A Phylogenetic Examination of Host Use Evolution in the Quinaria and Testacea Groups of Drosophila T ⁎ ⁎ Clare H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five New Species of the Drosophila Tripunctata Group (Diptera: Drosophilidae) from Podocarpus National Park, Ecuador
European Journal of Taxonomy 494: 1–18 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.494 www.europeanjournaloftaxonomy.eu 2019 · Peñafi el-Vinueza A.D. & Rafael V. This work is licensed under a Creative Commons Attribution Licence (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:60C94F41-D9CB-471A-BAB7-2D558F2D3357 Five new species of the Drosophila tripunctata group (Diptera: Drosophilidae) from Podocarpus National Park, Ecuador Ana Danitza PEÑAFIEL-VINUEZA 1,* & Violeta RAFAEL 2 1,2 Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas y Naturales, Pontifi cia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo. 17-01-2184, Quito, Ecuador. * Corresponding author: adpenafi [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:AA6AB8E4-4693-4F78-A563-7D911653FB1F 2 urn:lsid:zoobank.org:author:F1427026-0505-4267-A662-C47DCAE4109C Abstract. Five new species of the genus Drosophila Fallén, 1823 belonging to the tripunctata group are described and illustrated: D. warmi sp. nov., D. kurillakta sp. nov., D. chichu sp. nov., D. saraguru sp. nov. and D. ayauma sp. nov. from the forests of Podocarpus National Park. The fi rst species is ascribed to subgroup II of Frota-Pessoa (1954), the second species to subgroup IV, and the last three species are not assigned to any subgroup. The fl ies were captured using plastic bottles containing pieces of yeast fermented banana. Keywords. Cloud forest, tripunctata radiation, terminalia, southern Ecuador, taxonomy. Peñafi el-Vinueza A.D. & Rafael V. 2019. Five new species of the Drosophila tripunctata group (Diptera: Drosophilidae) from Podocarpus National Park, Ecuador. -
The DNA Virus Invertebrate Iridescent Virus 6 Is a Target of the Drosophila Rnai Machinery
The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery Alfred W. Bronkhorsta,1, Koen W. R. van Cleefa,1, Nicolas Vodovarb,2, Ikbal_ Agah Ince_ c,d,e, Hervé Blancb, Just M. Vlakc, Maria-Carla Salehb,3, and Ronald P. van Rija,3 aDepartment of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation, and Immunity, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands; bViruses and RNA Interference Group, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3015, 75015 Paris, France; cLaboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands; dDepartment of Genetics and Bioengineering, Yeditepe University, Istanbul 34755, Turkey; and eDepartment of Biosystems Engineering, Faculty of Engineering, Giresun University, Giresun 28100, Turkey Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved October 19, 2012 (received for review April 28, 2012) RNA viruses in insects are targets of an RNA interference (RNAi)- sequently, are hypersensitive to virus infection and succumb more based antiviral immune response, in which viral replication inter- rapidly than their wild-type (WT) controls (11–14). mediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) Small RNA cloning and next-generation sequencing provide into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus detailed insights into vsiRNA biogenesis. In several studies in infections are controlled by the RNAi pathway remains to be insects, the polarity of the vsiRNA population deviates strongly determined. Here, we analyzed the role of RNAi in DNA virus from the highly skewed distribution of positive strand (+) over infection using Drosophila melanogaster infected with Invertebrate negative (−) viral RNAs that is generally observed in (+) RNA iridescent virus 6 (IIV-6) as a model. -
Functional Genetic Approaches to Provide Evidence for the Role of Toolkit Genes in the Evolution of Complex Color Patterns in Drosophila Guttifera
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA Mujeeb Olushola Shittu Michigan Technological University, [email protected] Copyright 2021 Mujeeb Olushola Shittu Recommended Citation Shittu, Mujeeb Olushola, "FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA", Open Access Dissertation, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1174 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Biology Commons, Developmental Biology Commons, Evolution Commons, Molecular Genetics Commons, and the Other Cell and Developmental Biology Commons FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA By Mujeeb Olushola Shittu A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Biochemistry and Molecular Biology MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 ©2021 Mujeeb Olushola Shittu This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Biochemistry and Molecular Biology. Department of Biological Sciences Dissertation Advisor: Dr. Thomas Werner Committee Member: Dr. Chandrashekhar -
Research Techniques in Animal Ecology
Research Techniques in Animal Ecology Methods and Cases in Conservation Science Mary C. Pearl, Editor Methods and Cases in Conservation Science Tropical Deforestation: Small Farmers and Land Clearing in the Ecuadorian Amazon Thomas K. Rudel and Bruce Horowitz Bison: Mating and Conservation in Small Populations Joel Berger and Carol Cunningham, Population Management for Survival and Recovery: Analytical Methods and Strategies in Small Population Conservation Jonathan D. Ballou, Michael Gilpin, and Thomas J. Foose, Conserving Wildlife: International Education and Communication Approaches Susan K. Jacobson Remote Sensing Imagery for Natural Resources Management: A First Time User’s Guide David S. Wilkie and John T. Finn At the End of the Rainbow? Gold, Land, and People in the Brazilian Amazon Gordon MacMillan Perspectives in Biological Diversity Series Conserving Natural Value Holmes Rolston III Series Editor, Mary C. Pearl Series Advisers, Christine Padoch and Douglas Daly Research Techniques in Animal Ecology Controversies and Consequences Luigi Boitani and Todd K. Fuller Editors C COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 2000 by Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data Research techniques in animal ecology : controversies and consequences / Luigi Boitani and Todd K. Fuller, editors. p. cm. — (Methods and cases in conservation science) Includes bibliographical references (p. ). ISBN 0–231–11340–4 (cloth : alk. paper)—ISBN 0–231–11341–2 (paper : alk. paper) 1. Animal ecology—Research—Methodology. I. Boitani, Luigi. II. Fuller, T. K. III. Series. QH541.2.R47 2000 591.7′07′2—dc21 99–052230 ϱ Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. -
Wolbachia-Driven Selective Sweep in a Range Expanding Insect Species
Wolbachia-driven selective sweep in a range expanding insect species Junchen Deng Lunds Universitet Giacomo Assandri Istituto Superiore per la Protezione e la Ricerca Ambientale Pallavi Chauhan Lunds Universitet Ryo Futahashi Trukuba Andrea Galimberti University of Milano–Bicocca: Universita degli Studi di Milano-Bicocca Bengt Hansson Lunds Universitet Lesley Lancaster University of Aberdeen Yuma Takahashi Chiba University graduate school of science Erik I Svensson Lund University: Lunds Universitet Anne Duplouy ( anne.duplouy@helsinki. ) University of Helsinki: Helsingin Yliopisto https://orcid.org/0000-0002-7147-5199 Research article Keywords: Endosymbiosis, phylogeography, damsely, mitochondria, genetic diversity Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-150504/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct tness benets, or by manipulating its host reproduction to favour infected over uninfected females. Under sucient selective advantage, the mitochondrial haplotype associated with the favoured symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. The common bluetail damsely (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism of the genetics and genomic signatures of range expansion during climate change. -
No Resistance to Male-Killing Wolbachia After Thousands of Years of Infection
doi: 10.1111/j.1420-9101.2008.01607.x No resistance to male-killing Wolbachia after thousands of years of infection J. JAENIKE* & K. A. DYER *Department of Biology, University of Rochester, Rochester, NY, USA Department of Genetics; University of Georgia, Athens, GA, USA Keywords: Abstract coalescence; Maternally transmitted male-killing endosymbionts can exert strong and Drosophila innubila; relentless selection pressure on their hosts to evolve resistance to these endosymbionts; infections. Surveys of current infection prevalence and mtDNA diversity genetic variation; indicate that Drosophila innubila is and has been infected with male-killing natural selection; Wolbachia at moderate frequencies for extended evolutionary periods. Here, response to selection. we use coalescent simulations to infer the minimum age of the Wolbachia infection in this species, and estimate that the infection is at least 15 000 and perhaps over 700 000 years old. We also surveyed this species for genetic variation for resistance to the male-killing effects of infection. Our surveys revealed no evidence for any resistance polymorphism, such that all flies are completely susceptible to male killing. Given the general assumption that Drosophila can be selected for anything, the lack of resistance, despite thousands of years of strong selection, is an apparent evolutionary conun- drum. We hypothesize that resistance requires a mutation of major effect that acts early in development, and that the adverse pleiotropic consequences of such mutations in both infected and uninfected individuals may exceed the possible benefit to infected flies. infected males and uninfected females (Caspari & Wat- Introduction son, 1959). However, once CI-causing Wolbachia reach a The endosymbiotic bacterium Wolbachia may infect half high equilibrium prevalence of infection, there is little or more of all species of insects, spreading and persisting subsequent Wolbachia-induced mortality. -
Abdominal Pigmentation Variation in Drosophila Polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 2005 Abdominal Pigmentation Variation in Drosophila polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography Jennifer A. Brisson University of Nebraska-Lincoln, [email protected] Daniela Cristina De Toni Universidade Federal De Santa Catarina, Brazil Ian Duncan Washington University in St Louis, [email protected] Alan R. Templeton Washington University in St Louis Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Brisson, Jennifer A.; De Toni, Daniela Cristina; Duncan, Ian; and Templeton, Alan R., "Abdominal Pigmentation Variation in Drosophila polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography" (2005). Faculty Publications in the Biological Sciences. 79. https://digitalcommons.unl.edu/bioscifacpub/79 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Evolution 59:5 (2005), pp. 1046–1059; doi: 10.1554/04-608 Copyright © 2005 The Society for the Study of Evolution. Used by permission. Submitted October 5, 2004; accepted February 21, 2005. Abdominal Pigmentation Variation in Drosophila polymorpha: Geographic Variation in the Trait, and Underlying Phylogeography Jennifer A. Brisson,1 Daniela Cristina De Toni,2 Ian Duncan,1 and Alan R. Templeton 1 1 Department of Biology, Washington University, St. Louis, Missouri 63130 2 Universidade Federal De Santa Catarina, CCB/BEG, Florianopolis, Santa Catarina, Brazil Present address for J. -
Finding of Male-Killing Spiroplasma Infecting Drosophila Melanogaster in Africa Implies Transatlantic Migration of This Endosymbiont
Heredity (2006) 97, 27–32 & 2006 Nature Publishing Group All rights reserved 0018-067X/06 $30.00 www.nature.com/hdy Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont JE Pool, A Wong and CF Aquadro Department of Molecular Biology and Genetics, Cornell University, 233 Biotechnology Building, Ithaca, NY 14853, USA We report the identification of male-killing Spiroplasma in a efficiency appear to increase with female age, and we note wild-caught female Drosophila melanogaster from Uganda, that males born in sex ratio broods display much lower the first such infection to be found in this species outside survivorship than their female siblings. DNA sequence of South America. Among 38 female flies collected from comparisons at three loci suggest that this Spiroplasma Namulonge, Uganda in April, 2005, one produced a total strain is closely related to the male-killing strain previously of 41 female offspring but no males. PCR testing of found to infect D. melanogaster in Brazil, although part of subsequent generations revealed that females retaining one locus appears to show a recombinant history. Implica- Spiroplasma infection continued to produce a large excess tions for the origin and history of male-killing Spiroplasma in of female progeny, while females that had lost Spiroplasma D. melanogaster are discussed. produced offspring with normal sex ratios. Consistent with Heredity (2006) 97, 27–32. doi:10.1038/sj.hdy.6800830; earlier work, we find that male-killing and transmission published online 10 May 2006 Keywords: Spiroplasma; male-killing; Drosophila melanogaster; Africa; migration Introduction few hundred years (David and Capy, 1988). -
Finnegan Thesis Minus Appendices
The effect of sex-ratio meiotic drive on sex, survival, and size in the Malaysian stalk-eyed fly, Teleopsis dalmanni Sam Ronan Finnegan A dissertation submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy University College London 26th February 2020 1 I, Sam Ronan Finnegan, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Acknowledgements Thank you first of all to Natural Environment Research Council (NERC) for funding this PhD through the London NERC DTP, and also supporting my work at the NERC Biomolecular Analysis Facility (NBAF) via a grant. Thank you to Deborah Dawson, Gav Horsburgh and Rachel Tucker at the NBAF for all of their help. Thanks also to ASAB and the Genetics Society for funding two summer students who provided valuable assistance and good company during busy experiments. Thank you to them – Leslie Nitsche and Kiran Lee – and also to a number of undergraduate project students who provided considerable support – Nathan White, Harry Kelleher, Dixon Koh, Kiran Lee, and Galvin Ooi. It was a pleasure to work with you all. Thank you also to all of the members of the stalkie lab who have come before me. In particular I would like to thank Lara Meade, who has always been there for help and advice. Special thanks also to Flo Camus for endless aid and assistance when it came to troubleshooting molecular work. Thank you to the past and present members of the Drosophila group – Mark Hill, Filip Ruzicka, Flo Camus, and Michael Jardine. -
Loss of Reproductive Parasitism Following Transfer of Male-Killing Wolbachia to Drosophila Melanogaster and Drosophila Simulans
Heredity (2012) 109, 306–312 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy ORIGINAL ARTICLE Loss of reproductive parasitism following transfer of male-killing Wolbachia to Drosophila melanogaster and Drosophila simulans Z Veneti1,2,8, S Zabalou3,8, G Papafotiou4, C Paraskevopoulos5, S Pattas3, I Livadaras1, G Markakis3, JK Herren6,7, J Jaenike6 and K Bourtzis4,5,9 Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D. simulans usually induce cytoplasmic incompatibility (CI). In this study, we transferred wInn to D. melanogaster and D. simulans by embryonic microinjection, expecting conservation of the male-killing phenotype to the novel hosts, which are more suitable for genetic analysis. In contrast to our expectations, there was no effect on offspring sex ratio. Furthermore, no CI was observed in the transinfected flies. Overall, transinfected D. melanogaster lines displayed lower transmission rate and lower densities of Wolbachia than transinfected D. simulans lines, in which established infections were transmitted with near-perfect fidelity. In D. simulans, strain wInn had no effect on fecundity and egg-to-adult development. Surprisingly, one of the two transinfected lines tested showed increased longevity. We discuss our results in the context of host-symbiont co-evolution and the potential of symbionts to invade novel host species. Heredity (2012) 109, 306–312; doi:10.1038/hdy.2012.43; published online 15 August 2012 Keywords: Wolbachia; symbiosis; male-killing; cytoplasmic incompatibility INTRODUCTION prevalence of infection. -
Selection and Demography Shape Genomic Variation in a ‘Sky Island’ Species
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.096008; this version posted May 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Selection and demography shape genomic variation in a ‘Sky Island’ species Tom Hill1*, Robert L. Unckless1 1. 4055 Haworth Hall, The Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045. Email: [email protected] * Corresponding author Keywords: Drosophila innubila, local adaptation, phylogeography, inversions 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.096008; this version posted May 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Over time, populations of species can expand, contract, and become isolated, creating subpopulations that 3 can adapt to local conditions. Understanding how species adapt following these changes is of great interest, 4 especially as the current climate crisis has caused range shifts for many species. Here, we characterize how 5 Drosophila innubila came to inhabit and adapt to its current range: mountain forests in southwestern USA 6 separated by large expanses of desert. Using population genomic data from more than 300 wild-caught 7 individuals, we examine four distinct populations to determine their population history in these mountain- 8 forests, looking for signatures of local adaptation to establish a genomic model for this spatially-distributed 9 system with a well understood ecology. -
PDF File Includes: 46 Main Text Supporting Information Appendix 47 Figures 1 to 4 Figures S1 to S7 48 Tables 1 to 2 Tables S1 to S2 49 50
UVicSPACE: Research & Learning Repository _____________________________________________________________ Faculty of Science Faculty Publications _____________________________________________________________ This is a post-print version of the following article: Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens Vincent G. Martinson, Ryan M. R. Gawryluk, Brent E. Gowen, Caitlin I. Curtis, John Jaenike, & Steve J. Perlman December 2020 The final publication is available at: https://doi.org/10.1073/pnas.2000860117 Citation for this paper: Martinson, V. G., Gawryluk, R. M. R., Gowen, B. E., Curits, C. I., Jaenike, J., & Perlman, S. J. (2020). Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 31979-31986. https://doi.org/10.1073/pnas.2000860117. 1 Accepted Manuscript: 2 3 Martinson VG, Gawryluk RMR, Gowen BE, Curtis CI, Jaenike J, Perlman SJ. 2020. Multiple 4 origins of oBligate nematode and insect symBionts By a clade of Bacteria closely related to plant 5 pathogens. Proceedings of the National Academy of Sciences, USA. 117, 31979-31986. 6 doi/10.1073/pnas.2000860117 7 8 Main Manuscript for 9 Multiple origins of oBligate nematode and insect symBionts By memBers of 10 a newly characterized Bacterial clade 11 12 13 Authors. 14 Vincent G. Martinson1,2, Ryan M. R. Gawryluk3, Brent E. Gowen3, Caitlin I. Curtis3, John Jaenike1, Steve 15 J. Perlman3 16 1 Department of Biology, University of Rochester, Rochester, NY, USA, 14627 17 2 Department of Biology, University of New Mexico, AlBuquerque, NM, USA, 87131 18 3 Department of Biology, University of Victoria, Victoria, BC, Canada, V8W 3N5 19 20 Corresponding author.