Biologie Der Interaktion Zwischen Koleopteren Und Agaricoiden Basidiomyzeten

Total Page:16

File Type:pdf, Size:1020Kb

Biologie Der Interaktion Zwischen Koleopteren Und Agaricoiden Basidiomyzeten Biologie der Interaktion zwischen Koleopteren und agaricoiden Basidiomyzeten Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Lorenz Henneberg aus Aschaffenburg Marburg/Lahn 2003 Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation am 10. Februar 2004 angenommen. Erstgutachter: Prof. Dr. Gerhard Kost Zweitgutachter: HD. Dr. Lothar Beck Tag der mündlichen Prüfung am 10.02.2004 Die vorliegende Dissertation „Biologie der Interaktion zwischen Koleopteren und agaricoiden Basidiomyzeten“ wurde gefördert durch das Stipendienprogramm der Deutschen Bundesstiftung Umwelt Inhaltsverzeichnis I 1 EINLEITUNG 1 1.1 DAS POTENTIAL DER ENTSTEHUNG VON INTERAKTIONSSYSTEMEN ZWISCHEN INSEKTEN UND PILZEN 2 1.2 DIE INSEKTEN-PILZ-INTERAKTIONSSYSTEME IM BLICKFELD DER FORSCHUNG 4 1.3 ZIELE DER UNTERSUCHUNG 11 2 MATERIAL UND METHODE 16 2.1 UNTERSUCHUNGSGEBIETE 16 2.1.1 DER WIRTSCHAFTSWALD LAHNBERGE (TK25: 5118) 17 2.1.2 DIE NATURWALDRESERVATE NIDDAHÄNGE UND SCHÖNBUCHE 19 2.1.2.1 Das Naturwaldreservat Niddahänge (TK25: 5421) 19 2.1.2.2 Das Naturwaldreservat Schönbuche (TK25: 5523) 21 2.1.3 TABELLARISCHE ÜBERSICHT DER DREI WALDSTANDORTE 22 2.2 DIE UNTERSUCHTEN PILZARTEN 22 2.3 METHODIK DER FRUCHTKÖRPERAUFSAMMLUNGEN 24 2.3.1 FRUCHTKÖRPERAUFSAMMLUNGEN VON MEGACOLLYBIA PLATYPHYLLA UND MARASMIUS ALLIACEUS 25 2.3.2 FRUCHTKÖRPERAUFSAMMLUNGEN VON PHOLIOTA AURIVELLA, PHOLIOTA SQUARROSA UND ARMILLARIA MELLEA AGG.26 2.4 METHODIK DER INSEKTENABSAMMLUNGEN UND KLASSIFIZIERUNG DER FRUCHTKÖRPER 26 2.5 METHODIK DER INSEKTENDETERMINATION 29 2.6 METHODIK DER ANALYSE DER KÄFERBESIEDLUNGEN DER FRUCHTKÖRPER VON MEGACOLLYBIA PLATYPHYLLA UND MARASMIUS ALLIACEUS 30 2.7 METHODIK DER FLUGKÄFIGVERSUCHE 34 2.8 METHODIK DER ANALYTISCH DESKRIPTIVEN UNTERSUCHUNGEN ZUR STRUKTUR DER INTERAKTIONSSYSTEME ZWISCHEN DEN STAPHYLINIDEN G. JOYIOIDES UND G. GENTILIS MIT DEN FRUCHTKÖRPERN VON MEGACOLLYBIA PLATYPHYLLA UND MARASMIUS ALLIACEUS 41 2.8.1 VERHALTENSWEISEN DER KÄFER 41 2.8.2 ENTWICKLUNGSZYKLUS DER KÄFER: AUFZUCHTVERSUCHE 42 2.9 METHODIK DER ANALYSE FRUCHTKÖRPERBESIEDELNDER INSEKTEN ALS VEKTOREN EINER PILZSPORENAUSBREITUNG 44 2.10 ALLGEMEINE METHODEN 48 2.10.1 METHODIK DER RASTERELEKTONENMIKROSKOPIE 48 2.10.2 STERILISATION DER EINGESETZTEN LÖSUNGEN UND GEGENSTÄNDE 48 3 ERGEBNISSE 49 3.1 AGARICOIDE FRUCHTKÖRPER ALS MIKROHABITAT FÜR INSEKTEN 49 3.2 UNTERSUCHUNG DER KÄFERBESIEDLUNG AN FRUCHTKÖRPERN VON MEGACOLLYBIA PLATYPHYLLA 58 3.2.1 ANALYSE VON EINFLUßFAKTOREN AUF DIE FRUCHTKÖRPERBESIEDLUNG VON MEGACOLLYBIA PLATYPHYLLA BEI DEN AUSGEWÄHLTEN KÄFERARTEN G. JOYIOIDES, G. GENTILIS, G. AFFINIS UND O. ALTERNANS 64 II Inhaltsverzeichnis 3.2.1.1 Betrachtung der Einflußgröße Untersuchungsgebiet 65 3.2.1 2 Betrachtung der Einflußgröße der Zeitkategorien „früh“ und „spät“ 67 3.2.1.3 Betrachtung abiotischer und biotischer Faktoren, die eine Käferbesiedlung an Basidiomen von Megacollybia platyphylla beeinflussen können 68 3.2.1.3.1 Betrachtung abiotischer Einflußfaktoren 69 3.2.1.3.1.1 Betrachtung des Einflußfaktors Regen 69 3.2.1.3.1.2 Betrachtung des Einflußfaktors Hutfläche 70 3.2.1.3.1.3 Betrachtung des Einflußfaktors Fruchtkörpergewicht 71 3.2.1.3.2 Betrachtung biotischer Einflußgrößen 72 3.2.1.3.2.1 Der Einflußfaktor Schneckenfraß 73 3.2.1.3.2.2 Der Einflußfaktor Dipterenlarvenfraß 73 3.2.1.3.2.3 Der Einflußfaktor Fruchtkörperalter 74 3.2.1.4 Betrachtung populationsbiologischer Faktoren bei der Käferansiedlung an Basidiomen von Megacollybia platyphylla 78 3.2.1.4.1 Aggregation 78 3.2.1.4.2 Konkurrenz 82 3.2.1.3.2.1 Qualitative Konkurrenzanalyse 82 3.2.1.4.2.2 Quantitative Konkurrenzanalyse 83 3.2.1.4.3 Geschlechterverhältnis 86 3.2.1.5 Zusammenfassung der Ergebnisse äußerer und populationsbiologischer Faktoren, die das Interaktionssystem zwischen Käfern und Fruchtkörpern von Megacollybia platyphylla beeinflussen 88 3.3 FRUCHTKÖRPERAUFSAMMLUNGEN VON MARASMIUS ALLIACEUS 90 3.3.1 KÄFERBESIEDLUNG AN FRUCHTKÖRPERN VON MARASMIUS ALLIACEUS 90 3.3.2 ANALYSE VON EINFLUßFAKTOREN AUF DIE BESIEDLUNG DER AUSGEWÄHLTEN KÄFERARTEN G. GENTILIS AN FRUCHTKÖRPERN VON MARASMIUS ALLIACEUS 93 3.3.2.1 Betrachtung des Einflußfaktors Untersuchungsgebiet 93 3.3.2.2 Betrachtung abiotischer und biotischer Faktoren, die eine Käferbesiedlung von G. gentilis an Fruchtkörpern von Marasmius alliaceus beeinflussen können 94 3.3.2.2.1 Betrachtung abiotischer Faktoren 94 3.3.2.2.1.1 Betrachtung der Einflußgröße Regen 94 3.3.2.2.1.2 Betrachtung des Einflußfaktors Hutfläche. 95 3.3.2.2.1.3 Betrachtung des Einflußfaktors Gewicht 95 3.3.2.2.2 Betrachtung biotischer Einflußfaktoren 96 3.3.2.2.2.1 Betrachtung des Einflußfaktors Schneckenfraß 96 3.3.2.2.2.2 Betrachtung des Einflußfaktors Dipterenlarvenfraß 96 3.3.2.2.2.3 Betrachtung des Einflußfaktors Fruchtkörperalter 97 3.3.3 BETRACHTUNG POPULATIONSBIOLOGISCHER FAKTOREN ZUR KÄFERANSIEDLUNG AN BASIDIOMEN VON MARASMIUS ALLIACEUS 99 3.3.3.1 Aggregation 100 3.3.3.2 Geschlechterverhältnis 101 3.3.4 ZUSAMMENFASSUNG DER ERGEBNISSE ÄUßERER UND POPULATIONSBIOLOGISCHER FAKTOREN, DIE DAS INTERAKTIONSSYSTEM ZWISCHEN KÄFERN UND FRUCHTKÖRPERN VON MARASMIUS ALLIACEUS BEEINFLUSSEN 102 3.4 ERGEBNISSE DES ORIENTIERUNGS- UND AGGREGATIONSVERHALTEN IM LABOREXPERIMENT: FLUGKÄFIGVERSUCHE 103 Inhaltsverzeichnis III 3.4.1 DIE ÄUßERE TEMPERATUR ALS EINFLUßGRÖßE BEI DER BESIEDLUNG DER PILZFRUCHTKÖRPER 104 3.4.2 AUSWERTUNG DER FLUGKÄFIGVERSUCHE 104 3.4.2.1 Untersuchung zur Diskriminierung der Pilzfruchtkörper in den Flugkäfigexperimenten (Hutfläche der Basidiome / Flugkäfigbodenfläche) 106 3.4.2.2 Untersuchung der Präferenz für einen Fruchtkörper (Aggregationsverhalten bei Mehrfachangebot von Basidiomen auf engem Raum) 107 3.4.2.3 Untersuchung einer Fruchtkörperpräferenz bei männlichen Tieren für Pilzfruchtkörper, die mit weiblichen Tieren vorbesiedelt waren 109 3.4.2.4 Untersuchung der Ansiedlungspräferenz bei Ziel- und Nichtzielpilzen 110 3.4.2.5 Untersuchung der Ansiedlugspräferenzen bei Basidiomen zweier Zielpilzarten: Megacollybia platyphylla und Marasmius alliaceus 110 3.4.3.6 Zusammenfassung der Ergebnisse der Flugkäfigversuche 111 3.5 DIE INTERAKTIONSSYSTEME DER STAPHYLINIDEN G. JOYIOIDES UND G. GENTILIS MIT DEN BASIDIOMEN VON MEGACOLLYBIA PLATYPHYLLA UND MARASMIUS ALLIACEUS 113 3.5.1 ANFLUG AUF PILZFRUCHTKÖRPER 113 3.5.2 AGGREGATION DER KÄFER AN PILZFRUCHTKÖRPERN 114 3.5.3 EINFLUß KLIMATISCHER FAKTOREN BEI DER KÄFERANSIEDLUNG AN PILZFRUCHTKÖRPERN 115 3.5.4 ANSIEDLUNG, VERTEILUNG UND NAHRUNGSAUFNAHME DER KÄFER AN PILZFRUCHTKÖRPERN 116 3.5.5 Fundorte und Fundzeiten: Gyrophaena spp. 118 3.5.6 ERGEBNISSE DER PAARBILDUNG (MATING), DER EIABLAGE UND DER LARVALENTWICKLUNG BEI G. JOYIOIDES UND G. GENTILIS 121 3.5.6.1 Paarbildung 121 3.5.6.2 Vergleich der Oviposition und späten Embryogenese bei G. joyioides und G. gentilis 121 3.5.6.2.1 Oviposition und späte Embryogenese bei G. joyioides 122 3.5.6.2.2 Oviposition und späte Embryogenese bei G. gentilis 125 3.5.6.3 Postembryonale Entwicklung bei Gyrophaena spp. 127 3.5.6.3.1 Das erste Larvenstadium 127 3.5.6.3.2 Das zweite und dritte Larvenstadium, das Puppenstadium und das Imaginalstadium 128 3.6 ERGEBNISSE DER UNTERSUCHUNG ZUR INSEKTENVERMITTELTEN SPORENAUSBREITUNG BEI DER ANSIEDLUNG AN AGARICOIDEN PILZFRUCHTKÖRPERN 136 3.6.1 SPORENAUSZÄHLUNGEN 136 3.6.2 ANALYSE DES PILZARTENSPEKTRUMS UND KEIMUNGSPOTENTIALS DER VON INSEKTEN ABGESPÜLTEN PILZSPOREN IM AMA-PLATTENTEST 140 3.7 ZUSAMMENFASSUNG DER ERGEBNISSE 146 4 DISKUSSION 149 4.1 FRUCHTKÖRPER AGARICOIDER PILZE ALS MIKROHABITAT FÜR INSEKTEN 149 4.1.1 POTENTIELLER FRUKTIFIKATIONSZEITRAUM 151 4.1.2 STETIGKEIT DES VORKOMMENS DER PILZFRUCHTKÖRPER 152 4.1.3 ABUNDANZ, FRUKTIFIKATIONSTYPEN 153 4.1.4 STABILITÄT VORHANDENER PILZFRUCHTKÖRPER (ALTER, TIERFRAß) 154 IV Inhaltsverzeichnis 4.1.5 SIND DIE BASIDIOME AGARICOIDER PILZE NICHT KALKULIERBARE EPHEMERE MIKROHABITATE FÜR INSEKTEN? 157 4.2 DAS KÄFER-MEGACOLLYBIA PLATYPHYLLA-INTERAKTIONSSYSTEM 160 4.2.1 ALLGEMEINE KÄFERBESIEDLUNG DER MEGACOLLYBIA PLATYPHYLLA-BASIDIOME 160 4.2.1.1 Besiedlungsvariabilität der Käferarten an Basidiomen von Megacollybia platyphylla 161 4.2.1.1.1 Myzetoxene 162 4.2.1.1.2 Myzetophile 163 4.2.1.1.3 Myzetobionten und Charakterarten 164 4.2.1.1.4 Besiedlungsschema 169 4.2.1.1.5 Zusammenfassung der Besiedlungsvariabilität der Käferarten an Basidiomen von Megacollybia platyphylla 170 4.2.1.2 Analysen der Bedeutung und der Auswirkung verschiedenartiger Einflußfaktoren auf die Besiedlungsstruktur ausgewählter Käferarten an Basidiomen von Megacollybia platyphylla 172 4.2.1.2.1 Abiotische Faktoren als Einflußgrößen bei der Besiedlung der Basidiome von Megacollybia platyphylla 173 4.2.1.2.1.1 Das Untersuchungsgebiet als Einflußgröße 173 4.2.1.2.1.2 Die Zeitkategorien „früh“ und „spät“ als Einflußgrößen innerhalb des potentiellen Fruktifikationszeitraumes von Megacollybia platyphylla 176 4.2.1.2.1.3 Weitere abiotischer Faktoren als Einflußgrößen auf das Interaktionssystem 177 4.2.1.2.1.3.1 Die Einflußgröße des Regens 177 4.2.1.2.1.3.2 Die Einflußgröße der Hutgröße 183 4.2.1.2.1.3.3 Die Einflußgröße des Fruchtkörpergewichts 184 4.2.1.2.1.4 Biotische Faktoren als Einflußgrößen auf das Interaktionssystem 185 4.2.1.2.1.4.1 Die Einflußgrößen Schnecken- und Dipteralarvenfraß 185 4.2.1.2.1.4.2 Die Einflußgröße des Fruchtkörperalters 188 4.2.1.2.2 Zusammenfassung der abiotischen und biotischen Faktoren in ihrem Einflußverhalten auf die Käferbesiedlung 191 4.2.1.2.3 Populationsbiologische Parameter als Einflußgrößen bei der Käferbesiedlung
Recommended publications
  • Functional Genetic Approaches to Provide Evidence for the Role of Toolkit Genes in the Evolution of Complex Color Patterns in Drosophila Guttifera
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA Mujeeb Olushola Shittu Michigan Technological University, [email protected] Copyright 2021 Mujeeb Olushola Shittu Recommended Citation Shittu, Mujeeb Olushola, "FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA", Open Access Dissertation, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1174 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Biology Commons, Developmental Biology Commons, Evolution Commons, Molecular Genetics Commons, and the Other Cell and Developmental Biology Commons FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA By Mujeeb Olushola Shittu A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Biochemistry and Molecular Biology MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 ©2021 Mujeeb Olushola Shittu This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Biochemistry and Molecular Biology. Department of Biological Sciences Dissertation Advisor: Dr. Thomas Werner Committee Member: Dr. Chandrashekhar
    [Show full text]
  • No Resistance to Male-Killing Wolbachia After Thousands of Years of Infection
    doi: 10.1111/j.1420-9101.2008.01607.x No resistance to male-killing Wolbachia after thousands of years of infection J. JAENIKE* & K. A. DYER *Department of Biology, University of Rochester, Rochester, NY, USA Department of Genetics; University of Georgia, Athens, GA, USA Keywords: Abstract coalescence; Maternally transmitted male-killing endosymbionts can exert strong and Drosophila innubila; relentless selection pressure on their hosts to evolve resistance to these endosymbionts; infections. Surveys of current infection prevalence and mtDNA diversity genetic variation; indicate that Drosophila innubila is and has been infected with male-killing natural selection; Wolbachia at moderate frequencies for extended evolutionary periods. Here, response to selection. we use coalescent simulations to infer the minimum age of the Wolbachia infection in this species, and estimate that the infection is at least 15 000 and perhaps over 700 000 years old. We also surveyed this species for genetic variation for resistance to the male-killing effects of infection. Our surveys revealed no evidence for any resistance polymorphism, such that all flies are completely susceptible to male killing. Given the general assumption that Drosophila can be selected for anything, the lack of resistance, despite thousands of years of strong selection, is an apparent evolutionary conun- drum. We hypothesize that resistance requires a mutation of major effect that acts early in development, and that the adverse pleiotropic consequences of such mutations in both infected and uninfected individuals may exceed the possible benefit to infected flies. infected males and uninfected females (Caspari & Wat- Introduction son, 1959). However, once CI-causing Wolbachia reach a The endosymbiotic bacterium Wolbachia may infect half high equilibrium prevalence of infection, there is little or more of all species of insects, spreading and persisting subsequent Wolbachia-induced mortality.
    [Show full text]
  • Abdominal Pigmentation Variation in Drosophila Polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 2005 Abdominal Pigmentation Variation in Drosophila polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography Jennifer A. Brisson University of Nebraska-Lincoln, [email protected] Daniela Cristina De Toni Universidade Federal De Santa Catarina, Brazil Ian Duncan Washington University in St Louis, [email protected] Alan R. Templeton Washington University in St Louis Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Brisson, Jennifer A.; De Toni, Daniela Cristina; Duncan, Ian; and Templeton, Alan R., "Abdominal Pigmentation Variation in Drosophila polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography" (2005). Faculty Publications in the Biological Sciences. 79. https://digitalcommons.unl.edu/bioscifacpub/79 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Evolution 59:5 (2005), pp. 1046–1059; doi: 10.1554/04-608 Copyright © 2005 The Society for the Study of Evolution. Used by permission. Submitted October 5, 2004; accepted February 21, 2005. Abdominal Pigmentation Variation in Drosophila polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography Jennifer A. Brisson,1 Daniela Cristina De Toni,2 Ian Duncan,1 and Alan R. Templeton 1 1 Department of Biology, Washington University, St. Louis, Missouri 63130 2 Universidade Federal De Santa Catarina, CCB/BEG, Florianopolis, Santa Catarina, Brazil Present address for J.
    [Show full text]
  • Wolbachiamediated Persistence of Mtdna from a Potentially Extinct
    Molecular Ecology (2011) 20, 2805–2817 doi: 10.1111/j.1365-294X.2011.05128.x Wolbachia-mediated persistence of mtDNA from a potentially extinct species KELLY A. DYER,* CRISTA BURKE†‡ and JOHN JAENIKE† *Department of Genetics, University of Georgia, Athens, GA 30602, USA, †Department of Biology, University of Rochester, Rochester, NY 14627, USA Abstract Drosophila quinaria is polymorphic for infection with Wolbachia, a maternally transmitted endosymbiont. Wolbachia-infected individuals carry mtDNA that is only distantly related to the mtDNA of uninfected individuals, and the clade encompassing all mtDNA haplotypes within D. quinaria also includes the mtDNA of several other species of Drosophila. Nuclear gene variation reveals no difference between the Wolbachia-infected and uninfected individuals of D. quinaria, indicating that they all belong to the same interbreeding biological species. We suggest that the Wolbachia and the mtDNA with which it is associated were derived via interspecific hybridization and introgression. The sequences in the Wolbachia and the associated mtDNA are ‡6% divergent from those of any known Drosophila species. Thus, in spite of nearly complete species sampling, the sequences from which these mitochondria were derived remain unknown, raising the possibility that the donor species is extinct. The association between Wolbachia infection and mtDNA type within D. quinaria suggests that Wolbachia may be required for the continued persistence of the mtDNA from an otherwise extinct Drosophila species. We hypothesize
    [Show full text]
  • PDF File Includes: 46 Main Text Supporting Information Appendix 47 Figures 1 to 4 Figures S1 to S7 48 Tables 1 to 2 Tables S1 to S2 49 50
    UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ This is a post-print version of the following article: Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens Vincent G. Martinson, Ryan M. R. Gawryluk, Brent E. Gowen, Caitlin I. Curtis, John Jaenike, & Steve J. Perlman December 2020 The final publication is available at: https://doi.org/10.1073/pnas.2000860117 Citation for this paper: Martinson, V. G., Gawryluk, R. M. R., Gowen, B. E., Curits, C. I., Jaenike, J., & Perlman, S. J. (2020). Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 31979-31986. https://doi.org/10.1073/pnas.2000860117. 1 Accepted Manuscript: 2 3 Martinson VG, Gawryluk RMR, Gowen BE, Curtis CI, Jaenike J, Perlman SJ. 2020. Multiple 4 origins of oBligate nematode and insect symBionts By a clade of Bacteria closely related to plant 5 pathogens. Proceedings of the National Academy of Sciences, USA. 117, 31979-31986. 6 doi/10.1073/pnas.2000860117 7 8 Main Manuscript for 9 Multiple origins of oBligate nematode and insect symBionts By memBers of 10 a newly characterized Bacterial clade 11 12 13 Authors. 14 Vincent G. Martinson1,2, Ryan M. R. Gawryluk3, Brent E. Gowen3, Caitlin I. Curtis3, John Jaenike1, Steve 15 J. Perlman3 16 1 Department of Biology, University of Rochester, Rochester, NY, USA, 14627 17 2 Department of Biology, University of New Mexico, AlBuquerque, NM, USA, 87131 18 3 Department of Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5 19 20 Corresponding author.
    [Show full text]
  • Felipe Bastos Rocha Orientador
    UNIVERSIDADE ESTADUAL DE CAMPINAS Felipe Bastos Rocha PIGMENTAÇÃO EM DROSOPHILA MEDIOPUNCTATA : PLASTICIDADE FENOTÍPICA E HERDABILIDADE . Tese apresentada ao Instituto de Biologia para obtenção do Título de Mestre em Genética e Biologia Molecular na área de Genética Animal e Evolução. Orientador: Prof. Dr. Louis Bernard Klaczko Campinas 2007 i UNIDADE ~ NOCHAM : c) UM CArr1/- C ~~c 1 . V.--_cc Ed. TOMBO" 1-~~ PROCj b - Il.{~:~ cC] .' cc~"i t I PREÇO JJ.l.Q~ I DATA(4:: < ( O t- I I BIB-IO ~ .., ~ . I t I . FICHA CATALOGRÁFICA ELABORADAPELA I BIBLIOTECA DO INSTITUTO DE BIOLOGIA- UNICAMP J Rocha, Felipe Bastos " R582p Pigmentação em Drosophila medíopunctata: plasticidade fenotípica e herdabilidade / Felipe Bastos Rocha, - Campinas, SP: [s.n.], 2007. Orientador: Louis Bernard Klaczko. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia. / 1. Fenótipo. 2. Adaptação (BiOIOgia). N Jmade " '/ reação. 4. Inversão cromossômica. 5. CfW l'rt"Y')'>Oí'rOS - p~ mOI1/h''-Q:'cromossõmico.I. Klaczko,LouisBernard.~c Universidade Estadual de Campinas. Instituto de Biologia. 111.Título. (rcdt/ib) Título em inglês: Pigmentation in Drosophila medíopunctata: phenotypic plasticity and heritability . Palavras-chave em inglês: Phenotype; Adaptation (Biology); Reaction norm; Chromosome inversions; Chromosome polymorphism. Área de concentração: Genética Animal e Evolução. Titulação: Mestre em Genética e Biologia Molecular. Banca examinadora: Louis Bernard Klaczko, Vera Nisaka Solferini, Vera Lúcia da Silva Valente Gaiesky. Data da defesa: 13/02/2007. Programa de Pós-Graduação: Genética e Biologia Molecular. ? Campinas, 13 de fevereiro de 2007. Banca Examinadora Prof. Dr. Louis Bernard Klaczko (Orientador) _____________________________ (Titular) Assinatura Profa. Dra. Vera Nisaka Solferini (Titular) Assinatura Profa. Dra. Vera Lúcia da Silva Valente Gaiesky (Titular) Assinatura Profa.
    [Show full text]
  • The Modular Expression Patterns of Three Pigmentation Genes Prefigure Unique Abdominal Morphologies Seen Among Three Drosophila Species
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 12-1-2020 The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species William A. Dion Michigan Technological University, [email protected] Mujeeb O. Shittu Michigan Technological University, [email protected] Tessa Steenwinkel Michigan Technological University, [email protected] Komal K.B. Raja Michigan Technological University Prajakta P. Kokate Michigan Technological University, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Biology Commons Recommended Citation Dion, W. A., Shittu, M., Steenwinkel, T., Raja, K., Kokate, P., & Werner, T. (2020). The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species. Gene Expression Patterns, 38. http://doi.org/10.1016/j.gep.2020.119132 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/2618 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Biology Commons Authors William A. Dion, Mujeeb O. Shittu, Tessa Steenwinkel, Komal K.B. Raja, Prajakta P. Kokate, and Thomas Werner This article is available at Digital Commons @ Michigan Tech: https://digitalcommons.mtu.edu/michigantech-p/2618 Gene Expression Patterns 38 (2020) 119132 Contents lists available at ScienceDirect Gene Expression Patterns journal homepage:
    [Show full text]
  • An All-Taxa Biodiversity Inventory of the Huron Mountain Club
    AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Version: August 2016 Cite as: Woods, K.D. (Compiler). 2016. An all-taxa biodiversity inventory of the Huron Mountain Club. Version August 2016. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. Table of Contents INTRODUCTION 5 SOURCES 7 DOMAIN BACTERIA 11 KINGDOM MONERA 11 DOMAIN EUCARYA 13 KINGDOM EUGLENOZOA 13 KINGDOM RHODOPHYTA 13 KINGDOM DINOFLAGELLATA 14 KINGDOM XANTHOPHYTA 15 KINGDOM CHRYSOPHYTA 15 KINGDOM CHROMISTA 16 KINGDOM VIRIDAEPLANTAE 17 Phylum CHLOROPHYTA 18 Phylum BRYOPHYTA 20 Phylum MARCHANTIOPHYTA 27 Phylum ANTHOCEROTOPHYTA 29 Phylum LYCOPODIOPHYTA 30 Phylum EQUISETOPHYTA 31 Phylum POLYPODIOPHYTA 31 Phylum PINOPHYTA 32 Phylum MAGNOLIOPHYTA 32 Class Magnoliopsida 32 Class Liliopsida 44 KINGDOM FUNGI 50 Phylum DEUTEROMYCOTA 50 Phylum CHYTRIDIOMYCOTA 51 Phylum ZYGOMYCOTA 52 Phylum ASCOMYCOTA 52 Phylum BASIDIOMYCOTA 53 LICHENS 68 KINGDOM ANIMALIA 75 Phylum ANNELIDA 76 Phylum MOLLUSCA 77 Phylum ARTHROPODA 79 Class Insecta 80 Order Ephemeroptera 81 Order Odonata 83 Order Orthoptera 85 Order Coleoptera 88 Order Hymenoptera 96 Class Arachnida 110 Phylum CHORDATA 111 Class Actinopterygii 112 Class Amphibia 114 Class Reptilia 115 Class Aves 115 Class Mammalia 121 INTRODUCTION No complete species inventory exists for any area.
    [Show full text]
  • Cellular/Molecular Analysis of Interspecies Sterile Male Hybrids in Drosophila
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-15-2017 12:00 AM Cellular/Molecular Analysis of Interspecies Sterile Male Hybrids In Drosophila Rachelle L. Kanippayoor The Unviersity of Western Ontario Supervisor Dr Amanda Moehring The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Rachelle L. Kanippayoor 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biodiversity Commons, Biology Commons, Cell Biology Commons, Evolution Commons, and the Molecular Genetics Commons Recommended Citation Kanippayoor, Rachelle L., "Cellular/Molecular Analysis of Interspecies Sterile Male Hybrids In Drosophila" (2017). Electronic Thesis and Dissertation Repository. 4647. https://ir.lib.uwo.ca/etd/4647 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Over time, genetic differences can accumulate between populations that are geographically separated. This genetic divergence can lead to the evolution of reproductive isolating mechanisms that reduce gene flow between the populations and, upon secondary contact, result in distinct species. The process of speciation is, thus, what accounts for the multitude of species that contribute to the rich biodiversity on Earth. Interspecies hybrid sterility is a postzygotic isolating mechanism that affects the development of hybrids, rendering them sterile. A notable trend, known as Haldane's rule, describes how heterogametic individual hybrids (e.g.
    [Show full text]
  • THE NONSENSE SUPPRESSOR Newsletter of the Department of Biology College of Arts & Science University of Rochester Rochester, NY 14627-0211
    December 2003 Volume 19, Number 1 THE NONSENSE SUPPRESSOR Newsletter of the Department of Biology College of Arts & Science University Of Rochester Rochester, NY 14627-0211 Newest Biology Faculty Researcher Explores Chromatin Domains and Boundaries The Biology Department welcomes its newest about their molecular composition and the mecha- faculty member, Assistant Professor Xin Bi. Xin and nisms by which distinct chromatin domains are orga- his group moved to Rochester from the Department of nized and maintained. In a series of studies of the si- Biochemistry at University of Nebraska-Lincoln in lenced chromatin loci in the yeast Saccharomyces cere- July. The Bi group (research technician Joseph Sand- visiae, Xin and colleagues have been identifying DNA meier; two graduate students, Qun Yu and Yanfei sequences that block the spread of silent chromatin. Zou; and a post- Their evidence suggests that multiple mechanisms Doris Kist, Production Editor doctoral fellow, may be involved, including specific DNA structures Cheeptip Benyajati, Reviewing Hengping Xu) has (http://www.rochester.edu/College/BIO/faculty/Bi. Editor and Photographer settled in their html). TEL: 585/275-3850 newly designed FAX: 585/275-2070 lab space in The EMAIL: Hutchison 304. path that [email protected] The team contin- led Xin to ues their NIH- Rochester, IN THIS ISSUE funded research New York on heterochro- began in COVER matin domains Jinan, a and boundary town in Xin Bi joins Biology faculty to do elements in the Shangdong yeast research yeast model sys- Province, tem. China. Like ONGOING RESEARCH Eukaryotes all future Adam Mason, p. 2 organize their scientists, Naina Phadnis, p.
    [Show full text]
  • Multiple Origins of Obligate Nematode and Insect Symbionts by by a Clade of Bacteria Closely Related to Plant Pathogens
    Multiple origins of obligate nematode and insect symbionts by by a clade of bacteria closely related to plant pathogens Vincent G. Martinsona,b,1, Ryan M. R. Gawrylukc, Brent E. Gowenc, Caitlin I. Curtisc, John Jaenikea, and Steve J. Perlmanc aDepartment of Biology, University of Rochester, Rochester, NY, 14627; bDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; and cDepartment of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved October 10, 2020 (received for review January 15, 2020) Obligate symbioses involving intracellular bacteria have trans- the symbiont Sodalis has independently given rise to numer- formed eukaryotic life, from providing aerobic respiration and ous obligate nutritional symbioses in blood-feeding flies and photosynthesis to enabling colonization of previously inaccessible lice, sap-feeding mealybugs, spittlebugs, hoppers, and grain- niches, such as feeding on xylem and phloem, and surviving in feeding weevils (9). deep-sea hydrothermal vents. A major challenge in the study of Less studied are young obligate symbioses in host lineages that obligate symbioses is to understand how they arise. Because the did not already house obligate symbionts (i.e., “symbiont-naive” best studied obligate symbioses are ancient, it is especially chal- hosts) (10). Some of the best known examples originate through lenging to identify early or intermediate stages. Here we report host manipulation by the symbiont via addiction or reproductive the discovery of a nascent obligate symbiosis in Howardula aor- control. Addiction or dependence may be a common route for onymphium, a well-studied nematode parasite of Drosophila flies.
    [Show full text]
  • A Phylogenetic Examination of Host Use Evolution in the Quinaria and Testacea Groups of Drosophila T ⁎ ⁎ Clare H
    Molecular Phylogenetics and Evolution 130 (2019) 233–243 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenetic examination of host use evolution in the quinaria and testacea groups of Drosophila T ⁎ ⁎ Clare H. Scott Chialvoa, , Brooke E. Whiteb, Laura K. Reeda, Kelly A. Dyerb, a Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA b Department of Genetics, University of Georgia, Athens, GA 30602, USA ARTICLE INFO ABSTRACT Keywords: Adaptive radiations provide an opportunity to examine complex evolutionary processes such as ecological Ancestral state reconstruction specialization and speciation. While a well-resolved phylogenetic hypothesis is critical to completing such stu- Mycophagy dies, the rapid rates of evolution in these groups can impede phylogenetic studies. Here we study the quinaria Host specialization and testacea species groups of the immigrans-tripunctata radiation of Drosophila, which represent a recent adaptive Phylogeny radiation and are a developing model system for ecological genetics. We were especially interested in under- Drosophila standing host use evolution in these species. In order to infer a phylogenetic hypothesis for this group we sampled loci from both the nuclear genome and the mitochondrial DNA to develop a dataset of 43 protein-coding loci for these two groups along with their close relatives in the immigrans-tripunctata radiation. We used this dataset to examine their evolutionary relationships along with the evolution of feeding behavior. Our analysis recovers strong support for the monophyly of the testacea but not the quinaria group. Results from our ancestral state reconstruction analysis suggests that the ancestor of the testacea and quinaria groups exhibited mushroom- feeding.
    [Show full text]