Principles and Practices for Irrigation Management with Limited Water Authors*: Troy Bauder, Joel Schneekloth, and James Bauder

Total Page:16

File Type:pdf, Size:1020Kb

Principles and Practices for Irrigation Management with Limited Water Authors*: Troy Bauder, Joel Schneekloth, and James Bauder Principles and Practices for Irrigation Management with Limited Water Authors*: Troy Bauder, Joel Schneekloth, and James Bauder Water availability for irrigation in the Western United States is often limited, and Limited-irrigation situations can occur when in many cases, declining. Below-average any of the following situations exist: snow pack, drought, interstate conflicts, 1. Reduced surface water supplies or ground water pumping restrictions, and storage – in regions that rely upon declining ground water from non-renewable surface water to supply irrigation aquifers have all contributed to declining needs. water supplies for irrigation. These water 2. Restricted ground water pumping shortages have been occurring in many allocations from alluvial or western U.S. irrigated watersheds and designated aquifers. In some ground water basins to some degree for the instances, the allocations are past several years. Combined with water considerably less than what is transfers from agriculture to municipal and required to fully irrigate the crops industrial uses and increasing recreational typically grown. and environmental demands for water, the 3. Low capacity irrigation wells due to relevance of irrigation management with limited saturated depth of the limited water supplies has greatly increased. aquifer. Well yields are then This is the first in a series of six training insufficient to meet the peak ET modules intended to build upon concepts demands of the crop. and suggestions for limited-irrigation management, provide updates on research Under reduced irrigation water supplies, projects relevant to the topic of limited- using typical management practices, yields water irrigation, and suggest further and returns from irrigated crops will resources and techniques for managing generally be reduced compared to fully irrigated cropping systems under tighter irrigated crops. Management strategies can water supplies. help minimize yield loss and preserve net return. However, in order for irrigators to What is Limited-irrigation? implement effective management strategies, Full irrigation results when irrigation water an understanding of certain concepts and is applied to completely meet crop water principles is needed. These include: demand or evapotranspiration (ET) that is • an understanding of the not supplied by natural precipitation and soil relationships between crop yield water storage. In contrast, deficit irrigation and water use (ET) of the crops occurs when irrigation water is insufficient available; to fully satisfy the soil water deficiency in • knowledge about crop response the entire root zone and subsequently full to the magnitude, duration, and ET demands cannot be met for part of the timing of moisture stress, growing season. Limited-irrigation is a especially at critical growth form of deficit irrigation that seeks to stages; maximize water productivity through timing • options for and consequences of of irrigation applications at critical crop crop residue management for growth stages and through managed soil water conservation; depletions. 1 • plant population management in In this example, crops such as corn respond relation to available water; with more yield for every inch of ET than • crop rotations to balance or winter wheat or sunflowers with the same reduce water use; ET water use. However, corn requires more • and techniques and changes that water for development or maintenance than will result in improved irrigation winter wheat or sunflower before any yield efficiency. is produced, as indicated by where the yield- Limited-irrigation systems that incorporate ET line intersects the X-axis. Corn requires these practices coupled with input cost approximately 10 inches of ET to produce management can improve water use the first increment of harvestable yield, efficiency and help maintain overall farm compared to 4.5 and 7.5 inches of ET profitability. required by wheat or sunflower, respectively. Additionally, wheat and Yield, Evapotranspiration (ET) and Water sunflower also require less ET for maximum Timing production than the ET required by corn for Evapotranspiration (ET) is the sum of maximum production. evaporation of water from the soil or crop surface and transpiration by the crop. Knowledge of differences in crop response Evapotranspiration is the driving force to available water and ET, as in the case of behind crop yields when all other yield corn versus winter wheat or sunflower, can limiting factors, including soil fertility, be a useful tool in making decisions about pests, and agronomic practices, are the best timing of limited irrigation water minimized or taken into account (Figure 1). resources. Forage crops, such as alfalfa, Figure 1. Grain and forage yield as impacted by ET for alfalfa, corn, soybeans, sunflowers and winter wheat (from Schneekloth et al. 1991 and Nielsen, 2005). 2 produce harvestable forage yield with the crop such as winter wheat is also a rotation first increment of ET and thus are option for limited supplies. reasonable crop choices for many producers under limited water. Limited irrigation due to low capacity results when the rate of irrigation supply Crop response to water stress varies from a ground or surface water source is substantially among growth stages. When unable to fully meet the ET rate of crop good stand establishment is achieved, yields water demand for a given irrigated acreage. of most grain crops are not impacted as Low capacity most often occurs during peak much by water stress during the vegetative crop ET and the actual irrigation water growth stage or the late reproductive or capacity required will vary significantly by grain fill growth stages as they are by stress crop and region. Low capacity wells are during the flowering, pollination, and seed- those which have limited instantaneous development stages. When producers have water supply, either because of relatively limited water supplies, but have control over small well bore size, water being pumped when they can irrigate, limiting water during from a relatively thin aquifer, or rapidly the growth stages that are least sensitive to changing water level within the well cavity. water stress while saving water for the critical growth stages can be a valuable For irrigators with low capacity, planting strategy to maximize yield return from multiple crops with smaller acreages water. Saving that water for the provides some variability in crop water reproductive growth stages can be the most needs and allows for water to be applied at advantageous use of the water to maximize amounts and times when the various crops grain yield. Having some water available most need the water. On a whole-farm during grain filling will also enhance the scale, crop rotations which include a quality of the harvested grain. diversity of crops also spread the irrigation season over a greater time period, as Crops differ in their water use requirements compared to a single crop. When planting in both amount and critical timing. Crop multiple crops such as corn and winter rotations that include lower-water-use-crops wheat under irrigation, the irrigation season such as sunflower, spring small grain, is extended from May to early October, drybean or winter wheat, can reduce overall compared to continuous corn, which is irrigation water needs. Schneekloth et al. predominantly irrigated from June to early (1991) found that when limited to 6 inches September. Additionally, crops such as of irrigation water, a rotation of corn corn, soybean and wheat have different following winter wheat yielded 13 bu/acre timings for peak water use (Figure 2). The (8 percent) more than continuous corn. The net effect of irrigating fewer acres at any one increased corn grain yield in this rotation point in time is that ET demand of that crop was due to increased stored soil moisture can be better met and farm-wide efficiency during the non-growing season following of water use may be increased. Timing and wheat that was available for corn ET. amount of irrigation water applied can be on Following higher-value, fully irrigated crops an 'as needed' basis rather than in such as sugar beets, potatoes or vegetables anticipation of crop ET. with a low water requirement or dryland 3 Figure 2. Example of daily ET patterns of winter wheat, corn, and soybeans. Residue Management is a proven, effective occurred before the corn crop reached full management tool for capturing and storing canopy (Todd et al., 1991). Residue also rain, snow, and irrigation water in limited- reduces runoff of precipitation and irrigation irrigation cropping systems (Hatfield et al., water, causes longer opportunity time for 2001). Crop residues, whether standing or infiltration, increases infiltration and lying down, and reduced tillage, which decreases rainfall and irrigation impact. The minimizes surface disturbance and/or leaves net effect is generally a decrease in the soil surface rough, can significantly incidence of surface sealing, thereby increase the capture and storage of water by maintaining higher infiltration rates. As reducing evaporation and runoff and droplets impact the soil surface, they can increasing snow catch. Standing residue is destroy the surface structure, sealing the soil more effective than flat residue for snow surface and reducing infiltration rates catch. Studies in northeastern Colorado (Ramos et al., 2003). Residue also acts as found that standing sunflower residue small dams that slow water movement down increased the amount of snow
Recommended publications
  • Module 1 Basics of Water Supply System
    Module 1 BASICS OF WATER SUPPLY SYSTEM Training Module for Local Water and Sanitation Management Maharashtra Jeevan Pradhikaran (MJP) CEPT University 2012 Basics of Water Supply System- Training Module for Local Water and Sanitation Management CONTENT Introduction 3 Module A Components of Water Supply System 4 A1 Typical village/town Water Supply System 5 A2 Sources of Water 7 A3 Water Treatment 8 A4 Water Supply Mechanism 8 A5 Storage Facilities 8 A6 Water Distribution 9 A7 Types of Water Supply 10 Worksheet Section A 11 Module B Basics on Planning and Estimating Components of Water Supply 12 B1 Basic Planning Principles of Water Supply System 13 B2 Calculate Daily Domestic Need of Water 14 B3 Assess Domestic Waste Availability 14 B4 Assess Domestic Water Gap 17 B5 Estimate Components of Water Supply System 17 B6 Basics on Calculating Roof Top Rain Water Harvesting 18 Module C Basics on Water Pumping and Distribution 19 C1 Basics on Water Pumping 20 C2 Pipeline Distribution Networks 23 C3 Type of Pipe Materials 25 C4 Type of Valves for Water Flow Control 28 C5 Type of Pipe Fittings 30 C6 Type of Pipe Cutting and Assembling Tools 32 C7 Types of Line and Levelling Instruments for Laying Pipelines 34 C8 Basics About Laying of Distribution Pipelines 35 C9 Installation of Water Meters 42 Worksheet Section C 44 Module D Basics on Material Quality Check, Work Measurement and 45 Specifications in Water Supply System D1 Checklist for Quality Check of Basic Construction Materials 46 D2 Basics on Material and Item Specification and Mode of 48 Measurements Worksheet Section D 52 Module E Water Treatment and Quality Control 53 E1 Water Quality and Testing 54 E2 Water Treatment System 57 Worksheet Section E 62 References 63 1 Basics of Water Supply System- Training Module for Local Water and Sanitation Management ABBREVIATIONS CPHEEO Central Public Health and Environmental Engineering Organisation cu.
    [Show full text]
  • Landscape Irrigation Best Management Practices
    IRRIGATION ASSOCIATION & AMERICAN SOCIETY OF IRRIGATION CONSULTANTS Landscape Irrigation Best Management Practices May 2014 Prepared by the Irrigation Association and American Society of Irrigation Consultants Chairman: John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Editor: Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Committee Contributors (in alphabetical order): James Barrett, FASIC, CID, CLIA, James Barrett Associates LLC, Roseland, New Jersey Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Carol Colein, American Society of Irrigation Consultants, East Lansing, Michigan David D. Davis, FASIC, David D. Davis and Associates, Crestline, California Brent Q. Mecham, CAIS, CGIA, CIC, CID, CLIA, CLWM, Irrigation Association, Falls Church, Virginia John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Dennis Pittenger, Cooperative Extension, U.C. Riverside, Riverside, California Corbin Schneider, ASIC, RLA, CLIA, Verde Design, Inc., Santa Clara, California The Irrigation Association and the American Society of Irrigation Consultants have developed the Landscape Irrigation Best Management Practices for landscape and irrigation professionals and policy makers who must preserve and extend the water supply while protecting water quality. The BMPs will aid key stakeholders (policy makers, water purveyors, designers, installation and maintenance contractors, and consumers) to develop and implement appropriate
    [Show full text]
  • Design and Production of Drinking-Water Supply Network
    OUR EXPERT ASSESSMENT DESIGN AND PRODUCTION OF A DRINKING-WATER SUPPLY NETWORK Especially committed to fighting water related diseases and unsanitary conditions, SOLIDARITES INTERNATIONAL (SI) has been involved in the field of access to drinking water and sanitation for almost 35 years. The annual number of deaths caused by these diseases has risen to 2.6 million, making it one of the world’s leading causes of death; amongst these victims, 1.8 million children, aged less than 15, still succumb... Today, when more than a billion people are still deprived of access to drinking water and permanently exposed to water-related diseases, the right to drinking water remains a vital concern in developing countries. In this regard, drinking-water supply networks represent quite a relevant technical solution for supplying water to refugees, as well as to dense populations and areas with high population growth. In order to further advance technical and socioeconomic diagnoses, SOLIDARITES INTERNATIONAL has led many projects, sometimes lasting years, in partnership with institutions and legitimate operators from the water sector. Hydraulic components and civil engineering relating to rehabilitation, growth and the construction of infrastructure are inseparable from the accompanying social measures, which involve placing sustainability, with the concerted management of water services and the participation of the community, at the heart of the process. Repairing, renovating or building a drinking-water network is a relevant ANALYSING AND ADAPTING technical response when the humanitarian emergency situation requires the re-establishment of the water supply and following the very first emergency TO COMPLEX measures (tanks, mobile treatment units).
    [Show full text]
  • Lesson 3 - Water and Sewage Treatment
    Unit: Chemistry D – Water Treatment LESSON 3 - WATER AND SEWAGE TREATMENT Overview: Through notes, discussion and research, students learn about how water and sewage are treated in rural and urban areas. Through discussion and online research, the sources, safety, treatment and cost of bottled water are considered. Using this information, students then share their views on bottled water. Suggested Timeline: 2 hours Materials: Watery Facts (Teacher Support Material) Water and Sewage Treatment (Teacher Support Material) A Closer Look at Water Treatment – Teacher Key (Teacher Support Material) All Tapped Out? – A Look At Bottled Water (Teacher Support Material) materials for bottled water demonstration: - plastic cups - 3 or more brands of bottled water - a sample of municipal tap water - a sample of local well water Water and Sewage Treatment (Student Handout – Individual) Water and Sewage Treatment (Student Handout – Group) A Closer Look at Water Treatment (Student Handout) All Tapped Out? – A Look At Bottled Water (Student Handout) student access to computers with the Internet and speakers Method: INDIVIDUAL FORMAT: 1. Have students read and complete the questions on ‘Water and Sewage Treatment’ (Student Handout – Individual). 2. Using computers with Internet access and speakers, allow students to research answers to questions on ‘A Closer Look at Water Treatment’ (Student Handout) 3. If possible, use one or more of the ideas on ‘All Tapped Out? – A Look At Bottled Water’ (Teacher Support Material) to spark students’ interest in the issues associated with bottled water. 4. Using computers with Internet access, have students complete the research on bottled water on ‘All Tapped Out? – A Look At Bottled Water’ (Student Handout).
    [Show full text]
  • Benefits of Irrigation Management and Conservation
    BENEFITS OF IRRIGATION MANAGEMENT AND CONSERVATION GARY L. HAWKINS UNIVERSITY OF GEORGIA WATER RESOURCE MANAGEMENT SPECIALIST ALL ABOUT IRRIGATION 7 MARCH 2O18 WATER CONSERVATION? • WHAT IS A DEFINITION? • USING LESS WATER? • SAVING THE WATER WE HAVE? • STORING WATER FOR LATER USE? • INCREASING WATER HOLDING CAPACITY OF SOIL? • INCREASING INFILTRATION? • REDUCING WASTING? WATER CONSERVATION BEING KNOWLEDGEABLE OF THE AVAILABLE WATER THAT WE HAVE TODAY AND TAKING ACTION TO PROTECT ALL SOURCES OF WATER IN ORDER THAT THERE IS PLENTY FOR USE BY EVERYONE, EVERYTHING AND AVAILABLE WHEN NEEDED THE MOST. HYDROLOGY PRINCIPLES • HYDROLOGY – THE GENERAL SCIENCE/STUDY OF WATER “THE SCIENCE THAT TREATS WATERS OF THE EARTH, THEIR OCCURRENCE, CIRCULATION, AND DISTRIBUTION, THEIR CHEMICAL AND PHYSICAL PROPERTIES, AND THEIR REACTION WITH THEIR ENVIRONMENT, INCLUDING THEIR RELATION TO LIVING THINGS” (PRESIDENTIAL SCIENCE AND POLICY COUNCIL, 1959). “THE SCIENCE THAT DEALS WITH THE PROCESSES GOVERNING THE DEPLETION AND REPLENISHMENT OF THE WATER RESOURCES OF THE LAND AREAS OF THE EARTH” (WISLER AND BRATER, HYDROLOGY, 1959, JOHN WILEY AND SONS) HYDROLOGIC CYCLE: Evaporation Interception Infiltration Precipitation Surface Runoff Evaporation Depression Storage Infiltration Evapotranspiration Soil moisture Maintain Infiltration storage dry-weather streamflow Ground water Return to reservoir ocean Infiltration ET Surface Streamflow Runoff generation Return to ocean Irrigation Losses INCREASING INFILTRATION? And - Thereby Reduce Runoff? VIRGINIA NRCS MOST POPULAR
    [Show full text]
  • Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering
    water Article Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering Slobodan P. Simonovic Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada; [email protected]; Tel.: +1-519-661-4075 Received: 29 March 2020; Accepted: 20 April 2020; Published: 24 April 2020 Abstract: Global change, that results from population growth, global warming and land use change (especially rapid urbanization), is directly affecting the complexity of water resources management problems and the uncertainty to which they are exposed. Both, the complexity and the uncertainty, are the result of dynamic interactions between multiple system elements within three major systems: (i) the physical environment; (ii) the social environment; and (iii) the constructed infrastructure environment including pipes, roads, bridges, buildings, and other components. Recent trends in dealing with complex water resources systems include consideration of the whole region being affected, explicit incorporation of all costs and benefits, development of a large number of alternative solutions, and the active (early) involvement of all stakeholders in the decision-making. Systems approaches based on simulation, optimization, and multi-objective analyses, in deterministic, stochastic and fuzzy forms, have demonstrated in the last half of last century, a great success in supporting effective water resources management. This paper explores the future opportunities that will utilize advancements in systems theory that might transform management of water resources on a broader scale. The paper presents performance-based water resources engineering as a methodological framework to extend the role of the systems approach in improved sustainable water resources management under changing conditions (with special consideration given to rapid climate destabilization).
    [Show full text]
  • Global Experience on Irrigation Management Under Different Scenarios
    DOI: 10.1515/jwld-2017-0011 © Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture, 2017 2017, No. 32 (I–III): 95–102 © Institute of Technology and Life Sciences (ITP), 2017 PL ISSN 1429–7426 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld Received 30.10.2016 Reviewed 01.12.2016 Accepted 06.12.2016 A – study design Global experience on irrigation management B – data collection C – statistical analysis D – data interpretation under different scenarios E – manuscript preparation F – literature search Mohammad VALIPOUR ABCDEF Islamic Azad University, Kermanshah Branch, Young Researchers and Elite Club, Imam Khomeini Campus, Farhikhtegan Bld. Shahid Jafari St., Kermanshah, Iran; e-mail: [email protected] For citation: Valipour M. 2017. Global experience on irrigation management under different scenarios. Journal of Water and Land Development. No. 32 p. 95–102. DOI: 10.1515/jwld-2017-0011. Abstract This study aims to assess global experience on agricultural water management under different scenarios. The results showed that trend of permanent crops to cultivated area, human development index (HDI), irrigation wa- ter requirement, and percent of total cultivated area drained is increasing and trend of rural population to total population, total economically active population in agriculture to total economically active population, value added to gross domestic production (GDP) by agriculture, and the difference between national rainfall index (NRI) and irrigation water requirement is decreasing. The estimating of area equipped for irrigation in 2035 and 2060 were studied acc.
    [Show full text]
  • Concerns About Surface Water As a Drinking Water Source
    Concerns About Surface Water NEW YORK STATE as a Drinking Water Source DEPARTMENT OF HEALTH The New York State Department of Health wants to remind people that there are risks from using water from any surface water source as drinking water, unless that water is properly filtered and disinfected. Water from rivers, lakes, ponds and streams can contain bacteria, parasites, viruses and possibly other contaminants. To make surface water fit to drink, treatment is required. Remember, we use our drinking water in many different ways. We use it as a beverage, but also make ice cubes, mix baby formula, wash fruits and vegetables, and brush our teeth. If the water is contaminated, this may put you at risk. Depending on the kind of contamination, it may also be a concern to wash dishes, wash hands, shower or bathe. Public water systems are required to treat, disinfect and monitor water quality for their customers. A public water treatment system is well designed and employs trained technicians to test and maintain water quality. If you are not on a public water system and use surface water as your water supply source, please contact your local health department* for advice. They can talk to you about developing another source of drinking water in your area. If there are no other choices, then they can discuss the treatment options for your surface water source. In the meantime, avoid the use of surface water for your drinking water needs. You should use bottled water or disinfect small batches of water by bringing it to a rolling boil for one – two minutes.
    [Show full text]
  • Elements for an Outline of a Review of Water Supply Reliability Estimation Related to the Sacramento-San Joaquin Delta Delta Independent Science Board
    DRAFT Elements for an Outline of a Review of Water Supply Reliability Estimation related to the Sacramento-San Joaquin Delta Delta Independent Science Board 7/6/2019 Summary findings and recommendations Section outlines 1) Introduction a) Purpose: Uses of water supply reliability estimates– questions asked b) Scope: Urban, agricultural, environmental, regulatory perspectives, regional systems c) Incomplete inventory of reliability estimation efforts d) Changing challenges and questions (Portfolios in reliability, Water quality, Environmental water reliability, Climate change, Conflicts in water management) e) Structure of report 2) Metrics of water supply reliability 3) Scientific underpinning of trends in water supply reliability a) Portfolios in reliability b) Water quality c) Environmental water reliability d) Climate change e) Multiple objectives and conflicts in water management 4) Developing and communicating insights for managers and policymakers a) Long-term education and insights for policy-makers b) Transparency c) Potential for decision analysis 5) Quality control in reliability estimation a) Peer review b) Common standards or expectations? c) Common efforts (1) Land use, inflows, groundwater modeling, portfolio characterization, etc. (2) Common water accounting 6) Priorities for future studies a) Ecological and environmental water reliability b) Incorporating climate change and sea level rise c) FIRO d) Fragility analysis 7) Conclusions and Recommendations Delta ISB Meeting Materials (7/11/19) 1 DRAFT References Appendices
    [Show full text]
  • RI DEM/Agriculture Best Management Practices Irrigation
    Rhode Island Department of Environmental Management/Division of Agriculture Best Management Practices Irrigation Management Irrigation Systems Irrigation practices are widely used by fruit growers, nursery, green house and vegetable growers alike. Chemigation, the practice of applying fertilizers and or pesticides to crops through irrigation systems, is also used by some farmers. Chemigation can allow nutrients and pesticides to be timed according to crop needs rather than physical application constraints, but ease of application may lead to overuse. Plant nutrients applied through chemigation must only be used within accordance of an approved pest and pesticide management plan. This should incorporate the principles of Integrated Pest Management (IPM). With irrigation, there is a potential for movement of pollutants such as sediments, organic solids, pesticides, metals, micro organisms, salts and nutrients from the land into ground and surface water. Minimizing the discharge of pollutants while reducing water waste and improving water use efficiency are the goals of irrigation management. Setting up an irrigation management plan will help to address irrigation scheduling practices, efficient application, proper utilization of tail-water, drainage and runoff, and backflow prevention. Determining and controlling the rate, amount and timing of irrigation water in a planned and efficient manner is essential for water conservation. Careful irrigation management can minimize leaching and reduce the potential for pesticide and nutrient contamination of groundwater and decrease runoff, erosion, and transport of nutrients and pesticides to surface water. An irrigation system may be portable, or it may be established on the land to be irrigated. System components may include wells, a storage reservoir, a conveyance system, a sprinkler or trickle system, suitable pumps and a recycle storage pond to capture irrigation water down slope of the operation.
    [Show full text]
  • Short-Term Water Management Decisions
    Short-Term Water Management Decisions User Needs for Improved Climate, Weather, and Hydrologic Information Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) January 2013 Technical Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Short-Term Water Management Decisions: 5b. GRANT NUMBER User Needs for Improved Climate, Weather, and Hydrologic Information 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER David Raff, Levi Brekke, Kevin Werner, Andy Wood, and Kathleen White 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Corps of Engineers Bureau of Reclamation CWTS 2013-1 National Oceanic and Atmospheric Administration 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
    [Show full text]
  • Federally Supported Water Supply and Wastewater Treatment Programs
    Federally Supported Water Supply and Wastewater Treatment Programs Updated May 3, 2019 Congressional Research Service https://crsreports.congress.gov RL30478 Federally Supported Water Supply and Wastewater Treatment Programs Summary For more than four decades, Congress has authorized and refined several programs to help communities address water supply and wastewater problems. The agencies that administer these programs differ in multiple ways. In terms of funding mechanisms, projects developed by the Bureau of Reclamation (Reclamation) and the U.S. Army Corps of Engineers (USACE) typically require direct, individual project authorizations from Congress. In contrast, standing program authorizations provide project funding for other agencies, including the Department of Agriculture (USDA), the U.S. Environmental Protection Agency (EPA), the Department of Commerce, and the Department of Housing and Urban Development (HUD). The key practical difference is that with the individual project authorizations, there is no predictable assistance or even guarantee of funding after a project is authorized, because funding must be secured each year in the congressional appropriations process. The programs, on the other hand, have set program criteria, are generally funded from year to year, and provide a process under which project sponsors compete for funding. In terms of scope and mission, the primary responsibilities of USACE are to maintain inland navigation, provide for flood and storm damage reduction, and restore aquatic ecosystems, while EPA’s mission relates to protecting public health and the environment. The Department of Commerce and HUD focus on community and economic development. Likewise, the specific programs—while all address water supply and wastewater treatment to some degree—differ in important respects.
    [Show full text]