Immunotace TRIAL

Total Page:16

File Type:pdf, Size:1020Kb

Immunotace TRIAL ImmunoTACE TRIAL A Randomised phase II Clinical Trial of conditioning cyclophosphamide and Chemoembolisation with or without Vaccination with Dendritic Cells pulsed with HepG2 lysate ex vivo in Patients with Hepatocellular Carcinoma EUDRACT NUMBER: 2011-001690-62 PROTOCOL VERSION: 9.0a 15-Jul-2019 PROTOCOL NUMBER: HE2016 ISRCTN: 11889464 SPONSOR NUMBER: RG_10-148 CHIEF INVESTIGATOR: Professor David Adams University of Birmingham 1 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 CHIEF INVESTIGATOR SIGNATURE PAGE ImmunoTACE TRIAL A Randomised phase II Clinical Trial of conditioning cyclophosphamide and Chemoembolisation with or without Vaccination with Dendritic Cells pulsed with HepG2 lysate ex vivo in Patients with Hepatocellular Carcinoma Version 9.0a 15-Jul-2019 This Protocol has been approved by: Professor David Adams Signature : Date : Chief Investigator This protocol describes the ImmunoTACE trial and provides information about procedures for patients taking part in the ImmunoTACE trial. The protocol should not be used as a guide for treatment of patients not taking part in the ImmunoTACE trial. This protocol was written using CRCTU-PRT-QCD-001, version 1.0 2 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 SPONSOR University of Birmingham TRIAL PERSONNEL CHIEF INVESTIGATOR Professor David Adams*# Consultant Hepatologist and University of Dean of Medicine Birmingham1 CLINICAL INVESTIGATOR Dr Yuk Ting Ma# Senior Clinical Lecturer in University of Hepatobiliary Oncology Birmingham2 CO-INVESTIGATORS Dr Stuart M Curbishley* Senior Research Fellow University of Birmingham2 LEAD STATISTICIAN Dr Christina Yap Professor of Clinical Trial The Insitute of Cancer Biostatistics Research3 TRIAL STATISTICIAN Miss Amanda Kirkham* Biostatistician University of Birmingham2 TRIAL MANAGEMENT Dr Anna Rowe* Trial Management Team Leader University of TEAM Birmingham2 Dr Jessica Douglas* Senior Trial Coordinator University of Birmingham2 Ms Camilla Bathurst Trial Coordinator University of Birmingham2 # Designated clinical coordinators for the clinical trial 1 NIHR Birmingham Liver Biomedical Research Centre, University of Birmingham, Birmingham. B15 2TT 2 Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham. B15 2TT 3 The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG Contact Details: Email: [email protected] Telephone: 0121 371 8117 or 0121 371 8158 3 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 AMENDMENTS The following amendments and/or administrative changes have been made to this protocol since the implementation of the first approved version Protocol Type of Amendment Amendment Date of Version (e.g. substantial/ Summary of amendment? No. Amendment No. Non-substantial/ administrative change) 1 21_Nov_2013 n/a Substantial - Change of PI at site - Change to study personnel, contact details and 2 02_Mar_2015 5.0 Substantial change of CI - Typographical errors corrected - Updated Abbreviated List 3 05_Oct_2015 6.0 Substantial - Change to study personnel, and contact details - Typographical errors corrected - RECIST criteria updated to v1.1 throughout - Section 3 – Treatment Details (Autologous Dendritic Cells Pulsed with HepG2 Lysate matured with Monophosphoryl Lipid A) N/A 22_Mar_2016 7.0 N/A Protocol was updated and signed off internally, but not submitted to the Regulatory Authorities. This was subsequently further amended and any changes included in V8.0 (see details in row below) 4 17_Nov_2016 8.0 Substantial - Schedule updated to match text (and vice versa) and footers clarified - Day of Leukapheresis moved to prior to Day 1 Cyclophosphamide - Randomisation timelines clarified - Addition of 3 month survival status follow-up - 3.1 Group 2 patients updated information - 4.2 clarified windows for visits and progressive disease in first 12 months - 6.2 Screening – HLA typing removed - 6.3 Contraception section added - 7.2 Randomisation – text updated - 8.0 Treatment and follow-up – updated to 4 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 match schedule - 9.0 Dose Modifications – clarified - 10 Leukapheresis procedure time updated - 11 Evaluable patient term clarified - 12.1.4 text updated - 12.2 Reporting periods clarified - 12.3 Reporting procedures clarified and SAE contact details updated - 13 Updated and clarified - 16.3 Sample size calculation updated - 16.4 Analysis plan updated - Amendment table streamlined - Change to trial personnel and contact details - Terminology and typographical errors clarified or corrected 5 16_Aug_2018 9.0 Substantial - Change to study personnel and contact details - 16.3 Change in power calculation to allow for a reduction in sample size from 70 to 48 with a slight reduction in power, taking into account a longer recruitment period - 16.1, 16.2 clarified Primary outcome and provide further details on primary analysis - Trial synopsis, 16.1 and 16.2 added mRECIST criteria as a secondary outcome measure - Trial synoposis & 5.1 inclusion criteria updated - 16.4 amended main analysis set to modified intention-to-treat - 18 & 19 Data Protection sections amended to incorporate the General Data Protection Regulation 2018 and Data Protection Act 2018 - Screening window increased and screening period clarified - Window added for D31 TACE - Window added for D62, 92 and 122 DC Vaccine - Follow-up visit window re-defined 6 15-Jul-2019 9.0a Non-Substantial - Change to trial personnel & contact details - Administrative errors corrected for: 1. Serology Tests: Trial Schedule, 6.2 & 8.1 5 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 2. End of Trial Definition: Trial Schedule, 8.1 & 15 3. eGFR: Trial Schedule, 6.2 & 8.1 6 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 TRIAL SYNOPSIS Title A randomised phase II clinical trial of conditioning cyclophosphamide and chemoembolisation with or without vaccination with dendritic cells (DC) pulsed with HepG2 cell lysate ex vivo in patients with hepatocellular carcinoma (HCC). Background A previous study by the Liver Research Team (Birmingham) using DC pulsed ex vivo with the lysate of the HepG2 cell line has shown clinical benefit with evidence of antigen-specific T-cell responses in some patients with advanced HCC. This project intends to investigate the activity of this vaccine in combination with chemoembolisation compared to chemoembolisation alone in patients with intermediate stage HCC. All patients will receive a conditioning regimen comprising low dose cyclophosphamide. Study Design Randomised, open label, multicentre, phase II trial Objectives To determine whether activity due to the addition of DC vaccine to chemoembolisation and preconditioning cyclophosphamide prolongs progression free survival (PFS) and warrants further investigation Recruitment/Patient Population Patients over the age of 18 years, with HCC with performance status 0 - 2, with adequate renal function and hepatic function and in Child-Pugh category A or B and considered suitable for chemoembolisation. There should be no active concurrent infections or other malignancies and the patients must not be taking immunosuppressive therapy. Patients must not be immunocompromised. Planned Interventions Group 1: TACE therapy + preconditioning cyclophosphamide only Group 2: TACE therapy + preconditioning cyclophosphamide + dendritic cells infusions. Outcome Measures Primary outcome measure: 1. Progression free survival time Secondary outcome measures: 1. Radiological response (RECIST 1.1 criteria) 2. Change in the tumour marker serum AFP 3. Assessment of toxicity using NCI-CTCAE version 4 4. Immune response 5. Overall survival time 6. Radiological response based on modified RECIST (mRECIST) 7. Progression free survival at 12 months where progression is determined by mRECIST Proposed Sample Size A total of 48 (24 in each group) patients with HCC will be recruited. 7 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 TRIAL SCHEDULE Screening Leukapheresis Day 1 Day 29 Day 31 Day 38, 45 & Day 60, 90 & Day 62, 92 & Day 152, 242, Survival Status 52 120 122 332 & 422 Follow-up ¥ Cy infusion Cy TACE visit Post-TACE Repeat Cy Repeat DC Follow-up visits Three monthly infusion follow-up visits infusion visits infusion visits ALL Group 2 ALL ALL ALL ALL ALL Group 2 ALL ALL patients ONLY patients patients patients patients patients ONLY patients patients Between 2 + 3 days after 14 + 7 days from Up to 14 after 2 + 3 days Visit Window (days) Randomisation +/- 3 +/- 3 +/- 3 Day 60, 90 & +/- 10 +/- 10 Randomisation Randomisation after Day 29 and Day 1* 120 Informed Consent X Medical History X Physical Examination X1 X X X X ECOG Performance Status X X X X X X X X X Concomitant Medications X X X X X X X X X Adverse Events X X X X X X X X X Clinical Events X X X X X X X X X Vital Signs X X X X X X X X X Mandatory Microbiology screening2 X X X Tumour Assessment3 X X (DAY 60 ONLY) Auto-Antibody Tests4 X X X X Standard Blood Tests5 X X X X X X X Immune Response Blood Tests X X X X X Blood Collection for Generation of X DC Vaccine6 via Leukapheresis Pregnancy Test7 X 8 of 65 ImmunoTACE_Protocol_v9.0a_15-Jul-2019 Electrocardiogram (ECG) X Height and Weight X Dendritic Cell Infusion8 X X Cyclophosphamide Infusion X X X Survival Status9 X 1. This will include assessment for potential difficulties in intra-hepatic artery cannulation (i.e. severe atherosclerotic disease) and venous access for leukapheresis at screening. 2. All patients will require mandatory testing for blood borne infectious agents of blood products prior to processing and storage. These tests
Recommended publications
  • Rigorous Clinical Trial Design in Public Health Emergencies Is Essential
    1 Rigorous Clinical Trial Design in Public Health Emergencies Is Essential Susan S. Ellenberg (Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania); Gerald T. Keusch (Departments of Medicine and Global Health, Boston University Schools of Medicine and Public Health); Abdel G. Babiker (Medical Research Council Clinical Trials Unit, University College London); Kathryn M. Edwards (Department of Pediatrics, Vanderbilt University School of Medicine); Roger J. Lewis (Department of Emergency Medicine, Harbor-UCLA Medical Center); Jens D. Lundgren( Department of Infectious Diseases, University of Copenhagen); Charles D. Wells (Infectious Diseases Unit, Sanofi-U.S.); Fred Wabwire-Mangen (Department of Epidemiology, Makerere University School of Public Health); Keith P.W.J. McAdam (Department of Clinical and Tropical Medicine, London School of Hygiene and Tropical Medicine) Keywords: randomized clinical trial; Ebola; ethics Running title: Research in public health emergencies Key Points: To obtain definitive information about the effects of treatments and vaccines, even in public health emergencies, randomized clinical trials are essential. Such trials are ethical and feasible with efforts to engage and collaborate with the affected communities. Contact information, corresponding author: Susan S. Ellenberg, Ph.D. University of Pennsylvania 423 Guardian Drive, Room 611 Philadelphia, PA 19104 [email protected]; 215-573-3904 Contact information, alternate corresponding author: Gerald T. Keusch, MD Boston University School of Medicine 620 Albany St Boston, MA 02118 [email protected]; 617-414-8960 2 ABSTRACT Randomized clinical trials are the most reliable approaches to evaluating the effects of new treatments and vaccines. During the 2014-15 West African Ebola epidemic, many argued that such trials were neither ethical nor feasible in an environment of limited health infrastructure and severe disease with a high fatality rate.
    [Show full text]
  • Transcriptional Biomarkers for Predicting Development of TB: Progress and Clinical Considerations
    Early View ERJ Methods Transcriptional biomarkers for predicting development of TB: progress and clinical considerations Hanif Esmail, Frank Cobelens, Delia Goletti Please cite this article as: Esmail H, Cobelens F, Goletti D. Transcriptional biomarkers for predicting development of TB: progress and clinical considerations. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.01957-2019). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2020 Transcriptional biomarkers for predicting development of TB: progress and clinical considerations Hanif Esmail1,2,3, Frank Cobelens4, Delia Goletti5* 1. Medical Research Council Clinical Trials Unit at University College London, London, UK 2. Institute for Global Health, University College London, London, UK 3. Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa 4. Dept of Global Health and Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 5. Translational Research Unit, Department of Epidemiology and Preclinical Research, “L. Spallanzani” National Institute for Infectious Diseases (INMI), IRCCS, Via Portuense 292, 00149 Rome, Italy * Corresponding author Key words: Transcriptional biomarkers, incipient tuberculosis, latent tuberculosis Introduction Achieving the ambitious targets for global tuberculosis (TB) control, will require an increased emphasis on preventing development of active disease in those with latent TB infection (LTBI) by preventative treatment or vaccination[1].
    [Show full text]
  • Metformin Does Not Affect Cancer Risk: a Cohort Study in the U.K
    2522 Diabetes Care Volume 37, September 2014 Metformin Does Not Affect Cancer Konstantinos K. Tsilidis,1,2 Despoina Capothanassi,1 Naomi E. Allen,3 Risk: A Cohort Study in the U.K. Evangelos C. Rizos,4 David S. Lopez,5 Karin van Veldhoven,6–8 Clinical Practice Research Carlotta Sacerdote,7 Deborah Ashby,9 Paolo Vineis,6,7 Ioanna Tzoulaki,1,6 and Datalink Analyzed Like an John P.A. Ioannidis10 Intention-to-Treat Trial Diabetes Care 2014;37:2522–2532 | DOI: 10.2337/dc14-0584 OBJECTIVE Meta-analyses of epidemiologic studies have suggested that metformin may re- 1Department of Hygiene and Epidemiology, Uni- duce cancer incidence, but randomized controlled trials did not support this versity of Ioannina School of Medicine, Ioannina, hypothesis. Greece 2Cancer Epidemiology Unit, University of Oxford, EPIDEMIOLOGY/HEALTH SERVICES RESEARCH RESEARCH DESIGN AND METHODS Oxford, U.K. 3 A retrospective cohort study, Clinical Practice Research Datalink, was designed to Clinical Trial Service Unit, University of Oxford, Oxford, U.K. investigate the association between use of metformin compared with other anti- 4Lipid Disorders Clinic, Department of Internal diabetes medications and cancer risk by emulating an intention-to-treat analysis Medicine, University Hospital of Ioannina, Ioan- as in a trial. A total of 95,820 participants with type 2 diabetes who started taking nina, Greece 5 metformin and other oral antidiabetes medications within 12 months of their Division of Epidemiology, University of Texas School of Public Health, Houston, TX diagnosis (initiators) were followed up for first incident cancer diagnosis without 6Department of Epidemiology and Biostatistics, regard to any subsequent changes in pharmacotherapy.
    [Show full text]
  • The PRISMA-IPD Statement
    Clinical Review & Education Special Communication Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data The PRISMA-IPD Statement Lesley A. Stewart, PhD; Mike Clarke, DPhil; Maroeska Rovers, PhD; Richard D. Riley, PhD; Mark Simmonds, PhD; Gavin Stewart, PhD; Jayne F. Tierney, PhD; for the PRISMA-IPD Development Group Editorial page 1625 IMPORTANCE Systematic reviews and meta-analyses of individual participant data (IPD) aim Supplemental content at to collect, check, and reanalyze individual-level data from all studies addressing a particular jama.com research question and are therefore considered a gold standard approach to evidence synthesis. They are likely to be used with increasing frequency as current initiatives to share clinical trial data gain momentum and may be particularly important in reviewing controversial therapeutic areas. OBJECTIVE To develop PRISMA-IPD as a stand-alone extension to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement, tailored to the specific requirements of reporting systematic reviews and meta-analyses of IPD. Although developed primarily for reviews of randomized trials, many items will apply in other contexts, including reviews of diagnosis and prognosis. DESIGN Development of PRISMA-IPD followed the EQUATOR Network framework guidance and used the existing standard PRISMA Statement as a starting point to draft additional relevant material. A web-based survey informed discussion at an international workshop that included researchers, clinicians, methodologists experienced in conducting systematic reviews and meta-analyses of IPD, and journal editors. The statement was drafted and iterative refinements were made by the project, advisory, and development groups. The PRISMA-IPD Development Group reached agreement on the PRISMA-IPD checklist and flow diagram by consensus.
    [Show full text]
  • Diagnostic Accuracy of a Host Response Point-Of-Care Test In
    medRxiv preprint doi: https://doi.org/10.1101/2020.05.27.20114512; this version posted June 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Diagnostic accuracy of a host response point-of-care test in patients with suspected COVID-19 Tristan W Clark1,2,3,4*, Nathan J Brendish1, 2, Stephen Poole1,2,3, Vasanth V Naidu2, Christopher Mansbridge2, Nicholas Norton2, Helen Wheeler3, Laura Presland3 and Sean Ewings5 1. School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK 2. Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 3. NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK 4. NIHR Post Doctoral Fellowship Programme, UK 5. Southampton Clinical Trials Unit, University of Southampton, UK *Corresponding author Dr Tristan William Clark, Associate Professor and Consultant in Infectious Diseases. NIHR Post Doctoral Fellow. Address: LF101, South Academic block, Southampton General Hospital, Southampton, SO16 6YD. Tel: 0044(0)23818410 E-mail address: [email protected] 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.05.27.20114512; this version posted June 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Download and Use
    Shenkin et al. BMC Medicine (2019) 17:138 https://doi.org/10.1186/s12916-019-1367-9 RESEARCHARTICLE Open Access Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method Susan D. Shenkin1, Christopher Fox2, Mary Godfrey3, Najma Siddiqi4, Steve Goodacre5, John Young6, Atul Anand7, Alasdair Gray8, Janet Hanley9, Allan MacRaild8, Jill Steven8, Polly L. Black8, Zoë Tieges1, Julia Boyd10, Jacqueline Stephen10, Christopher J. Weir10 and Alasdair M. J. MacLullich1* Abstract Background: Delirium affects > 15% of hospitalised patients but is grossly underdetected, contributing to poor care. The 4 ‘A’s Test (4AT, www.the4AT.com) is a short delirium assessment tool designed for routine use without special training. Theprimaryobjectivewastoassesstheaccuracyofthe4ATfor delirium detection. The secondary objective was to compare the 4AT with another commonly used delirium assessment tool, the Confusion Assessment Method (CAM). Methods: This was a prospective diagnostic test accuracy study set in emergency departments or acute medical wards involving acute medical patients aged ≥ 70. All those without acutely life-threatening illness or coma were eligible. Patients underwent (1) reference standard delirium assessment based on DSM-IV criteria and (2) were randomised to either the index test (4AT, scores 0–12; prespecified score of > 3 considered positive) or the comparator (CAM; scored positive or negative), in a random order, using computer-generated pseudo-random numbers, stratified by study site, with block allocation. Reference standard and 4AT or CAM assessments were performed by pairs of independent raters blinded to the results of the other assessment. Results: Eight hundred forty-three individuals were randomised: 21 withdrew, 3 lost contact, 32 indeterminate diagnosis, 2 missing outcome, and 785 were included in the analysis.
    [Show full text]
  • Clinical Trial Design and Clinical Trials Unit
    Clinical trial design and Clinical Trials Unit Nina L. Jebsen, MD, PhD Centre for Cancer Biomarkers, University of Bergen Centre for Bone- and Soft Tissue Tumours, Haukeland University Hospital Outline • Why clinical studies? • Preconditions • Principles • Types of clinical trials • Different phases in clinical trials • Design of clinical trials – Basket design – Enrichment design – Umbrella design – Marker-based strategy design – Adaptive design • Clinical Trials Unit • CTU, Haukeland University Hospital Why clinical studies? • Control/optimize an experimental process to – reduce errors/bias = internal validity/credibility – reduce variability = external validity/reproducibility – QA data collection settings = model validity/design • Understand the biological chain of events that lead to disease progression and response to intervention • Simplify and validate statistical data analysis • Generate evidence for effect of a specific treatment . in a specific population • Results extrapolated for standard clinical use . • Necessary (Phase III) for drug approval • Take into account ethical issues Preconditions • Access to patients (be realistic) • Approvals by legal authorities • Accept from local hospital department • Adequate resources/financial support • Infrastructure • Necessary equipment • Experienced personnel • Well-functioning routines • Study-team with mutual understanding of all implications Study population vs clinical practice • Age – study patients often younger • Performance status – study patients better performance status
    [Show full text]
  • Understanding Clinical Trials and Research a Guide for People Affected by Cancer
    Understanding Clinical Trials and Research A guide for people affected by cancer Practical and support information For information & support, call Understanding Clinical Trials and Research A guide for people affected by cancer First published April 2012. This edition July 2018. © Cancer Council Australia 2018. ISBN 978 1 925651 28 7 Understanding Clinical Trials and Research is reviewed approximately every 3 years. Check the publication date above to ensure this copy is up to date. Editor: Ruth Sheard. Designer: Paula Marchant. Printer: SOS Print + Media Group. Acknowledgements This edition has been developed by Cancer Council NSW on behalf of all other state and territory Cancer Councils as part of a National Cancer Information Working Group initiative. We thank the reviewers of this booklet: A/Prof Andrew Redfern, Consultant Medical Oncologist, Fiona Stanley Hospital, Clinical Academic Oncologist, The University of Western Australia, and Lead Clinician, State Breast Cancer Collaborative, WA; Christie Allan, Program Coordinator – Clinical Trials, Cancer Council Victoria; Bronwyn Chalmers, Clinical Trial Coordinator, Westmead Breast Cancer Institute, NSW; Sarah Coulson, Coordinator, Oncology Clinical Trials, Projects and Research, Tasmanian Health Service, TAS; Kate Cox, 13 11 20 Consultant, Cancer Council SA; Annette Cubitt, Clinical Trials Manager, Department of Medical Oncology, Cancer Care Services, Royal Brisbane and Women’s Hospital, QLD; Pete Currie, Consumer; Amy Ives, Clinical Trials Coordinator, Department of Medical Oncology,
    [Show full text]
  • Study Was Qualitative Trial
    Contemporary Clinical Trials 38 (2014) 338–343 Contents lists available at ScienceDirect Contemporary Clinical Trials journal homepage: www.elsevier.com/locate/conclintrial Conducting qualitative research within Clinical Trials Units: Avoiding potential pitfalls Cindy Cooper a,⁎, Alicia O'Cathain b, Danny Hind a, Joy Adamson c, Julia Lawton d, Wendy Baird e a Sheffield Clinical Trials Research Unit, ScHARR, University of Sheffield, Regent Court, 30 Regent Street, Sheffield S14DA, United Kingdom b Medical Care Research Unit, ScHARR, University of Sheffield, Regent Court, 30 Regent Street, Sheffield S14DA, United Kingdom c York Trials Unit, Department of Health Sciences, University of York, Seebohm Rowntree Building, Heslington, York YO10 5DD, United Kingdom d Centre for Population Health Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh EH8 9AG United Kingdom e Design, Trials and Statistics, ScHARR, University of Sheffield, Regent Court, 30 Regent Street, Sheffield S14DA, United Kingdom article info abstract Article history: The value of using qualitative research within or alongside randomised controlled trials (RCTs) is Received 13 January 2014 becoming more widely accepted. Qualitative research may be conducted concurrently with pilot or Received in revised form 30 May 2014 full RCTs to understand the feasibility and acceptability of the interventions being tested, or to Accepted 5 June 2014 improve trial conduct. Clinical Trials Units (CTUs) in the United Kingdom (UK) manage large Available online 14 June 2014 numbers of RCTs and, increasingly, manage the qualitative research or collaborate with qualitative researchers external to the CTU. CTUs are beginning to explicitly manage the process, for example, Keywords: through the use of standard operating procedures for designing and implementing qualitative Qualitative research research with trials.
    [Show full text]
  • CLINICAL TRIALS GUIDE for TRAINEES Guidance to Support NIHR Trainees Interested in Getting Involved in Clinical Trials CONTENTS
    CLINICAL TRIALS GUIDE FOR TRAINEES Guidance to support NIHR trainees interested in getting involved in clinical trials CONTENTS Introduction ................................................................................................................ 1 General ......................................................................................................................... 2 Fellowships and clinical trials ................................................................................ 4 Approvals ..................................................................................................................... 5 Methodologies ........................................................................................................... 8 Teams and management ........................................................................................ 8 Patient and public involvement ........................................................................... 9 Clinical Trials Units ..................................................................................................10 Finances .....................................................................................................................11 Additional support .................................................................................................11 Summary of useful links ........................................................................................12 INTRODUCTION Clinical trials, compared to observational studies, are considered by many to be the
    [Show full text]
  • Study Protocol
    RIVER Protocol Version 5.0 20-Oct-2016 GENERAL INFORMATION This document was constructed using the MRC CTU Protocol Template Version 3.0. The MRC CTU endorses the Standard Protocol Items: Recommendations For Interventional Trials (SPIRIT) initiative. It describes the RIVER trial, co-ordinated by the Medical Research Council (MRC) Clinical Trials Unit at UCL (herein referred to as MRC CTU), and provides information about procedures for entering participants into it. The protocol should not be used as an aide-memoire or guide for the treatment of other participants. Every care has been taken in drafting this protocol, but corrections or amendments may be necessary. These will be circulated to the registered investigators in the trial, but sites entering participants for the first time are advised to contact RIVER Co-ordinating Centre at, MRC CTU, to confirm they have the most up-to-date version. COMPLIANCE The trial will be conducted in compliance with the approved protocol, the Declaration of Helsinki 1996, the principles of Good Clinical Practice (GCP), Commission Directive 2005/28/EC with the implementation in national legislation in the UK by Statutory Instrument 2004/1031 and subsequent amendments, the UK Data Protection Act (DPA number: Z6364106), and the National Health Service (NHS) Research Governance Framework for Health and Social Care (RGF). SPONSOR Imperial College London is the trial sponsor and has delegated responsibility for the overall management of the RIVER trial to the MRC CTU (RIVER Co-ordinating Centre). Queries relating to Imperial sponsorship of this trial should be addressed to the chief investigator via the Imperial Joint Research Compliance Office.
    [Show full text]
  • Developing a Roadmap to Improve Trial Delivery for Under-Served Groups: Results from a UK Multi-Stakeholder Process Miles D
    Witham et al. Trials (2020) 21:694 https://doi.org/10.1186/s13063-020-04613-7 RESEARCH Open Access Developing a roadmap to improve trial delivery for under-served groups: results from a UK multi-stakeholder process Miles D. Witham1,2, Eleanor Anderson1, Camille Carroll3, Paul M. Dark4, Kim Down1, Alistair S. Hall5, Joanna Knee6, Rebecca H. Maier7, Gail A. Mountain8, Gary Nestor1, Laurie Oliva9, Sarah R. Prowse10, Amanda Tortice11, James Wason12,13, and Lynn Rochester1,14* On behalf of the INCLUDE writing group Abstract Background: Participants in clinical research studies often do not reflect the populations for which healthcare interventions are needed or will be used. Enhancing representation of under-served groups in clinical research is important to ensure that research findings are widely applicable. We describe a multicomponent workstream project to improve representation of under-served groups in clinical trials. Methods: The project comprised three main strands: (1) a targeted scoping review of literature to identify previous work characterising under-served groups and barriers to inclusion, (2) surveys of professional stakeholders and participant representative groups involved in research delivery to refine these initial findings and identify examples of innovation and good practice and (3) a series of workshops bringing together key stakeholders from funding, design, delivery and participant groups to reach consensus on definitions, barriers and a strategic roadmap for future work. The work was commissioned by the UK National Institute for Health Research Clinical Research Network. Output from these strands was integrated by a steering committee to generate a series of goals, workstream plans and a strategic roadmap for future development work in this area.
    [Show full text]