2.5 Win-History [Read-Only]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Windows XP History and Versions
Lecture 23: Windows XP History and Versions n Mid-80ies Microsoft and IBM cooperated to develop OS/2 n Windows XP is produced by Microsoft Co. n 1988 - Microsoft started to develop its own new technology (NT) OS n XP is multi-user, multi-process, preemptive multitasking OS, 30M lines of source code capable of running OS/2, Windows and Unix apps. Hired Dave Cutler - architect of DEC VAX/VMS to head the design n It is developed to support multiple platforms and targeted towards enterprise workstations and server market as well as n NT v. 3.1 first released commercially July 1993 desktops n NT v 4.0 adopted Windows 95 user interface, graphics code moved into kernel to improve performance n In today’s lecture n 2000 – improved networking and laptop support, support for plug-and- u XP’s predecessors, the history of XP design, XP versions play devices, support for more processors (up to 8) and memory, u design principles becomes true multi-user through terminal server u components n XP (released Oct 2001) – update for 2000 replacement for 95/98 F hardware abstraction layer u simplifies user interface, improved reliability, performance F executive improvements, partial 64-bit support F environmental subsystems n versions F file system u desktop: XP personal – 95/98 replacement, professional – advanced features like POSIX support, some network features 1 u server: .NET – support for web/print service, clusters, large memory2 and multiple processors Design goals Components n XP is microkernel-based, modular n security – NT was C-2 certified (US -
Unifying the User and Kernel Environments
Unifying the User and Kernel Environments Richard P. Draves Scott M. Cutshall March 12, 1997 Technical Report MSR-TR-97-10 Microsoft Research Microsoft Corporation One Microsoft Way Redmond, WA 98052 Unifying the User and Kernel Environments Richard P. Draves and Scott M. Cutshall Microsoft Research One Microsoft Way Redmond, WA 98052 http://www.research.microsoft.com Abstract Vendors of commercial operating systems today invest resources in two very different environments—one for user- level (application or server) programming and one for kernel-level (device driver or subsystem) programming. The kernel environment is typically more restrictive, with completely different interfaces and programming conventions. Based on our experience developing and deploying an operating system for an interactive TV system, we believe that it is desirable to unify the user and kernel environments. We structured our operating system to provide common programming and run-time environments for user-level code and kernel-level code. For example, modules loaded into the kernel did not have any restrictions on their use of shared libraries or stack space. We found that unifying the user and kernel environments with common interfaces and run-time requirements, common documentation, and a common debugger produced significant software-engineering benefits. In addition, we could transparently collocate trusted server code in the kernel to reduce memory usage and improve performance. 1. Introduction We advocate structuring operating systems to unify the user and kernel environments. The operating system should present a single environment, with common interfaces or APIs, common run-time characteristics for scheduling, paging, stack usage, and shared libraries, common debugger and development tools, etc. -
Roadmap for Section 1.2
Unit OS1: Overview of Operating Systems 1.2. The Evolution of Operating Systems Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze Roadmap for Section 1.2. History of Operating Systems Tasks of an Operating System OS as extension of the hardware Main concepts: processes, files, system calls Operating system structuring 3 1 Operating Systems Concepts System software manages resources OS hides complexity of underlying hardware Layered architectures Banking Airline Web browser Application programs system reservation Command Compilers Editors interpreter System programs Operating system Machine language Microprogramming Hardware Physical devices 4 History of operating systems Batch processing The elements of the basic IBM 1401 system are the 1401 Processing Unit, 1402 Card Read-Punch, and 1403 Printer. Punching cards Multiprocessing programming Job 3 Job 2 Memory Job 1 partitions OS 5 2 The Evolution of Operating System Functionality Batch Job Processing Linkage of library routines to programs Management of files, I/O devices, secondary storage Multiprogramming Resource managment and sharing for multiple programs Quasi-simultaneous program execution Single user Multiuser/Timesharing Systems Management of multiple simultaneous users interconnected via terminals Fair resource management: CPU scheduling, spooling, mutual exclusion Real-Time Systems (process control systems) Management of time-critical processes High requirements with respect to reliability and availability 6 Tasks of an Operating -
Windows Internals, Sixth Edition, Part 2
spine = 1.2” Part 2 About the Authors Mark Russinovich is a Technical Fellow in ® the Windows Azure™ group at Microsoft. Windows Internals He is coauthor of Windows Sysinternals SIXTH EDITION Administrator’s Reference, co-creator of the Sysinternals tools available from Microsoft Windows ® The definitive guide—fully updated for Windows 7 TechNet, and coauthor of the Windows Internals and Windows Server 2008 R2 book series. Delve inside Windows architecture and internals—and see how core David A. Solomon is coauthor of the Windows Internals book series and has taught components work behind the scenes. Led by a team of internationally his Windows internals class to thousands of renowned internals experts, this classic guide has been fully updated Windows developers and IT professionals worldwide, SIXTH for Windows 7 and Windows Server® 2008 R2—and now presents its including Microsoft staff. He is a regular speaker 6EDITION coverage in two volumes. at Microsoft conferences, including TechNet As always, you get critical, insider perspectives on how Windows and PDC. operates. And through hands-on experiments, you’ll experience its Alex Ionescu is a chief software architect and internal behavior firsthand—knowledge you can apply to improve consultant expert in low-level system software, application design, debugging, system performance, and support. kernel development, security training, and Internals reverse engineering. He teaches Windows internals courses with David Solomon, and is ® In Part 2, you will: active in the security research community. -
VAX VMS at 20
1977–1997... and beyond Nothing Stops It! Of all the winning attributes of the OpenVMS operating system, perhaps its key success factor is its evolutionary spirit. Some would say OpenVMS was revolutionary. But I would prefer to call it evolutionary because its transition has been peaceful and constructive. Over a 20-year period, OpenVMS has experienced evolution in five arenas. First, it evolved from a system running on some 20 printed circuit boards to a single chip. Second, it evolved from being proprietary to open. Third, it evolved from running on CISC-based VAX to RISC-based Alpha systems. Fourth, VMS evolved from being primarily a technical oper- ating system, to a commercial operat- ing system, to a high availability mission-critical commercial operating system. And fifth, VMS evolved from time-sharing to a workstation environment, to a client/server computing style environment. The hardware has experienced a similar evolution. Just as the 16-bit PDP systems laid the groundwork for the VAX platform, VAX laid the groundwork for Alpha—the industry’s leading 64-bit systems. While the platforms have grown and changed, the success continues. Today, OpenVMS is the most flexible and adaptable operating system on the planet. What start- ed out as the concept of ‘Starlet’ in 1975 is moving into ‘Galaxy’ for the 21st century. And like the universe, there is no end in sight. —Jesse Lipcon Vice President of UNIX and OpenVMS Systems Business Unit TABLE OF CONTENTS CHAPTER I Changing the Face of Computing 4 CHAPTER II Setting the Stage 6 CHAPTER -
MICROSOFT WINDOWS Early Versions Main Articles: Windows 1.0
MICROSOFT WINDOWS Early versions Main articles: Windows 1.0, Windows 2.0, and Windows 2.1x Windows 1.0, the first version, released in 1985 The history of Windows dates back to September 1981, when Chase Bishop, a computer scientist, designed the first model of an electronic device and project "Interface Manager" was started. It was announced in November 1983 (after the Apple Lisa, but before the Macintosh) under the name "Windows", but Windows 1.0 was not released until November 1985.[5] Windows 1.0 achieved little popularity and was to compete with Apple's own operating system. Windows 1.0 is not a complete operating system; rather, it extends MS-DOS. The shell of Windows 1.0 is a program known as the MS- DOS Executive. Components included Calculator, Calendar, Cardfile, Clipboard viewer, Clock, Control Panel, Notepad, Paint, Reversi, Terminal and Write. Windows 1.0 does not allow overlapping windows. Instead all windows are tiled. Only modal dialog boxes may appear over other windows. Windows 2.0 was released in December 1987 and was more popular than its predecessor. It features several improvements to the user interface and memory management.[citation needed] Windows 2.03 changed the OS from tiled windows to overlapping windows. The result of this change led to Apple Computer filing a suit against Microsoft alleging infringement on Apple's copyrights.[6][7] Windows 2.0 also introduced more sophisticated keyboard shortcuts and could make use of expanded memory. Windows 2.1 was released in two different versions: Windows/286 and Windows/386. Windows/386 uses the virtual 8086 mode of Intel 80386 to multitask several DOS programs and the paged memory model to emulate expanded memory using available extended memory. -
MARK RUSSINOVICH Chief Technology Officer Microsoft Azure
MARK RUSSINOVICH is the CTO of Microsoft Azure. He was a co-founder of software producers Winternals before it was acquired by Microsoft in 2006. Russinovich earned his B.S. in computer engineering from Carnegie Mellon Uni- versity in 1989 and M.S. in computer cngineering from Rensselaer Polytechnic Institute. He later returned to CMU, and received a Ph.D. in computer engineer-ing on Application-transparent fault manage- ment in 1994, under the supervision of Zary Segall. From 1994 through early 1996 Russinovich was a research associate with the University of Oregon's computer science department and then joined NuMega Technologies as a developer, working on performance monitoring software for Window NT. In 1996, he and Bryce Cogswell cofounded Winternals Software, where Russinovich served as Chief Software Architect, and the web site sysinternals.com, where he wrote and published dozens of popular Windows administration and diagnostic utilities in- cludeing Autoruns, Filemon, Regmon, Process Explorer, TCPView, and RootkitRevealer among many others. In 1997 he worked as a consulting associate at OSR Open Systems Resources, Inc. and then joined IBM's Thomas J. Watson Research Center as a research staff member, re- searching operating system support for Web server acceleration and serving as an oper- ating systems expert. Russinovich joined Microsoft in 2006, when it acquired Most existing blockchain protocols fail to meet several key enterprise requirements, including Winternals Software. con-fidentiality, acceptable transaction throughput and latency, computational efficiency (e.g. In his role as an author, he is a regular energy costs for proof-of-work consensus), and effective governance. -
Sysinternals Learning Resources
THE PERSONAL COMPUTER SPECIALIST Sysinternals Learning Resources Help and Support Sysinternals Learning Resources Help Desk Books Windows Internals Book Homepage The official updates and errata page for the definitive book on Windows internals, by Mark Russinovich and David Solomon. Windows Sysinternals Administrator's Reference The official guide to the Sysinternals utilities by Mark Russinovich and Aaron Margosis, including descriptions of all the tools, their features, how to use them for troubleshooting, and example real-world cases of their use. Articles Inside the Windows Vista Kernel: Part 1 Inside the Windows Vista Kernel: Part 2 Inside the Windows Vista Kernel: Part 3 Inside Windows Vista User Account Control Inside Windows Server 2008 Kernel Changes Mark's Blog Articles Hunting Down and Killing Ransomware Scareware, a type of malware that mimics antimalware software, has been around for a decade and shows no sign of going away. The goal of scareware is to fool a user into thinking that their computer is heavily infected with malware and the most convenient...(read more) Monday, Jan 7 The Case of the Unexplained FTP Connections A key part of any cybersecurity plan is “continuous monitoring”, or enabling auditing and monitoring throughout a network environment and configuring automated analysis of the resulting logs to identify anomalous behaviors that merit investigation. This...(read more) Tuesday, Oct 30 Windows Azure Host Updates: Why, When, and How Windows Azure’s compute platform, which includes Web Roles, Worker Roles, and Virtual Machines, is based on machine virtualization. It’s the deep access to the underlying operating system that makes Windows Azure’s Platform-as-a-Service (PaaS) uniquely...(read more) Wednesday, Aug 22 The Case of the Veeerrry Slow Logons This case is my favorite kind of case, one where I use my own tools to solve a This case is my favorite kind of case, one where I use my own tools to solve a problem affecting me personally. -
Thesis May Never Have Been Completed
UvA-DARE (Digital Academic Repository) Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure Goodwin, D.T. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): Goodwin, D. T. (2016). Digital Equipment Corporation (DEC): A case study of indecision, innovation and company failure. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:26 Sep 2021 Digital Equipment Corporation (DEC) (DEC) Corporation Digital Equipment David Thomas David Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure David Thomas Goodwin 1 Digital Equipment Corporation (DEC): A Case Study of Indecision, Innovation and Company Failure ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. -
ELEC 377 – Operating Systems Week 11 – Class 3 Last Class
ELEC 377 – Operating Systems Week 11 – Class 3 Last Class • Security ◊ Passwords and Program Threats ELEC 377 – Operating Systems Today • Security ◊ Sony Rootkit and Copy Protection - try and relate to the concepts we have covered during the course. ELEC 377 – Operating Systems Systems What is a Root Kit? • Root Kit is software to hide the evidence of system modification • Originally used by intruders in Unix systems to hide changes to systems ◊ add a back door process such as a chat daemon or ftp server running on non-standard port ◊ changes to ps, netstat, w, passwd and other system commands to hide the back door • Now applies to any operating system ◊ Changes are now usually made to kernel and system libraries rather than to system commands – Although some combine both system libraries and system commands ELEC 377 – Operating Systems What is a Root Kit? • Not the initial vulnerability ◊ initial vulnerability is used to gain access, root kit is used to maintain access to compromised system ◊ Sometimes the intruder patched vulnerability to keep ‘exclusive’ access to the system ◊ root kit may attempt to maintain ownership of the system - one part of root kit notices when another part has been removed and reinstalls that component • Often used by viruses and worms to disguise activities. ◊ Thus rootkit detection is a concern for Security Vendors. ELEC 377 – Operating Systems Root Kit Research • Commercial and Personal Systems ◊ when you get malware, you want to remove it ◊ limit its damage • Sensitive Systems. ◊ You don’t want to eradicate the malware ◊ You need to observe it -- who is it reporting to? -- what kind of information is it interested in -- limit access to sensitive information ◊ Problem: it is checking to see if anyone is watching -- may self destruct/or may attempt to destroy system. -
Mitigating Pass-The-Hash and Other Credential Theft, Version 2
Mitigating Pass-the-Hash and Other Credential Theft, version 2 Trustworthy Computing Trustworthy Computing 1 Legal disclaimer This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet website references, may change without notice. You bear the risk of using it. Microsoft, Windows, Active Directory, Forefront, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Copyright © 2014 Microsoft Corporation. All rights reserved. The names of actual companies and products mentioned herein may be the trademarks of their respective owners. 2 Mitigating Pass-the-Hash and Other Credential Theft, version 2 Acknowledgments Writers Patrick Jungles Mark Simos Ben Godard Joe Bialek Matthew Bucher Cal Waits William Peteroy Thomas Garnier Contributors Aaron Margosis Eric Leonard Michael Howard Aaron Tebrink Eric Mitchell Michael Poole Adam Stasiniewicz Eugene Siu Michael Scovetta Al Tieman Georgeo Pulikkathara Michiko Short Andrea Piazza Glenn Pittaway Nate Morin Andrew Idell Graham Calladine Nathan Ide Arden White Hasnat Naveed Nicholas DiCola Bill Talbot James Noyce Patrick Arnold Chris Betz Joe Corey Paul Cullimore Chris Hale John Rodriguez Roger Grimes Chris Jeuell John Wall Ted Daley Cristin Goodwin Joshua Talbot Tom Stolk Cynthia Sandvick Keith -
Malware Removal Guide
MALWARE REMOVAL GUIDE Malware Detection and Removal on Windows There are a number of free tools that can help with this. None of them are perfect, and none of them will detect 100% of all known malware- so the important thing is to use all of them in the hope that the overlap of their detection is enough to remove the problem. However, it is still very possible that no tool will be able to detect and/or clean the malware. In this instance it is possible that an “expert” may be able to manually work out where the malware is hiding and how to remove it – however, the easiest solution is likely to be a rebuild. Always Suggest Password Changing Please note that it's worth suggesting password changing to the users regardless of what is found. If anything that might be a major security risk is found - in particular keystroke loggers, rootkits, remote admin kits, etc - the user, and any other user of the machine, must change their passwords for all services that they may have used on that system, and local passwords for all users – including Administrator – on the system itself. If they do online banking or credit/debit card purchases they should also inform their banks, and follow the exact procedures given by them – this is vitally important. When to suspect malware Definitely suspect malware if the user reports unexpected popups, browsers going to sites other than the ones they were actually trying to go to, and similar problems. Also suspect it if you spot software associated with peer-to-peer filesharing; traditionally such software tends to have malware included.