S41467 019 10192 2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

S41467 019 10192 2.Pdf ARTICLE https://doi.org/10.1038/s41467-019-10192-2 OPEN The viral protein corona directs viral pathogenesis and amyloid aggregation Kariem Ezzat 1,2, Maria Pernemalm 3, Sandra Pålsson1, Thomas C. Roberts4,5, Peter Järver1, Aleksandra Dondalska1, Burcu Bestas2,18, Michal J. Sobkowiak6, Bettina Levänen7, Magnus Sköld8,9, Elizabeth A. Thompson10, Osama Saher2,11, Otto K. Kari12, Tatu Lajunen 12, Eva Sverremark Ekström 1, Caroline Nilsson13, Yevheniia Ishchenko14, Tarja Malm14, Matthew J.A. Wood4, Ultan F. Power 15, Sergej Masich16, Anders Lindén7,9, Johan K. Sandberg 6, Janne Lehtiö 3, Anna-Lena Spetz 1,19 & Samir EL Andaloussi2,4,17,19 1234567890():,; Artificial nanoparticles accumulate a protein corona layer in biological fluids, which sig- nificantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid β-peptide (Aβ42), a major constituent of amyloid plaques in Alzheimer’s disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral–host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies. 1 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden. 2 Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm 14152, Sweden. 3 Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institutet, Stockholm 17176, Sweden. 4 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13PT, UK. 5 Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA. 6 Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm 14186, Sweden. 7 Unit for Lung and Airway disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17165, Sweden. 8 Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden. 9 Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 17176, Sweden. 10 Immunology and Allergy Unit, and Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm 17176, Sweden. 11 Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo 11562, Egypt. 12 Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki 00014, Finland. 13 Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet and Sachs’ Children and Youth Hospital, Stockholm 11883, Sweden. 14 A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland. 15 Centre of Experimental Medicine, Queens’ University Belfast, Belfast BT97BL, UK. 16 Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden. 17 Evox Therapeutics Limited, Oxford Science Park, Oxford OX44HG, UK. 18Present address: Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden. 19These authors contributed equally: Anna-Lena Spetz, Samir EL Andaloussi. Correspondence and requests for materials should be addressed to K.E. (email: [email protected]) or to A.-L.S. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:2331 | https://doi.org/10.1038/s41467-019-10192-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10192-2 he term “protein corona” refers to the layer of proteins that latency19. Latent HSV-1 is occasionally reactivated causing adhere to the surfaces of nanostructures when they peripheral pathology and under certain circumstances it can T fl encounter biological uids. Nanoparticles adsorb biomo- migrate into the central nervous system causing herpes simplex lecules in biological fluids due to the high free energy of their encephalitis, the most common cause of sporadic fatal viral surfaces1. The importance of the corona layer stems from the fact encephalitis19. In the context of the current work, we focused that it constitutes the actual surface of interaction with biological on the presumptive role of HSV-1 in the pathology of AD. A membranes or “what the cell sees” in the in-vivo context2. number of risk factors have been associated with AD, including Hundreds of proteins have been identified to confer a distinct the E4 allele of the apolipoprotein E (Apo-E), diabetes, vascular biological identity of nanoparticles in different microenviron- pathology, neuroinflammation, and infections20. Several recent ments depending on their size, chemistry, and surface modifica- studies have supported the theory of a significant role of HSV-1 tion (recently reviewed in ref. 3). These factors were found to be in the disease21. HSV-1 DNA was found to be localized within critical determinants of the biodistribution and pharmacody- amyloid plaques in AD patients and HSV-1 infection has been namics of nanoparticles. On the other hand, the ability of the shown to promote neurotoxic Aβ accumulationinhuman surfaces of nanoparticles to partially denature certain corona neural cells and to the formation of Aβ deposits in the brains of proteins exposing “cryptic epitopes” highlights the role of the infected mice22,23. Moreover, the presence of anti-HSV IgM protein corona in the toxicology of nanoparticles4–6. The for- antibodies, which indicate HSV reactivation, is correlated with mation of a protein corona is particularly important in the con- a high risk of AD and antiherpetic treatment is correlated with text of nanoparticle interaction with amyloidogenic peptides such a reduced risk of developing dementia24,25. Despite these cor- β β as amyloid- (A 42) and islet amyloid polypeptide (IAPP), which relations, the mechanism by which viruses induce amyloid are associated with Alzheimer’s disease (AD) and diabetes mel- aggregation, the major pathological hallmark of AD, is litus type 2 disease, respectively. Nanoparticles have been shown not known. to catalyze amyloid formation via binding of amyloidogenic In the present study, we demonstrated that upon encountering peptides in their corona, thereby increasing local peptide con- different biological fluids, RSV accumulated extensive and dis- centration and inducing conformational changes that facilitate tinct protein coronae compared with HSV-1 and synthetic lipo- fibril growth via a heterogenous nucleation mechanism7,8. This somes. The various coronae were dependent on the biological surface-assisted (heterogenous) nucleation has been demon- fluid and exerted markedly different effects on RSV infectivity strated for several nanoparticles with different amyloidogenic and capacity to activate monocyte-derived dendritic cells β 9,10 peptides including IAPP and A 42 . (moDCs). Moreover, upon interaction with an amyloidogenic Here we studied viruses in terms of their biophysical equiva- peptide derived from IAPP, RSV accelerated the process of lence to synthetic nanoparticles in extracellular environments. As amyloid aggregation via surface-assisted heterogenous nucleation. nanosized obligate intracellular parasites, viruses lack any meta- This amyloid catalysis was also demonstrated for HSV-1 and the β fi bolic activity outside the cell and can thus be expected to interact A 42 peptide in vitro and in an AD animal model. Our ndings with host factors in the microenvironment similar to artificial highlight the importance of viral protein corona interactions for nanoparticles. In the current work, we used well-established viral pathogenesis and provide a direct mechanistic link between techniques of nanotechnology to study the protein corona of viral and amyloid pathologies. respiratory syncytial virus (RSV) in comparison with herpes simplex virus type 1 (HSV-1) and synthetic liposomes. In addi- tion, we studied the interaction of both RSV and HSV-1 with Results amyloidogenic peptides. Rich and unique protein coronae for RSV and HSV-1. Based on RSV is an enveloped Orthopneumovirus with a diameter the extensive literature describing the significant role of corona between 100 and 300 nm, and a single-stranded negative-sense factors in synthetic nanoparticle functionality, we used estab- RNA genome with 10 genes encoding 11 proteins11. It is a leading lished techniques to answer questions regarding RSV patho- cause of acute lower respiratory tract infections in young children genicity26. Using proteomics, we assessed the RSV protein corona worldwide, causing up to an annual estimate of 34 million cases12. profiles in adult human plasma (HP), juvenile (6-month-old By the second year of life, nearly 90% of children get infected with infants tested RSV negative at the time of sample collection) HP RSV causing up to 196,000 yearly fatalities13. Reinfection
Recommended publications
  • The Role of SAMHD1 in Restriction and Immune Sensing of Retroviruses and Retroelements
    The role of SAMHD1 in restriction and immune sensing of retroviruses and retroelements Die Rolle von SAMHD1 in der Restriktion und Immunerkennung von Retroviren und Retroelementen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Alexandra Herrmann aus Biberach an der Riß Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 31.07.2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Lars Nitschke Prof. Dr. Manfred Marschall Table of content Table of content I. Summary ......................................................................................................................... 1 I. Zusammenfassung ......................................................................................................... 3 II. Introduction ..................................................................................................................... 5 1. The human immunodeficiency virus .................................................................................... 5 2. Transposable elements ......................................................................................................... 7 3. Host restriction factors ........................................................................................................ 10 4. The restriction factor SAMHD1 ..........................................................................................
    [Show full text]
  • Canine Influenza Virus Is Mildly Restricted by Canine Tetherin Protein
    viruses Article Canine Influenza Virus is Mildly Restricted by Canine Tetherin Protein Yun Zheng 1,2,3,†, Xiangqi Hao 1,2,3,†, Qingxu Zheng 1,2,3, Xi Lin 1,2,3, Xin Zhang 1,2,3, Weijie Zeng 1,2,3, Shiyue Ding 1, Pei Zhou 1,2,3,* and Shoujun Li 1,2,3,* 1 College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; [email protected] (Y.Z.); [email protected] (X.H.); [email protected] (Q.Z.); [email protected] (X.L.); [email protected] (X.Z.); [email protected] (W.Z.); [email protected] (S.D.) 2 Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China 3 Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China * Correspondence: [email protected] (P.Z.); [email protected] (S.L.) † These authors contributed equally to this work. Received: 10 July 2018; Accepted: 10 October 2018; Published: 16 October 2018 Abstract: Tetherin (BST2/CD317/HM1.24) has emerged as a key host-cell ·defence molecule that acts by inhibiting the release and spread of diverse enveloped virions from infected cells. We analysed the biological features of canine tetherin and found it to be an unstable hydrophilic type I transmembrane protein with one transmembrane domain, no signal peptide, and multiple glycosylation and phosphorylation sites. Furthermore, the tissue expression profile of canine tetherin revealed that it was particularly abundant in immune organs. The canine tetherin gene contains an interferon response element sequence that can be regulated and expressed by canine IFN-α.
    [Show full text]
  • Tetherin/BST-2 Promotes Dendritic Cell Activation and Function During Acute Retrovirus Infection Received: 21 October 2015 Sam X
    www.nature.com/scientificreports OPEN Tetherin/BST-2 promotes dendritic cell activation and function during acute retrovirus infection Received: 21 October 2015 Sam X. Li1,2, Bradley S. Barrett1, Kejun Guo1, George Kassiotis3, Kim J. Hasenkrug4, Accepted: 06 January 2016 Ulf Dittmer5, Kathrin Gibbert5 & Mario L. Santiago1,2 Published: 05 February 2016 Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation. Restriction factors are host-encoded type I interferon-stimulated genes (ISG) that directly inhibit virus replication1.
    [Show full text]
  • Modulating Antiviral Response Via CRISPR–Cas Systems
    viruses Review Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems Sergey Brezgin 1,2,3,† , Anastasiya Kostyusheva 1,†, Ekaterina Bayurova 4 , Elena Volchkova 5, Vladimir Gegechkori 6 , Ilya Gordeychuk 4,7, Dieter Glebe 8 , Dmitry Kostyushev 1,3,*,‡ and Vladimir Chulanov 1,3,5,‡ 1 National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; [email protected] (S.B.); [email protected] (A.K.); [email protected] (V.C.) 2 Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia 3 Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia 4 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; [email protected] (E.B.); [email protected] (I.G.) 5 Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia; [email protected] 6 Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia; [email protected] 7 Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia 8 National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany; [email protected] * Correspondence: [email protected] † Co-first authors. Citation: Brezgin, S.; Kostyusheva, ‡ Co-senior authors. A.; Bayurova, E.; Volchkova, E.; Gegechkori, V.; Gordeychuk, I.; Glebe, Abstract: Viral infections cause a variety of acute and chronic human diseases, sometimes resulting D.; Kostyushev, D.; Chulanov, V. Immunity and Viral Infections: in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics.
    [Show full text]
  • Endocytosis Elicited by Nectins Transfers Cytoplasmic Cargo, Including Infectious Material, Between Cells Alex R
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs235507. doi:10.1242/jcs.235507 RESEARCH ARTICLE Trans-endocytosis elicited by nectins transfers cytoplasmic cargo, including infectious material, between cells Alex R. Generous1,2, Oliver J. Harrison3, Regina B. Troyanovsky4, Mathieu Mateo1,*, Chanakha K. Navaratnarajah1, Ryan C. Donohue1,2, Christian K. Pfaller1,2, Olga Alekhina5, Alina P. Sergeeva3,6, Indrajyoti Indra4, Theresa Thornburg7,‡, Irina Kochetkova7, Daniel D. Billadeau5, Matthew P. Taylor7, Sergey M. Troyanovsky4, Barry Honig3,6, Lawrence Shapiro3 and Roberto Cattaneo1,2,§ ABSTRACT development, where the Bride of sevenless protein is internalized by the Sevenless tyrosine kinase receptor (Cagan et al., 1992). Here, we show that cells expressing the adherens junction protein Transfer of specific transmembrane proteins also occurs during nectin-1 capture nectin-4-containing membranes from the surface tissue patterning in embryonic development of higher of adjacent cells in a trans-endocytosis process. We find that vertebrates, during epithelial cell movement and at the immune internalized nectin-1–nectin-4 complexes follow the endocytic synapse (Gaitanos et al., 2016; Hudrisier et al., 2001; Marston et al., pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion 2003; Matsuda et al., 2004; Qureshi et al., 2011). At the immune prevents trans-endocytosis, while its exchange with the nectin-4 tail synapse, the CTLA-4 protein captures its ligands CD80 and CD86 reverses transfer direction. Nectin-1-expressing cells acquire dye- from donor cells by a process of trans-endocytosis; after removal, labeled cytoplasmic proteins synchronously with nectin-4, a process these ligands are degraded inside the acceptor cell, resulting in most active during cell adhesion.
    [Show full text]
  • Structural and Functional Analyses of the Interaction of Tetherin with the Dendritic Cell Receptor ILT7 Nicolas Aschman
    Structural and functional analyses of the interaction of tetherin with the dendritic cell receptor ILT7 Nicolas Aschman To cite this version: Nicolas Aschman. Structural and functional analyses of the interaction of tetherin with the dendritic cell receptor ILT7. Biomolecules [q-bio.BM]. Université Grenoble Alpes, 2015. English. NNT : 2015GREAV064. tel-01682995 HAL Id: tel-01682995 https://tel.archives-ouvertes.fr/tel-01682995 Submitted on 12 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. #$ !"#$% '!"(%")!*+%"+% %&'$()*%$*+,(-./$)#.0*%$*2)$-&3+$ ,-.0'*('$."1"34565748*#9:;<9;:=68*89*-=>5?4565748 2!!3$."5'&'6$.!'%("1"7"*8$"9::; !.6% $.%"-*! -4<56=@*A#'BA- <=>6%"+'!').%"-*!"(%"C:"D4>E:48F*D$.##$-&)- -!.-*!.%"* "6%' "+%"( (>49*5E*/4:; *5 9*'866*.>98:=<945> +* 6"6G0<568*%5<95:=68*'(4I48*89*#<48><8 *F;*/4J=>9 A>=6K 8 * 9:;<9;:8668 *89* E5><945>>8668 *F8*6,4>9,:=<945>* F8*6=*9,9(8:4>8*=J8<*68*:,<8N98;: .+. <=>6%"6 $% %"- #('A %5% $"(%*P0*=J:46*P12TB +%C* $"(%"D !E"05-6."+%"1" %:*A>F:8=*'.BA)$++. FG*--!$% !( %:*4J8 *2A(%.- FG*--!$% !( C:*B=:<*5AB.-
    [Show full text]
  • Virion-Incorporated PSGL-1 and CD43 Inhibit Both Cell-Free Infection and Transinfection of HIV-1 by Preventing Virus–Cell Binding
    Virion-incorporated PSGL-1 and CD43 inhibit both cell-free infection and transinfection of HIV-1 by preventing virus–cell binding Tomoyuki Murakamia, Nancy Carmonaa, and Akira Onoa,1 aDepartment of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 Edited by Stephen P. Goff, Columbia University Medical Center, New York, NY, and approved February 19, 2020 (received for review September 16, 2019) HIV-1 particles incorporate various host transmembrane proteins in juxtamembrane region of these transmembrane proteins (14). addition to viral Env glycoprotein during assembly at the plasma Therefore, PSGL-1, CD43, and CD44 are likely to be specifically membrane. In polarized T cells, HIV-1 structural protein Gag localizes recruited to the sites of virus assembly via the MA domain and to the plasma membrane of uropod, a rear-end protrusion. Notably, subsequently incorporated into progeny virions. uropod transmembrane proteins PSGL-1 and CD43 cocluster specif- Our recent study demonstrated that virion-incorporated ically with Gag assembling at the plasma membrane even in cells CD44 is required for transinfection of HIV-1 mediated by − that do not form uropods. Recent reports have shown that CD4 secondary lymphoid organ stromal cells, known as fibro- expression of either PSGL-1 or CD43 in virus-producing cells reduces blastic reticular cells (FRCs) (15). In this transinfection process, the infectivity of progeny virions and that HIV-1 infection reduces virion-incorporated CD44 binds the polysaccharide hyaluronan the cell surface expression of these proteins. However, the mech- (HA), which in turn binds CD44 on the FRC surface. HIV-1 anisms for both processes remain to be determined.
    [Show full text]
  • TLR-4 Engagement of Dendritic Cells Confers A
    TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse Fabien Blanchet, Romaine Stalder, Magdalena Czubala, Martin Lehmann, Laura Rio, Bastien Mangeat, Vincent Piguet To cite this version: Fabien Blanchet, Romaine Stalder, Magdalena Czubala, Martin Lehmann, Laura Rio, et al.. TLR- 4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse. Retrovirology, BioMed Central, 2013, 10 (1), pp.6. 10.1186/1742-4690-10-6. hal-02352285 HAL Id: hal-02352285 https://hal.archives-ouvertes.fr/hal-02352285 Submitted on 8 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Blanchet et al. Retrovirology 2013, 10:6 http://www.retrovirology.com/content/10/1/6 RESEARCH Open Access TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse Fabien P Blanchet1†, Romaine Stalder2†, Magdalena Czubala1, Martin Lehmann2, Laura Rio2, Bastien Mangeat1,2 and Vincent Piguet1* Abstract Background: Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens.
    [Show full text]
  • 294 Immunophenotypic Subgroups of SLE Defined by Autoantibodies
    Abstracts Lupus Sci Med: first published as 10.1136/lupus-2019-lsm.294 on 1 April 2019. Downloaded from could be predicated and prevented with pre-treatment. The mature B cells and, for that reason, is considered a good raising of risk prediction models depends on the collection of target for plasma cell depletion. Here, we analyze a promis- patient phenotypes, which are scattered in various forms and ing therapeutic in development for Multiple Myeloma very cumbersome. (MM), that could be used for the treatment for SLE. The In this study, we collected the largest database of complete antiCD3*BCMA bispecific antibody TNB-383B is in clinical medical record of inpatients of lupus in China. The clinical trials for the treatment of MM. In vitro experiment showed phenotype database was generated by using natural language that TNB-383B added to human bone marrow samples ex processing (NLP) techniques, then lupus nephritis (LN) predic- vivo induced a dose dependent lysis of BCMA-expressing tion model was built. plasma cells. Methods A total of 14,439 SLE patients were collected from Methods Depletion of plasma cells by TNB-383B was tested the rheumatology and immunology departments of 13 Chi- using bone marrow samples extracted from bone retrieved nese tertiary hospitals in this study, including 13 062 females of hip replacments. Human bone marrow mononuclear cells (90.46%), with an average age of 33.4 years, and the time (n=10) were incubated with TNB-383B at increasing con- span of EMR (Electronic Medical Records) was from Octo- centrations. The activity of TNB-383B was compared to a ber 28, 2001 to March 31, 2017.
    [Show full text]
  • 1 Running Head B-Cell Tetherin Predicts SLE Disease
    bioRxiv preprint doi: https://doi.org/10.1101/554352; this version posted February 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Running Head B-Cell Tetherin predicts SLE disease activity Title B cell tetherin: a flow-cytometric cell-specific assay for response to Type-I interferon predicts clinical features and flares in SLE Authors Yasser M. El-Sherbiny, MBBCh, MSc, PhD,1,2,3 Md. Yuzaiful Md. Yusof, MBChB, MRCP,1,7 Antonios Psarras, MD, MSc,1,7 Elizabeth M. A. Hensor, PhD,1,7 Kumba Z. Kabba, MSc,1 Katherine Dutton, MBBS, BMedSc,1,7 Alaa A.A. Mohamed, MBBCh, MSc, MD,1,4 Dirk Elewaut, MD, PhD,5 Dennis McGonagle, MD, PhD,1,7 Reuben Tooze, PhD,5 Gina Doody, PhD,5 Miriam Wittmann, MD,1,7 Paul Emery, MA, MD, FMedSci,1,7 Edward M. Vital, PhD, MRCP1,7 Affiliations 1Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; 2School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, UK; 3Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt; 4Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assiut University, Egypt; 5Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK; 6Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; 7National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK. Correspondence Dr Edward M Vital Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Leeds LS7 4SA, UK Telephone: +44 113 3924964 Email: [email protected] Funding This work was supported by the National Institute for Health Research (NIHR) Leeds Musculoskeletal Biomedical Research Unit.
    [Show full text]
  • Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy
    International Journal of Molecular Sciences Review Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy Kiruphagaran Thangaraju 1,†, Sabari Nath Neerukonda 2,3,† , Upendra Katneni 1,* and Paul W. Buehler 1,4 1 Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; [email protected] (K.T.); [email protected] (P.W.B.) 2 Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] 3 Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA 4 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA * Correspondence: [email protected]; Tel.: +1-4107067088 † The authors contributed equally to this work. Abstract: Red blood cells (RBCs) release extracellular vesicles (EVs) including both endosome- derived exosomes and plasma-membrane-derived microvesicles (MVs). RBC-derived EVs (RBCEVs) are secreted during erythropoiesis, physiological cellular aging, disease conditions, and in response to environmental stressors. RBCEVs are enriched in various bioactive molecules that facilitate cell to cell communication and can act as markers of disease. RBCEVs contribute towards physiological adaptive responses to hypoxia as well as pathophysiological progression of diabetes and genetic non-malignant hematologic disease. Moreover, a considerable number of studies focus on the role of EVs from stored RBCs and have evaluated post transfusion consequences associated with their exposure. Interestingly, RBCEVs are important contributors toward coagulopathy in hematological disorders, thus representing a unique evolving area of study that can provide insights into molec- Citation: Thangaraju, K.; ular mechanisms that contribute toward dysregulated hemostasis associated with several disease Neerukonda, S.N.; Katneni, U.; conditions.
    [Show full text]
  • Contact Biolegend
    Human CD Molecules CD Antigen OtherNames MolecularWeight (kD) CellularExpression Ligand/Receptor/Association Functions IntracellularInteraction CD Antigen OtherNames MolecularWeight (kD) CellularExpression Ligand/Receptor/Association Functions IntracellularInteraction CD Antigen OtherNames MolecularWeight (kD) CellularExpression Ligand/Receptor/Association Functions IntracellularInteraction CD Antigen OtherNames MolecularWeight (kD) CellularExpression Ligand/Receptor/Association Functions IntracellularInteraction CD1a R4, T6, HTA1 49 cortical thy-c, CD1-restricted TCR lipid Ag presentation ß2m, CD8 CD72 Lyb-2 39 B (except plasma), CD5, CD100 B activ and prolif Grb2, SHP1, BLNK CD158e2 KIR3DS1, NKAT10 70 NK, some T HLA-Bw4 activates NK cytotoxicity CDK3 CD268 BAFFR, BR3, 19 B, T sub BAFF B survival and TRAF3, PMPCB, NFκB Langerhans, DC mac, FDC, T sub TNFRSF13c maturation, T activ CD1b R1, T6 45 cortical thy-c, CD1-restricted TCR lipid Ag presentation ß2m, CD8 CD73 Ecto-5'- 70 T sub, B sub, FDC, epi, endo AMP dephosphorylation, β-Actin, Fibronectin CD158f KIR2DL5A NK, some T HLA-B inhibits NK cytotoxicity SHP1, SHP2 CD269 BCMA, TNFRSF17 B, plasma cells BAFF, APRIL plasma cell survival TRAF1-3 Langerhans, DC nucleotidase costim, adh 1, Laminin A CD1c BDCA-1, R7, T6 43 cortical thy-c, CD1-restricted TCR lipid Ag presentation ß2m, CD8 CD74 Ii, invariant chain 33,35,41 B, act T, mac, Langerhans, CD44, MHC class II, MIF intracellular sorting of Cathepsin L, CD1d CD158g KIR2DS5 NK, some T activates NK cytotoxicity CD270 HVEM, HVEA, TR2, T, B,
    [Show full text]