Qualitative Risk Characterization and Management of Occupational Hazards: Control Banding (CB) a Literature Review and Critical Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Qualitative Risk Characterization and Management of Occupational Hazards: Control Banding (CB) a Literature Review and Critical Analysis Qualitative Risk Characterization and Management of Occupational Hazards: Control Banding (CB) A Literature Review and Critical Analysis DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these Web sites. Ordering Information To receive documents or other information about occupational safety and health topics, contact NIOSH at Telephone: 1–800–CDC–INFO (1–800–232–4636) TTY: 1–888–232–6348 E-mail: [email protected] or visit the NIOSH Web site at www.cdc.gov/niosh. For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews. DHHS (NIOSH) Publication No. 2009–152 August 2009 SAFER • HEALTHIER • PEOPLE™ ii FOREWORD When the U.S. Congress passed the Occupational Safety and Health Act of 1970 (Public Law 91–596), it established the National Institute for Occupational Safety and Health (NIOSH). Through the Act, Congress charged NIOSH with recommending occupational safety and health standards and describing exposure levels that are safe for various periods of employment, including but not limited to the exposures at which no worker will suffer diminished health, functional capacity, or life expectancy as a result of his or her work experience. NIOSH communicates recommended standards to regulatory agencies (including the Occupational Safety and Health Administration [OSHA]), health professionals in academic institutions, industry, organized labor, public interest groups, and others in the occupational safety and health community through criteria documents. Yet limited resources, incomplete data, and the ever-expanding inventory of chemical hazards in the workplace and global commerce make it infeasible to develop standards for all possible hazards. Consequently, NIOSH has also been tasked with assessing and providing technical solutions and promising intervention strategies to protect the safety and health of workers. One such emerging strategy has gained increasing attention among safety and health practitioners: a qualitative risk characterization and management strategy, also referred to as control banding (CB). This strategy groups workplace risks into control bands based on evaluations of hazard and exposure information. The utility of CB is recognized by a number of international organizations, and widening interest can be gauged by the growing literature describing qualitative risk assessment and management strategies. Despite limitations, in the absence of recommended standards, CB may be a useful strategy for assessing and controlling occupational hazards as part of a comprehensive safety and health program. This document is generated from literature reviews of recent developments describing such exposure-characterization and risk-management strategies in occupational settings. In particular, this document summarizes the literature describing qualitative risk assessment and strategies of risk management. The intent of this review is to provide a broad description of qualitative strategies to reduce risk of exposure to occupational hazards, recognizing that a deliberate and extensive review of the literature on this topic will help guide decisions for where CB applications may be most effective. Also important is finding where limitations in our understanding may require additional research or modification or may preclude the use of CB strategies altogether. In meeting these objectives, this document intends to inform its audience—mostly occupational safety and health practitioners, researchers, policy and decision makers, employers, and iii workers in potentially hazardous work places—of the concepts of CB and the promise it holds as a tool for use within a broader comprehensive occupational safety and health program. Christine M. Branche, Ph.D. Acting Director, National Institute for Occupational Safety and Health Centers for Disease Control and Prevention iv EXECUTIVE SUMMARY The majority of chemical substances in commerce have no established occupational exposure limits (OELs). In the absence of established OELs, employers and workers often lack the necessary guidance on the extent to which occupational exposures should be controlled. A strategy to control occupational exposures that may have value when there are no relevant OELs is known as control banding (CB). CB is a qualitative strategy for assessing and managing hazards associated with chemical exposures in the workplace. The question about the utility of the CB strategy for workplaces in the United States has been raised, warranting a critical review of its concepts and applications. This report is the result of a review of the published literature and related proceedings on CB. The conceptual basis for CB is the grouping of chemical exposures according to similar physical and chemical characteristics, intended processes/handling, and anticipated exposure scenarios (amount of chemical used and how workers would be exposed). Based on these factors, appropriate control strategies (that is, risk management options) are determined for each of these groupings. In one of the least complex forms, a four-level hierarchy of risk management options for controlling exposures to chemicals includes— 1. good occupational hygiene practices, which may be supplemented by use of appropriate personal protective equipment (PPE) 2. engineering controls, including local exhaust ventilation (LEV) 3. containment 4. seeking specialist advice To determine the appropriate control strategy, one must consider the characteristics of a particular chemical substance and the potential for exposure (based on quantity in use, volatility [for liquids], or dustiness [for solids], and the relative hazard as described in what is known as a risk phrase, or R-phrase). Determining potential exposures for airborne particulates or vapors involves characterizing the process or activity in which the chemical substance is used. Work processes help in assigning the chemical substance to a CB. These CBs provide guidance for various control options and recommendations for PPE based on a qualitative assessment of the chemical exposure. The published literature on CB revealed different models, each with varying levels of complexity and applicability. The utility of qualitative risk management strategies such as CB has been recognized by a number of international organizations. Widening interest in this strategy can be gauged by the growing literature describing elements of qualitative risk assessment and management strategies and in some cases, very well- developed models of practice. This report attempts to capture the state-of-the-science of CB as reflected in research and practice. From the published literature and information gleaned from proceedings of recent international workshops, symposia, and conferences on this subject, the following major themes related to CB have emerged: v • Factors influencing the evolution of qualitative risk characterization and management of occupational hazards • Strategies of practice • Applicability and limitations of practice • Needs for future research, evaluation, and validation These themes are based on interpretations of current studies and an understanding of the topic. By providing the appropriate background information and resources, this literature review can serve as a means to educate employers, workers, safety and health practitioners, and other audiences about the concepts of CB and to stimulate further dialogue about its potential usefulness in the United States. The scope of this document includes CB strategies, presented within the context of qualitative occupational risk management concepts. The risk management strategy associated with CB is characterized by selection and implementation of appropriate control solutions, often in the absence of OELs, to reduce work-related exposures that may lead to occupational disease, illness, and injury. The use of R-phrases or their equivalents in the Globally Harmonized System (GHS) for Classification and Labeling of chemicals in CB is a useful practice, but it is not intended to replace OELs, exposure assessment, or classic Industrial Hygiene protocol (i.e., hierarchy of controls) on which CB is based. This review indicates that CB is a potentially valuable tool for risk management of some chemical agents and other occupational hazards; however, continued research and validation efforts are needed. Investigation and application of CB principles to other hazardous agents also appear warranted. If CB is to be useful in the United States, it is recommended that the following actions occur: 1. Increase awareness and standardization of concepts associated with CB. 2. Ensure validation of qualitative risk assessment and management strategies, tools, and control-focused solutions. 3. Coordinate efforts for developing, implementing, evaluating, and disseminating qualitative risk assessment and risk management strategies to improve awareness and utility of task-specific, hazard-control guidance. 4. Foster national and international coordination on applications for control- focused solutions for high-risk tasks, industries, and small businesses. 5. Consider
Recommended publications
  • Rational Use of Personal Protective Equipment for Coronavirus Disease (COVID-19) and Considerations During Severe Shortages Interim Guidance 6 April 2020
    Rational use of personal protective equipment for coronavirus disease (COVID-19) and considerations during severe shortages Interim guidance 6 April 2020 Background • avoiding touching your eyes, nose, and mouth; • practicing respiratory hygiene by coughing or This document summarizes WHO’s recommendations for the sneezing into a bent elbow or tissue and then rational use of personal protective equipment (PPE) in health immediately disposing of the tissue; care and home care settings, as well as during the handling of • wearing a medical mask if you have respiratory cargo; it also assesses the current disruption of the global symptoms and performing hand hygiene after supply chain and considerations for decision making during disposing of the mask; severe shortages of PPE. • routine cleaning and disinfection of environmental and other frequently touched surfaces. This document does not include recommendations for members of the general community. See here: for more In health care settings, the main infection prevention and information about WHO advice of use of masks in the general control (IPC) strategies to prevent or limit COVID-19 community. transmission include the following:2 In this context, PPE includes gloves, medical/surgical face 1. ensuring triage, early recognition, and source control masks - hereafter referred as “medical masks”, goggles, face (isolating suspected and confirmed COVID-19 shield, and gowns, as well as items for specific procedures- patients); 3 filtering facepiece respirators (i.e. N95 or FFP2 or 2. applying standard precautions for all patients and FFP3 standard or equivalent) - hereafter referred to as including diligent hand hygiene; “respirators" - and aprons. This document is intended for 3.
    [Show full text]
  • Job Hazard Analysis
    Identifying and Evaluating Hazards in Research Laboratories Guidelines developed by the Hazards Identification and Evaluation Task Force of the American Chemical Society’s Committee on Chemical Safety Copyright 2013 American Chemical Society Table of Contents FOREWORD ................................................................................................................................................... 3 ACKNOWLEDGEMENTS ................................................................................................................................. 5 Task Force Members ..................................................................................................................................... 6 1. SCOPE AND APPLICATION ..................................................................................................................... 7 2. DEFINITIONS .......................................................................................................................................... 7 3. HAZARDS IDENTIFICATION AND EVALUATION ................................................................................... 10 4. ESTABLISHING ROLES AND RESPONSIBILITIES .................................................................................... 14 5. CHOOSING AND USING A TECHNIQUE FROM THIS GUIDE ................................................................. 17 6. CHANGE CONTROL .............................................................................................................................. 19 7. ASSESSING
    [Show full text]
  • Risk Assessment Guidance
    Risk Assessment Guidance The assessor can assign values for the hazard severity (a) and likelihood of occurrence (b) (taking into account the frequency and duration of exposure) on a scale of 1 to 5, then multiply them together to give the rating band: Hazard Severity (a) Likelihood of Occurrence (b) 1 – Trivial (eg discomfort, slight bruising, self-help recovery) 1 – Remote (almost never) 2 – Minor (eg small cut, abrasion, basic first aid need) 2 – Unlikely (occurs rarely) 3 – Moderate (eg strain, sprain, incapacitation > 3 days) 3 – Possible (could occur, but uncommon) 4 – Serious (eg fracture, hospitalisation >24 hrs, incapacitation >4 4 – Likely (recurrent but not frequent) weeks) 5 – Very likely (occurs frequently) 5 – Fatal (single or multiple) The risk rating (high, medium or low) indicates the level of response required to be taken when designing the action plan. Trivial Minor Moderate Serious Fatal Rating Bands (a x b) Remote 1 2 3 4 5 LOW RISK MEDIUM RISK HIGH RISK (1 – 8) (9 - 12) (15 - 25) Unlikely 2 4 6 8 10 Continue, but Continue, but -STOP THE Possible review implement ACTIVITY- 3 6 9 12 15 periodically to additional Identify new ensure controls reasonably controls. Activity Likely remain effective practicable must not controls where 4 8 12 16 20 proceed until possible and risks are Very monitor regularly reduced to a low likely 5 10 15 20 25 or medium level 1 Risk Assessments There are a number of explanations needed in order to understand the process and the form used in this example: HAZARD: Anything that has the potential to cause harm.
    [Show full text]
  • Operational Risk Management Guide
    OPERATIONAL RISK MANAGEMENT GUIDE U.S. DEPARTMENT OF AGRICULTURE FOREST SERVICE 2020 Last Updated 02/26/2020 RISK MANAGEMENT COUNCIL IN COOPERATION WITH THE OFFICE OF SAFETY & OCCUPATIONAL HEALTH and THE NATIONAL AVIATION SAFETY COUNCIL Contents Contents ....................................................................................................................................................................................... 2 Executive Summary .................................................................................................................................................................. i Introduction ............................................................................................................................................................................... 1 What is Operational Risk Management? ................................................................................................................... 1 The Terminology of ORM ................................................................................................................................................ 1 Principles of ORM Application ........................................................................................................................................... 6 The Five-Step ORM Process ................................................................................................................................................ 7 Step 1: Identify Hazards ..................................................................................................................................................
    [Show full text]
  • Occupational Hygiene Report Writing
    BACK TO BASICS PEER REVIEWED Occupational hygiene report writing Peter-John “Jakes” ABSTRACT Jacobs Occupational hygiene reports record occupational hygiene exposure assessments. Although their (MPH Occ. Hygiene) Cas Badenhorst (PhD purpose and format can vary, they must provide adequate information for managing occupational Occ. Hygiene) risks and so ensure the health and safety of employees. This article describes how to write a good occupational hygiene report, specifi cally with respect to the minimum content and style. Corresponding author: E-mail: jakes.jacobs2@ Key words: occupational hygiene report, content, standards sasol.com INTRODUCTION When the target audience is the senior management of an The fi ndings of occupational hygiene exposure assessments organisation, the report needs to be concise and prefer- are recorded in occupational hygiene reports. The purpose ably no longer than one page with the technical and other of these reports can vary, for example providing commu- information contained in an appendix. A popularly recounted nication to management, employees, health and safety anecdote is that the average reading ability of a company’s representatives, engineers, etc. regarding occupational chief executive offi cer is equitable to that of a 14-year-old, the hazards present in the workplace, addressing emergencies reason being that they are burdened with massive amounts and, importantly, provide practical exposure control advice of data that must be digested on a daily basis. This report and, are critical in managing occupational risks.1 Although can typically be a summary of fi ndings as described in the several formats for the reports exist, they should all serve detailed occupational hygiene report.
    [Show full text]
  • Cem-Seal-SDS Sheet
    Cem-Seal ICP Building Solutions Group/Pli-Dek Version No: 1.2 Issue Date: 10/26/2020 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements Print Date: 10/26/2020 S.GHS.USA.EN SECTION 1 Identification Product Identifier Product name Cem-Seal Synonyms Not Available Other means of identification Not Available Recommended use of the chemical and restrictions on use Relevant identified uses Specialty floor coating Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party Registered company name ICP Building Solutions Group/Pli-Dek Address 4565 W. Watkins Street Phoenix AZ Not applicable Telephone 623-435-2277 Fax Not Available Website www.ICPGROUP.com Email Not Available Emergency phone number Association / Organisation ChemTel Emergency telephone 1-800-255-3924 numbers Other emergency telephone 1-813-248-0585 numbers SECTION 2 Hazard(s) identification Classification of the substance or mixture NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Acute Aquatic Hazard Category 3 Label elements Hazard pictogram(s) Not Applicable Signal word Not Applicable Hazard statement(s) H402 Harmful to aquatic life. Hazard(s) not otherwise classified Not Applicable Precautionary statement(s) General P101 If medical advice is needed, have product container or label at hand. P102 Keep out of reach of children. Page 1 continued... Version No: 1.2 Page 2 of 8 Issue Date: 10/26/2020 Cem-Seal Print Date: 10/26/2020 Precautionary statement(s) Prevention P273 Avoid release to the environment.
    [Show full text]
  • Occupational Exposure to Heat and Hot Environments
    Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cover photo by Thinkstock© Criteria for a Recommended Standard Occupational Exposure to Heat and Hot Environments Revised Criteria 2016 Brenda Jacklitsch, MS; W. Jon Williams, PhD; Kristin Musolin, DO, MS; Aitor Coca, PhD; Jung-Hyun Kim, PhD; Nina Turner, PhD DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations of websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. Ordering Information This document is in the public domain and may be freely copied or reprinted. To receive NIOSH documents or other information about occupational safety and health topics, contact NIOSH at Telephone: 1-800-CDC-INFO (1-800-232-4636) TTY: 1-888-232-6348 E-mail: [email protected] or visit the NIOSH website at www.cdc.gov/niosh. For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/ niosh/eNews. Suggested Citation NIOSH [2016]. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. By Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim J-H, Turner N.
    [Show full text]
  • Guide to OH&S Certifications & Designations
    THIRD EDITION Guide to OH&S Certifications & Designations A Resource for Safety Practitioners, Employers, and those considering a Career in Occupational Health & Safety COHSPRAC CRST This guide is produced by the Canadian Society of Safety Engineering CSSE Guide to OH&S Certifications & Designations 1 A Guide for Employers and OH&S Practitioners This document has been prepared by Canadian Society of Safety Engineering (CSSE) in the pursuit of CSSE’s mission, vision and goals. All rights reserved. Permission to photocopy or download for individual use is granted. Further reproduction in any manner, including posting to a website, is prohibited without prior written permission of the publisher. Permission may be obtained by contacting the CSSE at [email protected]. © Canadian Society of Safety Engineering 468 Queen Street East, Suite LL-02 Toronto, Ontario M5A 1T7 Tel.: 416-646-1600 www.csse.org Third Edition September 2018 CSSE Guide to OH&S Certifications & Designations 2 A Guide for Employers and OH&S Practitioners PURPOSE OF THE GUIDE The Guide is intended to serve as a resource to employers when hiring a health and safety practitioner. It also provides guidance to future OH&S practitioners on the type of education, experience, and other qualifications being sought by employers. Information on both Canadian and International safety certifications and designations is provided, along with suggested competencies and qualifications for OH&S positions from entry to executive level. An interview guide is included to provide employers with suggested
    [Show full text]
  • Management of Occupational Exposure Limits: a Guide for Mine Ventilation Engineers
    Management of Occupational Exposure Limits: A Guide for Mine Ventilation Engineers Derrick J. (Rick) Brake1,2(&) 1 Mine Ventilation Australia, Brisbane, QLD, Australia [email protected] 2 Monash University, Melbourne, VIC, Australia Abstract. Many underground mines do not have a qualified or dedicated occupational (industrial) hygienist on site, or even available as a resource. Many mine ventilation engineers do not even consider occupational exposure moni- toring to be relevant to their role as an engineer. In many cases where occu- pational exposure monitoring is conducted, the mine ventilation engineer is not informed about the results of the monitoring, or if he is, cannot interpret cor- rectly what these results mean. This bunker mentality separating occupational hygiene and ventilation engineering reduces the range of tools available to the ventilation engineer to actively adjust or tune the ventilation system to keep the underground environment healthy, or as healthy as it could otherwise be. This paper sets out the principles and practices that the mine ventilation engineer needs to know to be able to understand how to interpret occupational hygiene monitoring results, and the implications for the mine primary and secondary ventilation systems. Keywords: Occupational Á Industrial Á Hygiene Á Monitoring Underground Á Ventilation 1 Introduction In most countries, occupational (or industrial) hygiene is managed by professional hygienists—quite a different field of specialty to engineers; mine ventilation engineers have only been peripherally involved if at all. The exception is probably South Africa where the role of ventilation engineers now tends to encompass at least basic occu- pational hygiene management. There are arguments for and against combining the roles of hygienist and engineer, but the dual-role system has not been adopted elsewhere to date.
    [Show full text]
  • Control Banding in the Pharmaceutical Industry
    CONTROL BANDING IN THE PHARMACEUTICAL INDUSTRY BRUCE D. NAUMANN, Ph.D., DABT Merck & Co., Inc. Summary The pharmaceutical industry embraced the concept of control banding many years ago. Control banding is a process of assigning a compound to a hazard category that corresponds to a range of airborne concentrations – and the engineering controls, administrative controls, and personal protective equipment – needed to ensure safe handling. While the terminology used was different, the high potency of some pharmaceutical compounds required the use of alternatives to setting numerical occupational exposure limits (OELs), e.g., performance-based exposure control limits (PB-ECLs) or occupational exposure bands (OEBs), especially for early development compounds with limited information. The long experience in setting OELs for active pharmaceutical ingredients, and the myriad of engineering solutions required to achieve these internal exposure standards, paved the way for a more performance-based approach. Enrolment criteria were developed that were more descriptive than the prescriptive risk phrases used in the UK’s COSHH Essentials. The latter do not adequately address the types of effects potentially produced by pharmaceuticals, especially highly potent compounds. Internal experts are available in pharmaceutical companies to interpret the preclinical and clinical data for new drug products, including those with novel therapeutic mechanisms, against technical enrolment criteria that require more professional judgment. The range of concentrations covered by control bands used in the industry is fairly consistent and generally reflects full log intervals. The boundaries differ slightly in some cases because verification studies have identified different break points for various new control technologies employed. There are also “semantic” differences in how control bands are named – most use numbers but these may point to different ranges.
    [Show full text]
  • Controlling Chemical Exposure Industrial Hygiene Fact Sheets
    Controlling Chemical Exposure Industrial Hygiene Fact Sheets Concise guidance on 16 components of industrial hygiene controls New Jersey Department of Health and Senior Services Division of Epidemiology, Environmental and Occupational Health Occupational Health Service PO Box 360 Trenton, NJ 08625-0360 609-984-1863 October 2000 James E. McGreevey Clifton R. Lacy, M.D. Governor Commissioner Written by: Eileen Senn, MS, CIH Occupational Health Surveillance Program James S. Blumenstock Senior Assistant Commissioner Public Health Protection and Prevention Programs Eddy Bresnitz, MD, MS State Epidemiologist/Assistant Commissioner Division of Epidemiology, Environmental and Occupational Health Kathleen O’Leary, MS Director Occupational Health Service David Valiante, MS, CIH Acting Program Manager Occupational Health Surveillance Program Funding: This project was supported in part by a cooperative agreement from the U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health (NIOSH). Reproduction: The NJDHSS encourages the copying and distribution of all or parts of this booklet. All materials are in the public domain and may be reproduced or copied without permission. Cita- tion as to the source is appreciated. This document is available on the Internet at: www.state.nj.us/health/eoh/survweb/ihfs.pdf Citation: Senn, E., Controlling Chemical Exposure; Industrial Hygiene Fact Sheets, Trenton, NJ: New Jersey Department of Health and Senior Services, October 2000. Table of Contents Methods for Controlling
    [Show full text]
  • Custodial Ergonomics to Modify Training Procedures
    1 A SIMPLIFIED, QUALITATIVE STRATEGY FOR THE ASSESSMENT OF OCCUPATIONAL RISKS AND SELECTION OF SOLUTIONS: CONTROL BANDING EEN VEREENVOUDIGDE KWALITATIEVE METHODE OM BEROEPSGEBONDEN RISICO’S TE BEPALEN EN OPLOSSINGEN TE SELECTEREN: CONTROL BANDING Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus Prof.ir. K.C.A.M. Luyben voorzitter van het College voor Promoties, in het openbaar te verdedigen op woensdag 22 december om 10.00 uur door David Mark ZALK Masters of Public Health, University of California, Berkeley geboren te Boston, Massachusetts, Verenigde Staten 2 Dit proefschrift is goedgekeurd door de promotor: Prof.dr. A. R. Hale Copromotor Dr. P.H.J.J. Swuste Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof.dr. A.R. Hale, Delft University of Technology, promoter Dr. P.H.J.J. Swuste, Delft University of Technology, copromotor Prof.dr P.Vink, Delft University of Technology Prof.dr. F.J,H, van Dijk, University of Amsterdam, Academic Medical Center Prof.dr.ir. A. Burdorf, Erasmus University, Rotterdam Prof. M.P. Guillemin, Lausanne University, Switzerland Dr. P.W. Johnson, University of Washington, USA ISBN 978-1-4507-4664-6 This work performed, in part, under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-BOOK-461828 3 A simplified, qualitative strategy for the assessment of occupational risks and selection of solutions: Control Banding by David M. Zalk 4 Het volmaakte is de vijand van het goede. The perfect is the enemy of the good. 2010, D.M.
    [Show full text]