dr. Camilla BJORKEGREN Reviewer / Rapporteur Dr. Ramesh PILLAI President / Président Dr. Joanna TIMMINS Examiner / Examinateur 1 Table of Contents 2 Table of Contents ....................................................................................................................... 2 List of Abbreviations ................................................................................................................. 9 List of Figures / Tables ............................................................................................................ 14 Genome cohesion and condensation during the cell cycle ............................................... 15 Role of CTCF in the regulation of paternal and maternal imprinting .............................. 15 Model for CTCF-mediated cohesin binding and for the generation of TADs by convergently oriented CTCF sites .................................................................................... 16 Abstract .................................................................................................................................... 18 Résumé ..................................................................................................................................... 21 Introduction .............................................................................................................................. 24 1.1 The cell cycle ................................................................................................................. 26 1.2 Chromosomes are organised by SMC-kleisin enzymes ................................................. 27 Figure 1.1 Genome cohesion and condensation during the cell cycle. ............................ 28 1.3 Organisation of the core cohesin complex ..................................................................... 29 Figure 1.2 Structure of the cohesin core subunits and domain boundaries. ..................... 32 Figure 1.3 Structure of the human SA2-Scc1 complex and domain boundaries. ............. 34 1.4 Overview of the cohesin cycle ....................................................................................... 34 Figure 1.4 Cartoon illustration of the ring-shape cohesin and its accessory factors. ....... 36 Table 1.1 Cohesin and its related factors in different species .......................................... 37 1.5 Cohesin ATPase dimerization ........................................................................................ 37 Figure 1.5 Cartoon of cohesin functional cycle and regulators. ....................................... 40 1.6 The cohesin loading complex ......................................................................................... 40 1.7 Cleavage-independent cohesin unloading ...................................................................... 41 Figure 1.6 Structure of the yeast Pds5-Scc1 complex and domain boundaries................ 42 Figure 1.7 Structure of the human Wapl-C domain and domain boundaries. .................. 43 1.8 SMC3 acetylation (establishment of cohesion) .............................................................. 43 Figure 1.8 Structure of human Esco1 and domain boundaries. ........................................ 44 3 1.9 Cohesin stabilization ...................................................................................................... 45 1.10 Cohesin release at chromosome arms .......................................................................... 45 1.11 Cohesion protection at the centromere ......................................................................... 45 Figure 1.9 Structure of the Sgo1-PP2A complex and domain boundaries. ...................... 47 1.12 Cohesin cleavage at the centromere ............................................................................. 48 Figure 1.10 Structure of the yeast Separase-Securin complex and domain boundaries. .. 49 1.13 Cohesin beyond cohesion ............................................................................................. 49 1.14 CTCF ............................................................................................................................ 50 Figure 1.11 Model of CTCF zinc fingers 2-9 in complex with DNA. ............................. 51 Figure 1.12 Role of CTCF in the regulation of paternal and maternal imprinting. .......... 52 Table 1.2 CTCF interaction partners ................................................................................ 53 1.15 Cohesin and CTCF ....................................................................................................... 54 1.16 Loop extrusion model and different levels of the mammalian genome folding .......... 55 Figure 1.13 Levels of Genome folding............................................................................. 57 Scientific aims .......................................................................................................................... 59 Materials and Methods ............................................................................................................. 61 Matériels et méthodes .............................................................................................................. 62 2.1 Construct Cloning .......................................................................................................... 64 2.2 Protein expression .......................................................................................................... 64 2.2.1 Protein expression ................................................................................................... 64 2.2.2 Selenomethionine-labelled protein expression ........................................................ 65 2.3 Protein purification ......................................................................................................... 65 2.3.1 Purification with His or His-GST tag ...................................................................... 65 2.3.2 Purification with GST tag ........................................................................................ 66 2.3.3 Ion-exchange purification ........................................................................................ 66 2.3.4 Size exclusion .......................................................................................................... 66 2.4 Crystallisation................................................................................................................. 67 4 Table 2.1 Scc3T-Scc1K crystallisation screen conditions. .............................................. 67 2.4.1 Crystals of ctSmc1hd-CScc1 complex .................................................................... 67 2.4.2 Crystals of the Scc3-Scc1-DNA complex ............................................................... 68 2.4.3 Crystal seeding ........................................................................................................ 68 2.4.4 Crystals of the SA2T-Scc1H complex .................................................................... 68 2.5 Structure determination .................................................................................................. 69 2.5.1 Structure of the ctSmc1-CScc1 complex ................................................................. 69 2.5.2 Structure of the Scc3-Scc1-DNA complex .............................................................. 69 2.5.3 Structure of the SA2-Scc1-CTCF complex ............................................................. 70 2.6 Bioinformatic methods ................................................................................................... 71 2.6.1 Sequence alignment ................................................................................................. 71 2.7 Protein biochemistry ...................................................................................................... 71 2.7.1 In vitro pull down ...................................................................................................
Recommended publications
  • Global Characteristics of Csig-Associated Gene Expression Changes in Human Hek293 Cells and the Implications for Csig Regulating Cell Proliferation and Senescence
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 15 May 2015 doi: 10.3389/fendo.2015.00069 Global characteristics of CSIG-associated gene expression changes in human HEK293 cells and the implications for CSIG regulating cell proliferation and senescence Liwei Ma, Wenting Zhao, Feng Zhu, Fuwen Yuan, Nan Xie, Tingting Li, Pingzhang Wang and Tanjun Tong* Research Center on Aging. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Edited by: Beijing, China Wen Zhou, Columbia University, USA Reviewed by: Cellular senescence-inhibited gene (CSIG), also named as ribosomal_L1 domain-contain- Jian Zhong, ing 1 (RSL1D1), is implicated in various processes including cell cycle regulation, cellular Mayo Clinic, USA Xiaoxu Zheng, senescence, apoptosis, and tumor metastasis. However, little is known about the regulatory University of Maryland Baltimore, USA mechanism underlying its functions. To screen important targets and signaling pathways Wensi Tao, University of Miami, USA modulated by CSIG, we compared the gene expression profiles in CSIG-silencing and control *Correspondence: HEK293 cells using Affymetrix microarray Human Genome U133 Plus 2.0 GeneChips. A Tanjun Tong, total of 590 genes displayed statistically significant expression changes, with 279 genes Department of Biochemistry and up-regulated and 311 down-regulated, respectively. These genes are involved in a broad array Molecular Biology, Research Center on Aging, Peking University Health of biological processes, mainly in transcriptional regulation, cell cycle, signal transduction, Science Center, 38 Xueyuan Road, oxidation reduction, development, and cell adhesion.
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Methylome and Transcriptome Pro Les in Three Yak Tissues Revealed That
    Methylome and transcriptome proles in three yak tissues revealed that DNA methylation and transcription factor ZGPAT co-regulate milk production Jinwei Xin State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Zhixin Chai Southwest Minzu University Chengfu Zhang State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Qiang Zhang State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Yong Zhu State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Hanwen Cao State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Yangji Cidan State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Xiaoying Chen State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Hui Jiang State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Jincheng Zhong Southwest minzu university Qiumei Ji ( [email protected] ) State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement Research article Keywords: milk production, DNA methylation, transcription factor, epigenetic regulation Posted Date: September 11th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-20775/v3 Page 1/25 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 20th, 2020. See the published version at https://doi.org/10.1186/s12864-020-07151-3. Page 2/25 Abstract Background Domestic yaks play an indispensable role in sustaining the livelihood of Tibetans and other ethnic groups on the Qinghai-Tibetan Plateau (QTP), by providing milk and meat.
    [Show full text]
  • Co-Localization of DNA I-Motif-Forming Sequences and 5-Hydroxymethyl-Cytosines in Human Embryonic Stem Cells
    University of Mississippi eGrove Faculty and Student Publications Chemistry and Biochemistry 10-8-2019 Co-Localization of DNA i-Motif-Forming Sequences and 5-Hydroxymethyl-cytosines in Human Embryonic Stem Cells Yogini P. Bhavsar-Jog University of Mississippi Eric van Dornshuld Mississippi State University Tracy A. Brooks Binghamton University State University of New York Gregory S. Tschumper University of Mississippi Randy M. Wadkins University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/chem_facpubs Recommended Citation Bhavsar-Jog, Y. P., Van Dornshuld, E., Brooks, T. A., Tschumper, G. S., & Wadkins, R. M. (2019). Co- Localization of DNA i-Motif-Forming Sequences and 5-Hydroxymethyl-cytosines in Human Embryonic Stem Cells. Molecules, 24(19), 3619. https://doi.org/10.3390/molecules24193619 This Article is brought to you for free and open access by the Chemistry and Biochemistry at eGrove. It has been accepted for inclusion in Faculty and Student Publications by an authorized administrator of eGrove. For more information, please contact [email protected]. molecules Article Co-Localization of DNA i-Motif-Forming Sequences and 5-Hydroxymethyl-cytosines in Human Embryonic Stem Cells Yogini P. Bhavsar-Jog 1, Eric Van Dornshuld 2, Tracy A. Brooks 3, Gregory S. Tschumper 1 and Randy M. Wadkins 1,* 1 Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA; [email protected] (Y.P.B.-J.); [email protected] (G.S.T.) 2 Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA; [email protected] 3 Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-662-915-7732; Fax: +1-662-915-7300 Received: 22 August 2019; Accepted: 4 October 2019; Published: 8 October 2019 Abstract: G-quadruplexes (G4s) and i-motifs (iMs) are tetraplex DNA structures.
    [Show full text]
  • The Emerging Role of Cohesin in the DNA Damage Response
    G C A T T A C G G C A T genes Review The Emerging Role of Cohesin in the DNA Damage Response Ireneusz Litwin * , Ewa Pilarczyk and Robert Wysocki Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland; [email protected] (E.P.); [email protected] (R.W.) * Correspondence: [email protected]; Tel.: +48-71-375-4126 Received: 29 October 2018; Accepted: 21 November 2018; Published: 28 November 2018 Abstract: Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR. Keywords: cohesin; cohesin loader; DNA double-strand breaks; replication stress; DNA damage tolerance 1. Introduction Genomes of all living organisms are continuously challenged by endogenous and exogenous insults that threaten genome stability. It has been estimated that human cells suffer more than 70,000 DNA lesions per day, most of which are single-strand DNA breaks (SSBs) [1].
    [Show full text]
  • RESEARCH ARTICLE Regulatory Network of Micrornas, Target
    DOI:http://dx.doi.org/10.7314/APJCP.2015.16.2.475 Regulatory Network of MicroRNAs, Target Genes, Transcription Factors and Host Genes in Endometrial Cancer RESEARCH ARTICLE Regulatory Network of MicroRNAs, Target Genes, Transcription Factors and Host Genes in Endometrial Cancer Lu-Chen Xue1,3, Zhi-Wen Xu2,3*, Kun-Hao Wang2,3, Ning Wang2,3, Xiao-Xu Zhang1, Shang Wang2,3 Abstract Genes and microRNAs (miRNAs) have important roles in human oncology. However, most of the biological factors are reported in disperse form which makes it hard to discover the pathology. In this study, genes and miRNAs involved in human endometrial cancer(EC) were collected and formed into regulatory networks following their interactive relations, including miRNAs targeting genes, transcription factors (TFs) regulating miRNAs and miRNAs included in their host genes. Networks are constructed hierarchically at three levels: differentially expressed, related and global. Among the three, the differentially expressed network is the most important and fundamental network that contains the key genes and miRNAs in EC. The target genes, TFs and miRNAs are differentially expressed in EC so that any mutation in them may impact on EC development. Some key pathways in networks were highlighted to analyze how they interactively influence other factors and carcinogenesis. Upstream and downstream pathways of the differentially expressed genes and miRNAs were compared and analyzed. The purpose of this study was to partially reveal the deep regulatory mechanisms in EC using a new method that combines comprehensive genes and miRNAs together with their relationships. It may contribute to cancer prevention and gene therapy of EC.
    [Show full text]
  • Original Article Rnai Screening Identifies KAT8 As a Key Molecule Important for Cancer Cell Survival
    Int J Clin Exp Pathol 2013;6(5):870-877 www.ijcep.com /ISSN:1936-2625/IJCEP1302018 Original Article RNAi screening identifies KAT8 as a key molecule important for cancer cell survival Shuang Zhang1,2, Xianhong Liu2, Yong Zhang1, Ying Cheng2*, Yang Li1* 1Department of Pathophysiology, Norman Bathune College of Medical Sciences, Jilin University, Changchun, China; 2The first Department of Internal Medicine, Jilin Province Cancer Hospital, Changchun, China. *Equal contri- bution. Received February 16, 2013; Accepted April 1, 2013; Epub April 15, 2013; Published April 30, 2013 Abstract: Histone acetyltransferases (HATs) regulate many critical cancer events, including transcriptional regula- tion of oncogene and tumor suppressors, chromatin structure and DNA damage response. Abnormal expression of HATs has been reported in a number of cancers. However, cellular functions of HATs in cancer and molecular mechanisms remain largely unclear. Here, we performed a lentiviral vector-mediated RNAi screen to systematically address the function of HATs in lung cancer cell growth and viability. We identified 8 HATs genes involved in A549 cell viability. Further experiments showed that KAT8 regulates G2/M cell cycle arrest through AKT/ERK-cyclin D1 signaling. Moreover, KAT8 inhibition led to p53 induction and subsequently reduced bcl-2 expression. Our results demonstrate an important role of KAT8 in cancer and suggest that KAT8 could be a novel cancer therapeutic target. Keywords: HATs, RNAi screen, KAT8, cyclin D1, p53, cell survival Introduction well as DNA replication. Moreover, HATs gene expression profiles have been reported to be Histone acetylation, one of the most extensive- associated with pathological and clinical out- ly characterized epigenetic modifications, is comes in breast cancer [6].
    [Show full text]
  • Supplementary Table 3 Gene Microarray Analysis: PRL+E2 Vs
    Supplementary Table 3 Gene microarray analysis: PRL+E2 vs. control ID1 Field1 ID Symbol Name M Fold P Value 69 15562 206115_at EGR3 early growth response 3 2,36 5,13 4,51E-06 56 41486 232231_at RUNX2 runt-related transcription factor 2 2,01 4,02 6,78E-07 41 36660 227404_s_at EGR1 early growth response 1 1,99 3,97 2,20E-04 396 54249 36711_at MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F 1,92 3,79 7,54E-04 (avian) 42 13670 204222_s_at GLIPR1 GLI pathogenesis-related 1 (glioma) 1,91 3,76 2,20E-04 65 11080 201631_s_at IER3 immediate early response 3 1,81 3,50 3,50E-06 101 36952 227697_at SOCS3 suppressor of cytokine signaling 3 1,76 3,38 4,71E-05 16 15514 206067_s_at WT1 Wilms tumor 1 1,74 3,34 1,87E-04 171 47873 238623_at NA NA 1,72 3,30 1,10E-04 600 14687 205239_at AREG amphiregulin (schwannoma-derived growth factor) 1,71 3,26 1,51E-03 256 36997 227742_at CLIC6 chloride intracellular channel 6 1,69 3,23 3,52E-04 14 15038 205590_at RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 1,68 3,20 1,87E-04 55 33237 223961_s_at CISH cytokine inducible SH2-containing protein 1,67 3,19 6,49E-07 78 32152 222872_x_at OBFC2A oligonucleotide/oligosaccharide-binding fold containing 2A 1,66 3,15 1,23E-05 1969 32201 222921_s_at HEY2 hairy/enhancer-of-split related with YRPW motif 2 1,64 3,12 1,78E-02 122 13463 204015_s_at DUSP4 dual specificity phosphatase 4 1,61 3,06 5,97E-05 173 36466 227210_at NA NA 1,60 3,04 1,10E-04 117 40525 231270_at CA13 carbonic anhydrase XIII 1,59 3,02 5,62E-05 81 42339 233085_s_at OBFC2A oligonucleotide/oligosaccharide-binding
    [Show full text]
  • Islet-1 Is Essential for Pancreatic Β-Cell Function Benjamin N. Ediger
    Page 1 of 68 Diabetes June 20, 2014 Diabetes Islet-1 is essential for pancreatic β-cell function Benjamin N. Ediger1,5, Aiping Du1, Jingxuan Liu1, Chad S. Hunter3, Erik R. Walp1, Jonathan Schug4, Klaus H. Kaestner4, Roland Stein3, Doris A. Stoffers5* and Catherine Lee May*,1,2 1Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, 2Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 3Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA 4Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 5Department of Medicine and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA * These authors contributed equally. Running Title: Isl-1 regulates β-cell function Address correspondence to: Catherine Lee May, Ph.D. 3615 Civic Center Blvd, Room 516E Philadelphia, PA 19104 Phone: 267-426-0116 E-mail: [email protected] And Doris A. Stoffers, M.D., Ph.D. 3400 Civic Center Boulevard, 12-124 SCTR Philadelphia, PA 19104 Phone: (215) 573-5413 E-mail: [email protected] Fax: 215-590-3709 Word Count: 4065 Number of Tables: 6 (all are supplemental) Number of Figures: 9 (3 are supplemental) Diabetes Publish Ahead of Print, published online July 15, 2014 Diabetes Page 2 of 68 Abstract Isl-1 is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear.
    [Show full text]