This is a repository copy of $\aleph_0$-categoricity of semigroups. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/141353/ Version: Published Version Article: Gould, Victoria Ann Rosalind orcid.org/0000-0001-8753-693X and Quinn-Gregson, Thomas David (2019) $\aleph_0$-categoricity of semigroups. Semigroup forum. pp. 260- 292. ISSN 1432-2137 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing
[email protected] including the URL of the record and the reason for the withdrawal request.
[email protected] https://eprints.whiterose.ac.uk/ Semigroup Forum https://doi.org/10.1007/s00233-019-10002-7 RESEARCH ARTICLE ℵ0-categoricity of semigroups Victoria Gould1 · Thomas Quinn-Gregson2 Received: 19 February 2018 / Accepted: 14 January 2019 © The Author(s) 2019 Abstract In this paper we initiate the study of ℵ0-categorical semigroups, where a countable semigroup S is ℵ0-categorical if, for any natural number n, the action of its group n of automorphisms Aut(S) on S has only finitely many orbits. We show that ℵ0- categoricity transfers to certain important substructures such as maximal subgroups and principal factors. We examine the relationship between ℵ0-categoricity and a number of semigroup and monoid constructions, namely Brandt semigroups, direct sums, 0-direct unions, semidirect products and P-semigroups.