Atmospheric Science Volume 4, December 2008

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric Science Volume 4, December 2008 Department of Atmospheric Science Volume 4, December 2008 Greetings, Alumni New Faculty Join Department and Friends! Sue van den Heever “I would describe my research areas elcome to our 2008 as convective storms, mesoscale annual newsletter. We modeling, and aerosol impacts,” Whave witnessed major says Sue van den Heever. Her changes in the Department in primary research interest is the the past few years, highlighted investigation of convective storms. by the arrival of five new faculty: She uses numerical models in order Takamitsu Ito in 2007 and Colette to better understand such systems. Heald, Eric Maloney, Sue van den She is also researching the impact Heever, and Thomas Birner in 2008. of aerosols on the microphysical This exceptional group of new and precipitation properties of faculty brings to the Department a these storms, as well as on the storm broad range of expertise in both the dynamics, including the severity of oceanic and atmospheric sciences. a storm and the strength of the updraft. Their research activities are featured in both this and last year’s Van den Heever’s research goals include simulating systems editions of the newsletter. like supercell storms, squall lines, and mesoscale convective Foremost among the milestones of the past year have been systems in order to further understand the relationships between continued, significant research advances in our field associated storm dynamics and microphysics and the role of the cold pool with the completion of 18 master’s and 14 doctoral degrees in in such systems. A related research focus is to enhance our 2008. Exciting data continue to pour in from CloudSat, now into understanding of the impact of dust and aerosols on severe its third year of operation. The Center for Multiscale Modeling convective storms and their feedbacks using cloud-resolving of Atmospheric Processes (CMMAP) is making major strides models. in representing the effects of clouds in global climate models. Van den Heever flew as a flight scientist in the P3 into storms Ground was broken in Spring 2008 on a new building to house over Florida. The field program she participated in was called CMMAP scientists and staff. The NSF CHILL National Weather “CRYSTAL FACE” and was sponsored by NASA. Van den Heever Radar facility in Greeley upgraded its antenna to allow improved participated in the program over a period of several weeks. “We detection of storms and precipitation. The atmosphere, aerosol, were bounced around, it was very interesting and exciting,” says and cloud chemistry groups are making headway on difficult Van den Heever. While they were making flights into storms, atmospheric chemistry problems through field campaigns, there was a Saharan dust event in Florida. “We were fortunate, laboratory work, and numerical modeling. Finally, 2008 has seen we had convection and dust. Not only did we get to examine the the Community Collaborative Rain, Hail, and Snow Network characteristics of tropical convective storms, we also got to look (CoCoRaHS) grow to 36 states and more than 10,000 observers. at the impact of Saharan dust on those storms,” says Van den Atmospheric Science students, staff, and faculty continue to Heever. advance the frontiers in many areas of our field. Our graduates Van den Heever earned her M.S. at the University of the continue to find challenging leadership positions around the Witwatersrand in Johannesburg, South Africa. She came to country and world. I invite all graduates and friends to attend the Colorado State initially because of the work Bill Cotton was Atmospheric Science Reception at the AMS Annual Meeting on doing in the area of severe storms and cloud resolving models. Tuesday, Jan. 13, 2009, 5:30-8:00 p.m., in Phoenix. Van den Heever earned her Ph.D. at CSU in 2001. She admits to a lifelong interest in weather, beginning at age three when she asked her mother, “Why do the clouds stay up in the sky, why don’t they fall down?” Richard Johnson continued on Page 2 Alumni Reception Join us for the Atmospheric Science Alumni Reception in Phoenix, Ariz., Jan. 13, 2009, during the AMS Annual Meeting. See old friends, catch up with faculty members, and have a great time during an evening of hors d’oeuvres and drinks from 5:30-8:00 p.m. at the Hyatt Regency Phoenix, in the Cowboy Artist Room. New Faculty Join Department continued from Page 1 Colette Heald “One of my overarching research goals is a better Colette Heald’s research focus understanding of what controls tropical precipitation, why is bringing together models and precipitation occurs in one area and not in another. Our climate observations to better understand models don’t do particularly well in simulating some aspects atmospheric composition as it of tropical precipitation. Improving our model simulations is relates to climate and air quality. one of my goals, and this includes a strong interest in ocean/ “As an atmospheric chemist, I atmospheric interactions,” says Maloney. am interested in how gases and Maloney earned his Ph.D. at the University of Washington, particles get into the atmosphere, Seattle. “I was attracted to Colorado State’s Department of how they are transformed and Atmospheric Science by the overall quality of the faculty and lost, and their ultimate impact on graduate students here,” says Maloney. Maloney was also air quality and the global climate attracted to CSU by the CMMAP Project. One of CMMAP’s system. This involves understanding goals is to improve the parameterization of clouds in climate both the natural atmosphere and models. how human activities have perturbed this system. To learn about Maloney said he became fascinated with weather growing the composition of the atmosphere, I use observations from up as a kid. “I grew up in the suburbs of Chicago, a place of satellites, aircraft, and ground stations to try to understand what interesting weather extremes. It has blizzards, hail, tornados – processes are missing from our state-of-the-art models,” says I once videotaped a tornado from my own front yard,” says Heald. Maloney. Heald’s research goals are to advance our understanding of the global composition of the atmosphere and to investigate Thomas Birner the interactions between the biosphere and atmospheric Thomas Birner’s main research composition. interest is in the global tropopause Heald is from Canada, and her undergraduate work was in region. This is the area of engineering physics at Queen’s University. She earned her Ph.D. intersection between the turbulent in earth and planetary science from Harvard in 2005, and she was troposphere and the stably stratified a NOAA Climate and Global Change Postdoctoral Fellow at the stratosphere. University of California at Berkeley. “This is a very delicate region Heald says she came to CSU because, “the Department of that is only a few kilometers thick Atmospheric Science has a very strong graduate program. There and has distinctive chemical and are a large number of talented people here at one location. It dynamical characteristics. For makes for an exciting environment in which to do research.” example, the tropical tropopause Heald credits her sister’s work in aerospace engineering with determines how much water inspiring her to pursue a career in the engineering sciences. It vapor gets into the stratosphere and this water vapor is a very was a summer internship, working for an atmospheric scientist important greenhouse gas,” says Birner. at the University of Toronto, that prompted her interest in “My approach is to look at the tropical tropopause, from the atmospheric science. top down. I want to understand what’s happening lower down to “We have so much to learn about the processes controlling see how it affects what’s higher up. I’d like to understand why we the composition of the atmosphere, and there are so many have such a layer and what the dynamics of that layer are,” says exciting problems to work on. In addition, atmospheric science Birner. impacts people and their lives, and there is a real need for people Birner is from Germany, completed his Ph.D. at the University to understand how the atmosphere works. This is what energizes of Munich and did research at the German Aerospace Center. He me about coming to work in the morning,” says Heald. did postdoctoral work at the University of Toronto in Canada where he worked on cloud resolving simulations, among other Eric Maloney research topics. “I would call myself a tropical Birner said he was attracted to Colorado State by the meteorologist. Much of my focus prominent strength of the Department, in particular Dave has been on a subseasonal time Thompson’s work. “I also had a chance to meet Wayne Schubert. scale variability, hurricanes, and El Like many other faculty members, Thompson and Schubert are Nino.” Eric Maloney worked on the both widely known and outstanding at what they are doing. I tropical subseasonal variability of think the Department of Atmospheric Science is a great place, winds and precipitation that occur and I thought I should give it a try,” says Birner. on 30- to 60-day time scales, when Birner is in the process of relocating his family from he was a postdoctoral fellow at the Germany. He and his wife, Katrin, have a two-year-old daughter, National Center for Atmospheric and seven months ago, they became the proud parents of triplets, Research (NCAR) in Boulder, Colo., two boys and one girl. “We won the lottery, but not the lottery from 2000 to 2002. one expects,” says Birner. 2 Department OF Atmospheric SCIENCE Student Fellowships Thank You to the Following and Awards 2008-2009 2007-2008 Benefactors Alumni Award: Eric Hendricks Robert F.
Recommended publications
  • Geography and Atmospheric Science 1
    Geography and Atmospheric Science 1 Undergraduate Research Center is another great resource. The center Geography and aids undergraduates interested in doing research, offers funding opportunities, and provides step-by-step workshops which provide Atmospheric Science students the skills necessary to explore, investigate, and excel. Atmospheric Science labs include a Meteorology and Climate Hub Geography as an academic discipline studies the spatial dimensions of, (MACH) with state-of-the-art AWIPS II software used by the National and links between, culture, society, and environmental processes. The Weather Service and computer lab and collaborative space dedicated study of Atmospheric Science involves weather and climate and how to students doing research. Students also get hands-on experience, those affect human activity and life on earth. At the University of Kansas, from forecasting and providing reports to university radio (KJHK 90.7 our department's programs work to understand human activity and the FM) and television (KUJH-TV) to research project opportunities through physical world. our department and the University of Kansas Undergraduate Research Center. Why study geography? . Because people, places, and environments interact and evolve in a changing world. From conservation to soil science to the power of Undergraduate Programs geographic information science data and more, the study of geography at the University of Kansas prepares future leaders. The study of geography Geography encompasses landscape and physical features of the planet and human activity, the environment and resources, migration, and more. Our Geography integrates information from a variety of sources to study program (http://geog.ku.edu/degrees/) has a unique cross-disciplinary the nature of culture areas, the emergence of physical and human nature with pathway options (http://geog.ku.edu/geography-pathways/) landscapes, and problems of interaction between people and the and diverse faculty (http://geog.ku.edu/faculty/) who are passionate about environment.
    [Show full text]
  • Air Quality in North America's Most Populous City
    Atmos. Chem. Phys., 7, 2447–2473, 2007 www.atmos-chem-phys.net/7/2447/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics Air quality in North America’s most populous city – overview of the MCMA-2003 campaign L. T. Molina1,2, C. E. Kolb3, B. de Foy1,2,4, B. K. Lamb5, W. H. Brune6, J. L. Jimenez7,8, R. Ramos-Villegas9, J. Sarmiento9, V. H. Paramo-Figueroa9, B. Cardenas10, V. Gutierrez-Avedoy10, and M. J. Molina1,11 1Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA 2Molina Center for Energy and Environment, La Jolla, CA, USA 3Aerodyne Research, Inc., Billerica, MA, USA 4Saint Louis University, St. Louis, MO, USA 5Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA 6Department of Meteorology, Pennsylvania State University, University Park, PA, USA 7Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA 8Cooperative Institute for Research in the Environmental Sciences (CIRES), Univ. of Colorado at Boulder, Boulder, CO, USA 9Secretary of Environment, Government of the Federal District, Mexico, DF, Mexico 10National Center for Environmental Research and Training, National Institute of Ecology, Mexico, DF, Mexico 11Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, CA, USA Received: 22 February 2007 – Published in Atmos. Chem. Phys. Discuss.: 27 February 2007 Revised: 10 May 2007 – Accepted: 10 May 2007 – Published: 14 May 2007 Abstract. Exploratory field measurements in the Mexico 1 Introduction City Metropolitan Area (MCMA) in February 2002 set the stage for a major air quality field measurement campaign in 1.1 Air pollution in megacities the spring of 2003 (MCMA-2003).
    [Show full text]
  • Assessing and Improving Cloud-Height Based Parameterisations of Global Lightning Flash Rate, and Their Impact on Lightning-Produced Nox and Tropospheric Composition
    https://doi.org/10.5194/acp-2020-885 Preprint. Discussion started: 2 October 2020 c Author(s) 2020. CC BY 4.0 License. Assessing and improving cloud-height based parameterisations of global lightning flash rate, and their impact on lightning-produced NOx and tropospheric composition 5 Ashok K. Luhar1, Ian E. Galbally1, Matthew T. Woodhouse1, and Nathan Luke Abraham2,3 1CSIRO Oceans and Atmosphere, Aspendale, 3195, Australia 2National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge, UK 3Department of Chemistry, University of Cambridge, Cambridge, UK 10 Correspondence to: Ashok K. Luhar ([email protected]) Abstract. Although lightning-generated oxides of nitrogen (LNOx) account for only approximately 10% of the global NOx source, it has a disproportionately large impact on tropospheric photochemistry due to the conducive conditions in the tropical upper troposphere where lightning is mostly discharged. In most global composition models, lightning flash rates used to calculate LNOx are expressed in terms of convective cloud-top height via the Price and Rind (1992) (PR92) 15 parameterisations for land and ocean. We conduct a critical assessment of flash-rate parameterisations that are based on cloud-top height and validate them within the ACCESS-UKCA global chemistry-climate model using the LIS/OTD satellite data. While the PR92 parameterisation for land yields satisfactory predictions, the oceanic parameterisation underestimates the observed flash-rate density severely, yielding a global average of 0.33 flashes s-1 compared to the observed 9.16 -1 flashes s over the ocean and leading to LNOx being underestimated proportionally. We formulate new/alternative flash-rate 20 parameterisations following Boccippio’s (2002) scaling relationships between thunderstorm electrical generator power and storm geometry coupled with available data.
    [Show full text]
  • Atmospheric Science Brochure
    Welcome from the Atmospheric Science Program! FForor MMoreore IInformationnformation Our program is led by seven faculty members Professor Clark Evans with expertise in atmospheric dynamics, weather Atmospheric Science Program Coordinator analysis and forecasting, cloud physics, air pollution meteorology, tropical and mesoscale meteorology, P. O. Box 413, Milwaukee, WI 53201 and chaotic systems. (414) 229-5116 [email protected] Your professional development is our top priority! We offer lots of faculty contact, opportunities for hands-on research, excellent computational facilities, and an array of courses to prepare you for your career. Learn more about the Atmospheric Science Study Abroad Visit us Online Atmospheric Science UWM offers the world’s www.math.uwm.edu/atmo fi rst faculty-led Major J study-abroad www.facebook.com/UWMAtmoSci program in www.innovativeweather.com Atmospheric Science. In this course, you can explore the effects of acid rain on Mexico’s cultural heritage sites. Atmospheric Science Major at the University of Wisconsin – Milwaukee The study of weather, climate, and their impacts on both Earth and human activities AAtmospherictmospheric SSciencecience CCareersareers PPreparatoryreparatory CCreditsredits BBeyondeyond tthehe CClassroomlassroom A career in atmospheric science is very rewarding • Math 231: Calculus and Analytic Geometry I Atmospheric Science because of the impact weather and climate have on • Math 232: Calculus and Analytic Geometry I INNNOVANOVATTIVEIVE students can work everyday life. You will fi nd atmospheric scientists • Math 233: Calculus and Analytic Geometry III WEEATHERATHER with real clients in many different roles: nearly 36% work in the • Math 234: Linear Algebra/Differential Equations providing forecasts, private sector; 33% for governmental agencies; 24% • Math 320: Intro to Differential Equations risk assessments and other weather-related services at educational institutions or laboratories; and 7% in • Physics 209/214: Physics I with Lab to the community and business partners across the media.
    [Show full text]
  • Spatial Trends in United States Tornado Frequency
    www.nature.com/npjclimatsci ARTICLE OPEN Spatial trends in United States tornado frequency Vittorio A. Gensini 1 and Harold E. Brooks2 Severe thunderstorms accompanied by tornadoes, hail, and damaging winds cause an average of 5.4 billion dollars of damage each year across the United States, and 10 billion-dollar events are no longer uncommon. This overall economic and casualty risk—with over 600 severe thunderstorm related deaths in 2011—has prompted public and scientific inquiries about the impact of climate change on tornadoes. We show that national annual frequencies of tornado reports have remained relatively constant, but significant spatially-varying temporal trends in tornado frequency have occurred since 1979. Negative tendencies of tornado occurrence have been noted in portions of the central and southern Great Plains, while robust positive trends have been documented in portions of the Midwest and Southeast United States. In addition, the significant tornado parameter is used as an environmental covariate to increase confidence in the tornado report results. npj Climate and Atmospheric Science (2018) 1:38 ; doi:10.1038/s41612-018-0048-2 INTRODUCTION A derived covariate, such as STP, is complementary to tornado Recent trends in global and United States temperature have reports for climatological studies. For example, it has been shown provoked questions about the impact on frequency, intensity, that variables like storm relative helicity and convective precipita- timing, and location of tornadoes. When removing many non- tion adequately represent United States monthly tornado 16 meteorological factors, it is shown that the annual frequency of frequency. Reports are subject to a human reporting process, United States tornadoes through the most reliable portions of the whereas environmental covariates allow for an objective model- historical record has remained relatively constant.1–4 The most derived climatology.
    [Show full text]
  • 2009, Umaine News Press Releases
    The University of Maine DigitalCommons@UMaine General University of Maine Publications University of Maine Publications 2009 2009, UMaine News Press Releases University of Maine George Manlove University of Maine Joe Carr University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/univ_publications Part of the Higher Education Commons, and the History Commons Repository Citation University of Maine; Manlove, George; and Carr, Joe, "2009, UMaine News Press Releases" (2009). General University of Maine Publications. 1091. https://digitalcommons.library.umaine.edu/univ_publications/1091 This Monograph is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in General University of Maine Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. UMaine News Press Releases from Word Press XML export 2009 UMaine Climate Change Institute Community Lecture in Bangor Jan. 14 02 Jan 2009 Contact: Gregory Zaro, 581-1857 or [email protected] ORONO -- Gregory Zaro, assistant professor in the University of Maine's Anthropology Department and Climate Change Institute, will present "Ancient Civilizations, Archaeology and Environmental Change in South America" from 6:30 to 7:45 p.m. Wednesday, Jan.14, at the Bangor Public Library. Zaro's talk is the third installment in the Climate Change Institute's monthly lecture series, which is free and open to the public. According to Zaro, humans are active components of the environment and have been manipulating the physical world for thousands of years. While modern industrial nations are often viewed to have the greatest impact on ecological change, ancient civilizations have also left long-lasting imprints on the landscape that continue to shape our contemporary world.
    [Show full text]
  • Atmospheric Physics I
    Atmospheric Physics I PHYS 621, Fall 2016 Dates and Location: Tuesday & Thursday, 2:30PM- 3:45AM; Public Policy 367 INSTRUCTOR: Dr. Pengwang Zhai Email: [email protected] Ph.: 410-455-3682 (office) OFFICE HOURS: Anytime Through Email appointment TEXTS: Wallace, J.M. and P. V. Hobbs, Atmospheric Science: An Introductory Survey, 2nd ed., Elsevier, 2006 Salby, M. L., Fundamentals of Atmospheric Physics, Academic Press, 1996. REFERENCE TEXTS (Highly recommend): Holton, J. R. Introduction to Dynamic Meteorology, 4th ed., Academic Press, 2004. DESCRIPTION: Composition and structure of the earth's atmosphere, atmospheric radiation and thermodynamics, fundamentals of atmospheric dynamics, overview of climatology. GRADING: Homework (25%), Midterm (30%), Final (40%), Participation/Discussion(5%) Course Strategy: There will be no exam make-up except for University-policy accepted absence. To promote active learning, students are strongly encouraged to read the corresponding textbook chapters before each lecture. Pre-lecture homework and discussion assignments are given routinely before lectures. Reading the sections of the textbook corresponding to the assigned homework exercises is considered part of the homework assignment; you are responsible for material in the assigned reading whether or not it is discussed in the lecture. Homework will be due weekly in Thursday’s lecture. There will be a 30% penalty on late homework submissions. COURSE OUTLINE: Overview A. Earth's atmosphere System of units The Sun and the orbit and size of Earth Chemical constituents of Earth’s atmosphere Vertical structure of temperature and density Wind and precipitation Ozone layer, hydrological and carbon cycles Global Energy Budget B. Atmospheric Radiation Maxwell’s Equation & EM wave Blackbody radiation: Planck’s Law and Stefan-Boltzmann’s law Spectral characteristics of Solar and Thermal infrared radiation Atmospheric absorption & Greenhouse effect Atmospheric scattering, clouds and aerosols Radiative forcing and climate Spatial and Temporal distribution of solar radiation C.
    [Show full text]
  • Distinct Aerosol Effects on Cloud-To-Ground Lightning in the Plateau and Basin Regions of Sichuan, Southwest China
    Atmos. Chem. Phys., 20, 13379–13397, 2020 https://doi.org/10.5194/acp-20-13379-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China Pengguo Zhao1,2,3, Zhanqing Li2, Hui Xiao4, Fang Wu5, Youtong Zheng2, Maureen C. Cribb2, Xiaoai Jin5, and Yunjun Zhou1 1Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China 2Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA 3Key Laboratory for Cloud Physics of China Meteorological Administration, Beijing 100081, China 4Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510640, China 5State Laboratory of Remote Sensing Sciences, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Correspondence: Zhanqing Li ([email protected]) and Pengguo Zhao ([email protected]) Received: 30 April 2020 – Discussion started: 18 June 2020 Revised: 5 September 2020 – Accepted: 4 October 2020 – Published: 11 November 2020 Abstract. The joint effects of aerosol, thermodynamic, the higher concentration of aerosols inhibits lightning activ- and cloud-related factors on cloud-to-ground lightning in ity through the radiative effect. An increase in the aerosol Sichuan were investigated by a comprehensive analysis of loading reduces the amount of solar radiation reaching the ground-based measurements made from 2005 to 2017 in ground, thereby lowering the CAPE. The intensity of con- combination with reanalysis data.
    [Show full text]
  • Evaluation of Rainfall Measurements from the WXT510 Sensor for Use in the Oklahoma City Micronet Jeffrey B
    The Open Atmospheric Science Journal, 2009, 3, 39-47 39 Open Access Evaluation of Rainfall Measurements from the WXT510 Sensor for Use in the Oklahoma City Micronet Jeffrey B. Basara*, Bradley G. Illston, Thomas E. Winning Jr. and Christopher A. Fiebrich Oklahoma Climatological Survey, University of Oklahoma, USA Abstract: A network of 40 real-time, automated atmospheric monitoring stations was deployed in Oklahoma City and of- ficially commissioned on 8 November 2008: the Oklahoma City Micronet (OKCNET). The Oklahoma City Micronet in- cludes 36 stations mounted on traffic signals which utilize the Vaisala WXT510 sensor. As part of the design of the WXT510, an impact sensor is utilized for the collection of rainfall observations. Prior to deployment in Oklahoma City, an array of 33 WXT510 sensors were deployed at the OKCNET intercomparison facility and compared with traditional instruments used to measure rainfall including tipping bucket rain gauges and a Geonor weighing gauge. The results of the comparison revealed that a consistent, linear bias was present between the WXT510 sensors and the traditional gauges whereby, on average, the traditional gauges measured approximately 26% less precipitation than the WXT510 sensors. In addition, the variation in recorded rainfall between WXT510 sensors was consistent with that recorded by the tipping bucket gauges. As such, a correction was developed using the WXT510 and tipping bucket data. This correction was ap- plied to the WXT510 rainfall observations and cross-verified using the Geonor gauge data. The overall result of the study yielded a bulk correction that can be applied to rainfall observations recorded by the WXT510 to greatly improve the ac- cumulated rainfall values.
    [Show full text]
  • Careers in Atm Scien. Factsheet
    Fact ����� National Aeronautics and Space Administration ������� �������� ������ Hampton, Virginia 23681-2199 FS-2002-12-65-LaRC Choosing a Career in Atmospheric Science Atmospheric science is the study of the physics and 2. Data analysis and modeling — the examination of chemistry of clouds, gases, and aerosols (airborne the data produced by the experiments and the particles) that surround the planetary bodies of development of theoretical models to interpret the the solar system. Research in atmospheric science data. The result is an improvement of our under- includes such varied areas of interest as: standing of atmospheric motions and chemistry, climate change, and weather forecasting. This area • Climatology — the study of long-term weather and requires experience in computer science, temperature trends mathematics, chemistry, physics, meteorology, • Dynamic meteorology — the study of the motions radiative transfer, or fluid dynamics. of the atmosphere • Meteorology —the study of weather and climate. 3. Laboratory studies — the examination of • Cloud physics — the formation and evolution of the chemical and physical processes that occur clouds and precipitation in the atmosphere, including cloud microphysics, • Atmospheric chemistry — the chemical photochemical reactions, and absorption and composition of the atmosphere emission of radiation by atmospheric gases and • Atmospheric physics — the study of processes particles. This area requires experience in such as heating and cooling of the atmosphere quantitative laboratory techniques, chemistry, or • Aeronomy — the study of the upper atmosphere spectroscopy. • Oceanography — the study of the Earthʼs oceans and how they affect the atmosphere The majority of atmospheric scientists in the United States work for the Federal Government. The largest Most atmospheric scientists study the atmosphere of number of civilian atmospheric scientists work for the the Earth, while others study the atmospheres of the National Weather Service and other branches of the planets and moons in our solar system.
    [Show full text]
  • Tornado Chasers: Atmospheric Science Students Journey West to Chase Extreme Weather | News Center
    7/27/2017 Tornado Chasers: Atmospheric Science Students Journey West to Chase Extreme Weather | News Center About Academics Admissions Giving Campus Life Athletics News Make a Gift Apply Custom Search Email OnePort Tornado Chasers: Atmospheric Science Students Journey West to Chase Extreme Weather Monday, Jul 24th, 2017 Explaining the excitement of chasing an extreme thunderstorm across the Great Plains is a bit like trying to explain chocolate ice cream. “You can talk about it, you can describe it, you can show pictures of it,” says adjunct atmospheric sciences faculty member Elaine Godfrey, “but until you actually taste it for yourself, it’s hard to understand why it’s so exciting.” Standing on the platform of the new phased-array wind profiler at the Elaine Godfrey and Christopher Godfrey, NOAA/Radar Operations Center in Norman, Oklahoma. associate professor of atmospheric sciences, decided to give their students that sweet taste of weather-chasing adventure with a hands-on field trip to Oklahoma, Texas and New Mexico, called the Severe Weather Field Experience. http://news.unca.edu/features/tornado-chasers-atmospheric-science-students 1/2 7/27/2017 Tornado Chasers: Atmospheric Science Students Journey West to Chase Extreme Weather | News Center “In a classroom, you can spout all the equations at them, show them pictures, but they don’t actually grasp what it is they’re learning about until they’re standing out there in the Great Plains, looking at a thunderstorm going up,” Christopher Godfrey said. In addition to thunderstorms, hail and rainbows, the class also saw four tornadoes during their trip—from a safe distance, of course.
    [Show full text]
  • 2008 Umaine News Press Releases
    The University of Maine DigitalCommons@UMaine General University of Maine Publications University of Maine Publications 2008 2008 UMaine News Press Releases Division of Marketing and Communications Joe Carr University of Maine George Manlove University of Maine Dan Cashman University of Maine Margaret Nagle University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/univ_publications Part of the Higher Education Commons, and the History Commons Repository Citation Division of Marketing and Communications; Carr, Joe; Manlove, George; Cashman, Dan; and Nagle, Margaret, "2008 UMaine News Press Releases" (2008). General University of Maine Publications. 1092. https://digitalcommons.library.umaine.edu/univ_publications/1092 This Monograph is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in General University of Maine Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. UMaine News Press Releases from Word Press XML export 2008 Williams Appointed to University of Maine Foundation Post 07 Jan 2008 Contact: Contact: Amos Orcutt, University of Maine Foundation President/CEO, 207 581-5100 ORONO -- Amos Orcutt, president/CEO of the University of Maine Foundation, has announced the appointment of Daniel B. Williams as planned giving officer. Williams, who earned both a bachelor's degree and a master's degree from UMaine, returns to his alma mater having accumulated a great deal of experience relevant to his new position. Since 2006, Williams has served as foundation president and director of development for Eastern Maine Community College in Bangor. In that role, he was responsible for all institutional fundraising including planned giving, annual and endowed scholarships, in-kind gifts, annual campaign and capital projects.
    [Show full text]