Atmos. Chem. Phys., 20, 13379–13397, 2020 https://doi.org/10.5194/acp-20-13379-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China Pengguo Zhao1,2,3, Zhanqing Li2, Hui Xiao4, Fang Wu5, Youtong Zheng2, Maureen C. Cribb2, Xiaoai Jin5, and Yunjun Zhou1 1Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China 2Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA 3Key Laboratory for Cloud Physics of China Meteorological Administration, Beijing 100081, China 4Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510640, China 5State Laboratory of Remote Sensing Sciences, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Correspondence: Zhanqing Li (
[email protected]) and Pengguo Zhao (
[email protected]) Received: 30 April 2020 – Discussion started: 18 June 2020 Revised: 5 September 2020 – Accepted: 4 October 2020 – Published: 11 November 2020 Abstract. The joint effects of aerosol, thermodynamic, the higher concentration of aerosols inhibits lightning activ- and cloud-related factors on cloud-to-ground lightning in ity through the radiative effect. An increase in the aerosol Sichuan were investigated by a comprehensive analysis of loading reduces the amount of solar radiation reaching the ground-based measurements made from 2005 to 2017 in ground, thereby lowering the CAPE. The intensity of con- combination with reanalysis data.