Information Manual on Coastal Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Information Manual on Coastal Ecosystems Coastal ecosystems Information Manual 10 Published by the National Climate Change Adaptation Research Facility 2016 ISBN: 978-0-9946053-9-9 © 2016 Australian copyright law applies. For permission to reproduce any part of this document, please approach the authors. Please cite this Manual as: Paice, R., and Chambers, J., 2016: Climate change adaptation planning for protection of coastal ecosystems. CoastAdapt Information Manual 10, National Climate Change Adaptation Research Facility, Gold Coast. Acknowledgement This work was carried out with financial support from the Australian Government (Department of the Environment and Energy). We thank Alistair Hobday and David Rissik for their review and input. Disclaimer The views expressed herein are not necessarily the views of the Commonwealth or NCCARF, and neither the Commonwealth nor NCCARF accept responsibility for information or advice contained herein. Climate change adaptation planning for protection of coastal ecosystems Information Manual 10 Robyn Paice and Jane Chambers Environmental and Conservation Sciences VLS Murdoch University IM10: Coastal ecosystems Contents Preface ..................................................................................................................................................................1 1 Introduction to this manual .......................................................................................................................2 Conceptual ecosystem model for temperate climates ...........................................................................4 Ecosystem Model 1A: Temperate ecosystem components, processes and connectivity (Section 2.1) .......................................................................................4 Ecosystem Model 1B: Temperate social value - ‘ecosystem services’ (Section2.2) and human-use stressors (Section 2.5) .....................................................................5 Ecosystem Model 1C: Potential climate change impacts on natural temperate ecosystems (Section 3) .................................................................................................6 Ecosystem Model 1D: Potential adaptation options for temperate ecosystems (Section 4) .................................................................................................7 Conceptual ecosystem model for tropical climates ................................................................................8 Ecosystem Model 2A: Tropical ecosystem components, processes and connectivity (Section 2.1) .......................................................................................8 Ecosystem Model 2B: Tropical social value - ecosystem services (Section 2.2) and human-use stressors (Section 2.5) ..........................................................................................9 Ecosystem Model 2C: Potential climate change impacts on tropical ecosystems (Section 3) .......10 Ecosystem Model 2D: Potential adaptation options for tropical ecosystems (Section 4) .........11 2 Understanding ecosystems .....................................................................................................................12 2.1 How ecosystems work ..................................................................................................................12 2.2 Ecosystem Services ......................................................................................................................14 2.3 Climate adaptation services ..........................................................................................................14 2.4 Management of ecosystems for adaptation .................................................................................16 2.5 Ecosystem services and resulting pressures ...............................................................................16 3 Potential impacts of climate change ......................................................................................................19 3.1 Major climate change projections and general impacts .............................................................19 3.2 Specific impacts for coastal ecosystems .....................................................................................22 3.3 Invasive species .............................................................................................................................26 4 Adaptation options ..................................................................................................................................27 4.1 Coastal freshwater ecosystems ....................................................................................................29 4.2 Wave-dominated estuaries ...........................................................................................................30 4.3 Tidal rivers and wetlands and mangrove ecosystems .................................................................31 4.4 Coastal interface ecosystems ........................................................................................................32 4.5 Seagrass meadows ........................................................................................................................34 4.6 Temperate reefs and macroalgal forests ......................................................................................35 4.7 Coral reefs ......................................................................................................................................36 5 Using this information .............................................................................................................................38 5.1 Using the information ....................................................................................................................38 5.2 Implementation and monitoring ..................................................................................................38 5.3 Adapting to climate change should not be delayed ....................................................................38 6 References ................................................................................................................................................39 IM10: Coastal ecosystems Tables Table 1.1: The components of the conceptual ecosystem models used in this manual ..............................2 Table 1.2: Types of marine, estuarine and coastal interface ecosystems that are, or will be, affected by climate change impacts in the coastal zone, which are included in this manual. .................11 Table 2.1: Comparative organic carbon storage in different ecosystems in Australia ................................15 Table 2.2: Potential stakeholders, their use of coastal ecosystems and goals for future management ..........17 Table 4.1: Generic managed adaptation approaches for climate change response ...................................28 Figures Figure 2.1: Interactions between natural ecosystems, use of ecosystem services and human use ..........12 Figure 2.2a: Outer reefs dissipate wave energy, protecting the coast. ...........................................................14 Figure 2.2b: Saltmarsh stabilises shore and buffers flooding .........................................................................14 Figure 3.1: Main effects of climate change which will impact coastal ecosystems .....................................19 Figure 3.2: Projected CO2 concentrations ......................................................................................................21 Figure 3.3: Ocean acidification ........................................................................................................................21 Figure 3.4: The Murray River mouth at the Coorong.. ...................................................................................23 Figure 3.5: Australia fur seal colony, Montague Island, NSW .......................................................................24 Figure 3.6: Coral bleaching on the Great Barrier Reef ...................................................................................25 Figure 4.1: Crayweed (Phyllospora comosa) macroalgae transplantation trial ...........................................35 IM10: Coastal ecosystems Preface Preface In 2014, the National Climate Change Adaptation Research Facility (NCCARF) was commissioned by the Australian Government to produce a coastal climate risk management tool in support of coastal managers adapting to climate change and sea-level rise. This online tool, known as CoastAdapt, provides information on all aspects of coastal adaptation as well as a decision support framework. It can be accessed at www.coastadapt.com.au. Coastal adaptation encompasses many disciplines ranging from engineering through to economics and the law. Necessarily, therefore, CoastAdapt provides information and guidance at a level that is readily accessible to non-specialists. In order to provide further detail and greater insights, the decision was made to produce a set of Information Manuals, which would provide the scientific and technical underpinning and authoritativeness of CoastAdapt. The topics for these Manuals were identified in consultation with potential users of CoastAdapt. There are ten Information Manuals, covering all aspects of coastal adaptation, as follows: 1. Building the knowledge base for adaptation action 2. Understanding sea-level rise and climate change, and associated impacts on the coastal zone 3. Available data, datasets and derived information
Recommended publications
  • Missing the Marine Forest for the Trees
    Vol. 612: 209–215, 2019 MARINE ECOLOGY PROGRESS SERIES Published March 7 https://doi.org/10.3354/meps12867 Mar Ecol Prog Ser OPENPEN ACCESSCCESS OPINION PIECE Missing the marine forest for the trees Thomas Wernberg1,2,*, Karen Filbee-Dexter1,3 1UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia 2Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark 3Institute of Marine Research, 4817 His, Norway ABSTRACT: Seascapes dominated by large, structurally complex seaweeds are ubiquitous. These critical ecosystems are under increasing pressure from human activities, and conceiving success- ful management strategies to ensure their persistence and/or recovery is of paramount impor- tance. Currently, ecosystems dominated by large seaweeds are referred to as either ‘forests’ or ‘beds’. We demonstrate how this dual terminology is confusing, is used inconsistently, and reduces the efficiency of communication about the importance and perils of seaweed habitats. As a conse- quence, it undermines work to alleviate and mitigate their loss and impedes research on unifying principles in ecology. We conclude that there are clear benefits of simply using the more intuitive term ‘forest’ to describe all seascapes dominated by habitat-forming seaweeds. This is particularly true as researchers scramble to reconcile ecological functions and patterns of change across dis- parate regions and species to match the increasingly global scale of environmental forcing on these critical ecosystems. KEY WORDS: Seaweed · Terminology · Kelp · Macroalgae · Communication 1. TREES OF THE SEAS AND MARINE FORESTS can be described as ‘forests’. Some experts use this term sparingly, referring only to seaweeds that reach Seascapes dominated by large seaweeds are ubiq- the sea surface (e.g.
    [Show full text]
  • Evaluation of the Coastal Inundation and Erosion Process in the Mid-West Coast of Western Australia
    Faculty of Science and Engineering School of Civil and Mechanical Engineering Evaluation of the coastal inundation and erosion process in the Mid-West coast of Western Australia Withanage Sajantha Lakmali Perera This thesis is presented for the Degree of Master of Philosophy (Civil Engineering) of Curtin University September 2016 Abstract At present the coastal inundation and erosion is a major problem all around the world and this issue will be more severe in the future due to sea level rise. Australia has a long coastline around the country, thus it focus on the coastal vulnerability due to sea level rise. Taking these facts into account, this research was focused on the evaluation of the coastal inundation and erosion process in the Mid-West coast of Western Australia. Within the Mid-West region, a seventy five kilometre stretch was selected for the study. The major highlight of this research is the integrated modelling approach and the result of the modelling carried out for evaluation of the coastal inundation and erosion process. Widely used coastal model, MIKE 21 was selected as the dynamic model for the study. As data plays very important part for this research, an intensive data collection campaign was conducted to collect the required data. Bathymetry data, coastal boundary data, topography data, wave, water levels and wind data, were collected using discrete data sources from variety of government, local and private organizations. Extreme value analysis for water levels, wind and wave was done using Gumbel and Weibull distributions. The final results of the inundation and erosion extends have been presented in terms of spatial maps.
    [Show full text]
  • A Guide to the Birds of Barrow Island
    A Guide to the Birds of Barrow Island Operated by Chevron Australia This document has been printed by a Sustainable Green Printer on stock that is certified carbon in joint venture with neutral and is Forestry Stewardship Council (FSC) mix certified, ensuring fibres are sourced from certified and well managed forests. The stock 55% recycled (30% pre consumer, 25% post- Cert no. L2/0011.2010 consumer) and has an ISO 14001 Environmental Certification. ISBN 978-0-9871120-1-9 Gorgon Project Osaka Gas | Tokyo Gas | Chubu Electric Power Chevron’s Policy on Working in Sensitive Areas Protecting the safety and health of people and the environment is a Chevron core value. About the Authors Therefore, we: • Strive to design our facilities and conduct our operations to avoid adverse impacts to human health and to operate in an environmentally sound, reliable and Dr Dorian Moro efficient manner. • Conduct our operations responsibly in all areas, including environments with sensitive Dorian Moro works for Chevron Australia as the Terrestrial Ecologist biological characteristics. in the Australasia Strategic Business Unit. His Bachelor of Science Chevron strives to avoid or reduce significant risks and impacts our projects and (Hons) studies at La Trobe University (Victoria), focused on small operations may pose to sensitive species, habitats and ecosystems. This means that we: mammal communities in coastal areas of Victoria. His PhD (University • Integrate biodiversity into our business decision-making and management through our of Western Australia)
    [Show full text]
  • Developing Impact-Based Thresholds for Coastal Inundation from Tide Gauge Observations
    CSIRO PUBLISHING Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 252–272 https://doi.org/10.1071/ES19024 Developing impact-based thresholds for coastal inundation from tide gauge observations Ben S. HagueA,B,C, Bradley F. MurphyA, David A. JonesA and Andy J. TaylorA ABureau of Meteorology, GPO Box 1289, Melbourne, Vic. 3001, Australia. BSchool of Earth, Atmosphere and Environment, Monash University, Clayton, Vic., Australia. CCorresponding author. Email: [email protected] Abstract. This study presents the first assessment of the observed frequency of the impacts of high sea levels at locations along Australia’s northern coastline. We used a new methodology to systematically define impact-based thresholds for coastal tide gauges, utilising reports of coastal inundation from diverse sources. This method permitted a holistic consideration of impact-producing relative sea-level extremes without attributing physical causes. Impact-based thresh- olds may also provide a basis for the development of meaningful coastal flood warnings, forecasts and monitoring in the future. These services will become increasingly important as sea-level rise continues.The frequency of high sea-level events leading to coastal flooding increased at all 21 locations where impact-based thresholds were defined. Although we did not undertake a formal attribution, this increase was consistent with the well-documented rise in global sea levels. Notably, tide gauges from the south coast of Queensland showed that frequent coastal inundation was already occurring. At Brisbane and the Sunshine Coast, impact-based thresholds were being exceeded on average 21.6 and 24.3 h per year respectively. In the case of Brisbane, the number of hours of inundation annually has increased fourfold since 1977.
    [Show full text]
  • S41598-020-69258-7.Pdf
    www.nature.com/scientificreports OPEN Substantial blue carbon in overlooked Australian kelp forests Karen Filbee‑Dexter1,2 & Thomas Wernberg1,2,3* Recognition of the potential for vegetated coastal ecosystems to store and sequester carbon has led to their increasing inclusion into global carbon budgets and carbon ofset schemes. However, kelp forests have been overlooked in evaluations of this ‘blue carbon’, which have been limited to tidal marshes, mangrove forests, and seagrass beds. We determined the continental-scale contribution to blue carbon from kelp forests in Australia using areal extent, biomass, and productivity measures from across the entire Great Southern Reef. We reveal that these kelp forests represent 10.3–22.7 Tg C and contribute 1.3–2.8 Tg C year−1 in sequestered production, amounting to more than 30% of total blue carbon stored and sequestered around the Australian continent, and ~ 3% of the total global blue carbon. We conclude that the omission of kelp forests from blue carbon assessments signifcantly underestimates the carbon storage and sequestration potential from vegetated coastal ecosystems globally. Te rapidly changing climate provides a strong impetus to uncover sinks in the global carbon cycle, in order to identify possible ways to mitigate current carbon emissions1,2. Vegetated coastal ecosystems store and sequester large amounts of organic carbon globally3–5, and this recognition has recently led to their recent inclusion into global carbon budgets and carbon ofset schemes6. Current accounting for this ‘blue carbon’ is restricted to veg- etation in accreting coastal ecosystems, such as tidal marshes, mangrove forests, and seagrass beds, which have high internal carbon burial rates and accumulate carbon in their soils and sediments.
    [Show full text]
  • Chevron-Shaped Accumulations Along the Coastlines of Australia As Potential Tsunami Evidences?
    CHEVRON-SHAPED ACCUMULATIONS ALONG THE COASTLINES OF AUSTRALIA AS POTENTIAL TSUNAMI EVIDENCES? Dieter Kelletat Anja Scheffers Geographical Department, University of Duisburg-Essen Universitätsstr. 15 D-45141 Essen, Germany e-mail: [email protected] ABSTRACT Along the Australian coastline leaf- or blade-like chevrons appear at many places, sometimes similar to parabolic coastal dunes, but often with unusual shapes including curvatures or angles to the coastline. They also occur at places without sandy beaches as source areas, and may be truncated by younger beach ridges. Their dimensions reach several kilometers inland and altitudes of more than 100 m. Vegetation development proves an older age. Judging by the shapes of the chevrons at some places, at least two generations of these forms can be identified. This paper dis- cusses the distribution patterns of chevrons (in particular for West Australia), their various appearances, and the possible genesis of these deposits, based mostly on the interpretations of aerial photographs. Science of Tsunami Hazards, Volume 21, Number 3, page 174 (2003) 1. INTRODUCTION The systematic monitoring of tsunami during the last decades has shown that they are certainly not low frequency events: on average, about ten events have been detected every year – or more than 1000 during the last century (Fig. 1, NGDC, 2001) – many of which were powerful enough to leave imprints in the geological record. Focusing only on the catastrophic events, we find for the last 400 years (Fig. 2, NGDC, 2001) that 92 instances with run up of more than 10 m have occurred, 39 instances with more than 20 m, and 14 with more than 50 m, or – statistically and without counting the Lituya Bay events – one every 9 years with more than 20 m run up worldwide.
    [Show full text]
  • Our World-Underwater Scholarship Society ®
    our world-underwater scholarship society ® 47th Annual Awards Program – June 3 - 5, 2021 Welcome to the 47th anniversary celebration of the Our World-Underwater Scholarship Society®. It has always been a great pleasure for me as president of the Society to bring the “family” together each year in New York City, so of course it is with great disappointment that for the second year we are unable to do so. A year ago, as the pandemic was beginning to spread throughout the world, the board of directors made the difficult decision to put all scholarship and internship activities on hold. 2020 was the first time in the Society’s history that we did not put Scholars or Interns in the field. But there is good news – the Society has new energy and is working with our hosts and sponsors to safely get our incoming 2021 Scholars and Interns started on their journeys. We bring three new Rolex Scholars and five new interns into our family for a total of 103 Rolex Scholars and 107 interns since the inception of the Society, and all of this has been accomplished by our all-volunteer organization. Forty-seven years of volunteers have been selfless in their efforts serving as directors, officers, committee members, coordinators, and technical advisors all motivated to support the Society’s mission “to promote educational activities associated with the underwater world.” None of this would have been possible without the incredible support by the Society’s many organizational partners and corporate sponsors throughout the years. The one constant in the Society’s evolution has been Rolex which continues to support the Society as part of its Perpetual Planet Initiative.
    [Show full text]
  • Australia's Great Barrier Reef Is in Trouble. It Has Just Experienced Its
    CREDITS&CONTACTS From the DIRECTOR OUT OF THE BLUE 4 Australian Marine Conservation Society Darren Kindleysides PO Box 5815 CLIMATE CHANGE AND OUR SEAS 6 WEST END QLD 4101 Ph: (07) 3846 6777 Email: [email protected] FIGHTING FOR THE REEF 8 www.marineconservation.org.au Patron MARINE PARKS NEEDED 10 Tim Winton WINNERS AMCS Board and losers President: Craig McGovern MANGROVE DIEBACK 13 Secretary: Mary-Ann Pattison Since the recent Australian election there has been much talk of winners Treasurer: Rowan Wallace and losers. The subject goes far beyond party politics or ideological TRAWLING THE NORTH 14 General Member: Margaret Harlow preferences of the ‘left’ and the ‘right’. When it comes to our environment, General Member: Dr Jill StJohn we’re all in the same party, and we all suffer if our oceans are dealt the General Member: Dr David Neil General Member: Richard Leck losing hand. GOOD NEWS ON PLASTICS 17 General Member: Alison Johnson The previous government attacked environmental charities like AMCS, General Member: Jason Hincks attempting to hamstring our work and stop us from speaking out to defend CONTENTS DEVOTION TO THE OCEAN 23 AMCS Staff our seas. They halted ten years of progress on Australia’s widely consulted, Director: Darren Kindleysides overwhelmingly supported national network of marine reserves. They Great Barrier Reef Campaign Manager: faltered when transformative action and investment was needed to save our Imogen Zethoven, AO Great Barrier Reef and tackle the insidious threat of global warming. Great Barrier Reef Campaigners: Cherry Muddle, Dr Lissa Schindler This newly elected Australian government has stewardship of the richest, and Shannon Hurley most biodiverse waters on the planet, and an ocean jurisdiction twice the Fisheries Campaigner: Josh Coates size of our land.
    [Show full text]
  • Effects of Ocean Acidification and Warming on Shallow
    Effects of ocean acidification and warming on shallow subtidal temperate seaweed assemblages in eastern Tasmania, Australia: implications for the blacklip abalone (Haliotis rubra) Damon Britton BMarSc (First Class Honours) Institute for Marine and Antarctic Studies (IMAS) University of Tasmania November 2020 Thesis submitted in fulfilment of the requirements for the degree of: Doctor of Philosophy in Marine Science i Declaration of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Signed: (Damon Britton) Date: 25/03/2020 ii Statement of Authority of Access The publishers of the papers comprising Chapters 3 and 4 hold the copyright for that content and access to the material should be sought from the respective journals. The remaining unpublished content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. A version of Chapter 3 has been published as: Britton, D., Mundy, C. N., McGraw, C. M., Revill, A. T., & Hurd, C. L. (2019). Responses of seaweeds that use CO2 as their sole inorganic carbon source to ocean acidification: differential effects of fluctuating pH but little benefit of CO2 enrichment. ICES Journal of Marine Science. doi:10.1093/icesjms/fsz070 A version of Chapter 4 has been published as: Britton, D., Schmid, M., Noisette, F., Havenhand, J.N., Paine, E.R., McGraw, C.M.
    [Show full text]
  • Underwater Understory: the Southwest Forest You've Never Heard of 26 February 2021
    Underwater Understory: The southwest forest you've never heard of 26 February 2021 interconnected system that goes all the way from Kalbarri on the west coast, south around the whole south coast, around Tassie, up the east coast and all the way up to northern New South Wales. Sahira studies the kelp—or seaweed, or macroalgae if you want to get technical—which makes up the foundation of this ecosystem. Kelp fills the same ecological niche as the trees in a land-bound forest. "It's a habitat provider," she says. "It provides the food, the shelter, the structure for that ecosystem and for everything to live within it. It really is the Kelp forests are one of the defining features of the Great foundation species." Southern Reef. Credit: OCEAN IMAGING And according to Sahira, once you're beneath the surface, it feels like a forest too. Deep in Australia's southwest is a hidden hotspot "It's not just a big flat rock with some fluffy stuff of biodiversity. going around it. We get these big boulders and big crevices, and it really does feel like you're It's dominated by lush, golden-green forests, which swimming through these tunnels in a forest area," sometimes run all the way up to the beach. It's she says. dotted with craggy caves and the occasional grassy meadow. It's filled with more endemic "I think there's something really beautiful about that species than any other ecosystem like it in the mix of these seaweeds providing a forest-like country.
    [Show full text]
  • MESAC Coastal Connections Mar 2020
    MARINE & COASTAL CONNECTIONS ISSUE #1 MARCH 2020 Produced by MESAC: Marine Education, Science and Community Centre. Melbourne, Victoria Bluebottles on Bayside beaches Photo by Ray Lewis Photograph: Peter Weinstock Follow us... Rakali, our native otter Along the Port Phillip Bay coastline lives a unique indigenous otter-like water mammal called a Rakali. They are easily identified in the water by their long bodies and the distinctive white tip to its tail. In this issue The best time to see them is at dusk and dawn, although many have been seen during daylight hours. If you see a Rakali then please report your find to Feature: Rakali www.rakali.com. Shark expert Bluebottles More about Rakali on page 4. Great Southern Reef Longfin Pike Professor Shaun Collin, shark expert Anchor Farm MESAC has invited Professor Shaun Collin, world Seals in the Yarra renowned shark sensory expert, to speak about his latest Fossil finds research at our National Science Week event in August. Upcoming events Professor Collin uses innovative techniques in anatomy, electrophysiology, bioimaging, molecular biology and MESAC acknowledges the Bunurong people as the Traditional Cus- behaviour to understand the evolution and mechanisms of todians of the land and waters around Ricketts Point. We pay our neural processing for a range of senses. respects to their Elders, past, present and emerging, and we pledge Look for updates on our website and Facebook page, and to care for and protect the delicate and diverse life inhabiting this contact us to be added to our email database. sacred place. We also recognise the Traditional Custodians of lands and waters across the globe.
    [Show full text]
  • Navies and Soft Power Historical Case Studies of Naval Power and the Nonuse of Military Force NEWPORT PAPERS
    NAVAL WAR COLLEGE NEWPORT PAPERS 42 NAVAL WAR COLLEGE WAR NAVAL Navies and Soft Power Historical Case Studies of Naval Power and the Nonuse of Military Force NEWPORT PAPERS NEWPORT 42 Bruce A. Elleman and S. C. M. Paine, Editors U.S. GOVERNMENT Cover OFFICIAL EDITION NOTICE The April 2010 Deepwater Horizon oil-rig fire—fighting the blaze and searching for survivors. U.S. Coast Guard photograph, available at “USGS Multimedia Gallery,” USGS: Science for a Changing World, gallery.usgs.gov/. Use of ISBN Prefix This is the Official U.S. Government edition of this publication and is herein identified to certify its au thenticity. ISBN 978-1-935352-33-4 (e-book ISBN 978-1-935352-34-1) is for this U.S. Government Printing Office Official Edition only. The Superinten- dent of Documents of the U.S. Government Printing Office requests that any reprinted edition clearly be labeled as a copy of the authentic work with a new ISBN. Legal Status and Use of Seals and Logos The logo of the U.S. Naval War College (NWC), Newport, Rhode Island, authenticates Navies and Soft Power: Historical Case Studies of Naval Power and the Nonuse of Military Force, edited by Bruce A. Elleman and S. C. M. Paine, as an official publica tion of the College. It is prohibited to use NWC’s logo on any republication of this book without the express, written permission of the Editor, Naval War College Press, or the editor’s designee. For Sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2104 Mail: Stop IDCC, Washington, DC 20402-00001 ISBN 978-1-935352-33-4; e-book ISBN 978-1-935352-34-1 Navies and Soft Power Historical Case Studies of Naval Power and the Nonuse of Military Force Bruce A.
    [Show full text]