Introduction to Numerical Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Numerical Analysis INTRODUCTION TO NUMERICAL ANALYSIS Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University 10. NUMERICAL INTEGRATION 10.1 Background 10.11 Local Truncation Error in Second‐Order 10.2 Euler's Methods Range‐Kutta Method 10.3 Modified Euler's Method 10.12 Step Size for Desired Accuracy 10.4 Midpoint Method 10.13 Stability 10.5 Runge‐Kutta Methods 10.14 Stiff Ordinary Differential Equations 10.6 Multistep Methods 10.7 Predictor‐Corrector Methods 10.8 System of First‐Order Ordinary Differential Equations 10.9 Solving a Higher‐Order Initial Value Problem 10.10 Use of MATLAB Built‐In Functions for Solving Initial‐Value Problems 10.1 Background Ordinary differential equation A differential equation that has one independent variable A first‐order ODE . The first derivative of the dependent variable with respect to the independent variable Example Rates of water inflow and outflow The time rate of change of the mass in the tank Equation for the rate of height change 10.1 Background Time dependent problem Independent variable: time Dependent variable: water level To obtain a specific solution, a first‐order ODE must have an initial condition or constraint that specifies the value of the dependent variable at a particular value of the independent variable. In typical time‐dependent problems . Initial condition . Initial value problem (IVP) 10.1 Background First order ODE statement General form Ex) . Flow lines Analytical solution In many situations an analytical solution is not possible! Numerical solution of a first‐order ODE A set of discrete points that approximate the function y(x) Domain of the solution: , N subintervals 10.1 Background Overview of numerical methods used/or solving a first‐order ODE Start from the initial value Then, estimate the value at a second nearby point third point … Single‐step and multistep approach . Single step approach: . Multistep approach: ⋯, ,, Explicit and implicit approach . Right hand side in explicit method: known values . Right hand side in implicit method: unknown value – In general, non‐linear equation non‐linear equation solution method ! . Implicit methods provide improved accuracy over explicit methods, but require more effort at each step. 10.1 Background Errors in numerical solution of ODEs Round‐off errors Truncation errors . Numerical solution of a differential equation calculated in increments (steps) . Local truncation error: in a single step . Propagated, or accumulated, truncation error – Accumulation of local truncation errors from previous steps Single‐step explicit methods Euler’s explicit method: slope at , Modified Euler’s explicit method: average slope at , and , Midpoint method: slope at /2 Runge‐Kutta methods . A weighted average of estimates of the slope of at several points 10.2 Euler’s Method Euler’s method step size is exaggerated ! Simplest technique for solving a first‐order ODE . Explicit or implicit Euler's Explicit Method The error in this method depends on the value of and is smaller for smaller h. Derivation Numerical integration or finite difference approximation of the derivative (rectangle method) (forward Euler method) 10.2 Euler’s Method Example 10‐1: Solving a first‐order ODE using Euler's explicit method. 10.2 Euler’s Method Example 10‐1: Solving a first‐order ODE using Euler's explicit method. % Solving Example 8-1 clear all a=0; b=2.5; h=0.1; yINI = 3; [x, y] = odeEULER(@Chap8Exmp1ODE,a,b,h,yINI); xp=a:0.1:b; yp=70/9*exp(-0.3*xp)-43/9*exp(-1.2*xp); plot(x,y,'--b',xp,yp) xlabel('x'); ylabel('y') function dydx = Chap8Exmp1ODE(x,y) dydx = -1.2*y + 7*exp(-0.3*x); function [x, y] = odeEULER(ODE,a,b,h,yINI) x(1) = a; y(1) = yINI; N = (b-a)/h; for i = 1:N x(i+1) = x(i) + h; y(i+1) = y(i) + ODE(x(i),y(i))*h; end 10.2 Euler’s Method Analysis of truncation error in Euler's explicit method Local truncation error Global truncation error Taylor series expansion at position 1 Numerical solution Local truncation error Total error . The difference between the numerical solution and the true solution. 10.2 Euler’s Method Analysis of truncation error in Euler's explicit method Global truncation error . Truncation error is propagated or accumulated ! Mean value theorem 10.2 Euler’s Method Analysis of truncation error in Euler's explicit method Global truncation error . Suppose . Propagation of error – At the first point to the second point to the third point – At the fourth point – At the point . Suppose 10.2 Euler’s Method Analysis of truncation error in Euler's explicit method Global truncation error . Suppose – Difficult to determine the order of magnitude directly – Possible to determine the bound ∵ 10.2 Euler’s Method Euler's implicit method In general, this equation is non‐linear! Must be solved with a numerical solution method In the derivation . Backward difference formula for the derivative . backward Euler method The local and global truncation errors . Same as those in the explicit method 10.2 Euler’s Method Example 10‐2: Solving a first‐order ODE using Euler's implicit method To solve the non‐linear equation using Newton method Iteration function 10.2 Euler’s Method Example 10‐2: Solving a first‐order ODE using Euler's implicit method % Solving First Order ODE with Euler's implicit Method. clear all a = 0; b = 0.5; h = 0.002; N = (b - a)/h; n(1) = 2000; t(1) = a; for i=1:N t(i+1) = t(i) + h; x = n(i); % Newton's method starts. for j = 1:20 num = x +0.800*x^(3/2)*h - 10.0*n(1)... *(1-exp(-3*t(i+1)))*h - n(i); denom = 1 + 0.800*1.5*x^(1/2)*h; xnew = x - num/denom; if abs((xnew - x)/x) < 0.0001 break else x = xnew; end end if j == 20 fprintf('Numerical solution could no be calculated at t = %g s', t(i)) break end % Newton's method ends. n(i+1) = xnew; end plot(t,n) axis([0 0.5 0 2000]), xlabel('t (s)'), ylabel('n') 10.3 Modified Euler’s Method Modified Euler’s Method Main assumption in Explicit method . Constant derivative (slope) between , and , main source of error . Equal to the derivative at point , Modified Euler method . To include the effect of slope changes within the subinterval . Uses the average of the slope at points , and , Slope at the beginning: at point , Using Euler’s explicit method Estimating slope at the end of interval: at point , 10.3 Modified Euler’s Method Modified Euler’s Method Better estimation of with new slope . Also derived by integrating ODE using the trapezoidal method Algorithm 1. 2. 3. 4. 10.3 Modified Euler’s Method Example 10‐3: Solving a first‐order ODE using the modified Euler method. function [x, y] = odeModEuler(ODE,a,b,h,yINI) x(1) = a; y(1) = yINI; N = (b-a)/h; for i = 1:N x(i+1) = x(i) + h; SlopeEu = ODE(x(i),y(i)); yEu = y(i) + SlopeEu*h; SlopeEnd = ODE(x(i+1),yEu); y(i+1) = y(i) + (SlopeEu+SlopeEnd)*h/2; end Explicit Euler Modified Euler 10.4 Midpoint Method Midpoint method Another modification of Euler’s explicit method Slope at the middle point of the interval Two steps 1. Calculate 2. Estimate slope at the midpoint , 3. Calculate numerical solution : 10.5 Runge‐Kutta Methods Runge‐Kutta Methods A family of single‐step, explicit, numerical techniques for a first‐order ODE . Slope: obtained by considering the slope at several points within the subinterval . Different orders of Runge‐Kutta method the number of points within the subinterval – Second‐order RK: two points – Third‐order RK: three points – Fourth order RK (classical RK): four points . Global truncation error – Second‐order RK: second‐order accurate globally; third order accurate locally More accurate than simple Euler’s explicit method However, require several evaluations of function for the derivative 10.5 Runge‐Kutta Methods Second‐order Runge‐Kutta Methods General form . The values of these constants vary with the specific second‐order method. Modified Euler method and the midpoint method – Two versions of a second‐order RK method . Modified Euler method: , , 1, 1 . Midpoint method: 0, 1, , 10.5 Runge‐Kutta Methods Second‐order Runge‐Kutta Methods Heun’s method . , , , Truncation error in second‐order RK methods . Local truncation error: . Global truncation error: . A larger step size can be used for the same accuracy ! However, the function , is calculated twice. 10.5 Runge‐Kutta Methods Second‐order Runge‐Kutta Methods and Talyor series expansion First and second derivatives: given by the differential equation Then, General form of RK 10.5 Runge‐Kutta Methods Second‐order Runge‐Kutta Methods and Talyor series expansion Two different equations for Three equations with four unknowns Modified Euler: , , 1, 1 Midpoint method: 0, 1, , Heun’s: , , , 10.5 Runge‐Kutta Methods Example 10‐4: Solving by hand a first‐order ODE using the second‐order RungeKutta method 10.5 Runge‐Kutta Methods Third‐order RK methods General form . ,,,,,,, . Four term Talyor series expansion Classical third‐order RK method . , , , , 1, , 1, 2 10.5 Runge‐Kutta Methods Third‐order RK methods Truncation error . Local truncation error: . Global truncation error: Other third‐order RK method 10.5 Runge‐Kutta Methods Fourth‐order RK methods General form . 13 constants: ,,,,,,,,,,,, Classical fourth‐order RK method 10.5 Runge‐Kutta Methods Fourth‐order RK methods 10.5 Runge‐Kutta Methods Fourth‐order RK methods Truncation error . Local truncation error: . Global truncation error: 10.5 Runge‐Kutta Methods Example 10‐5: Solving by hand a first‐order ODE using the fourth‐order Runge‐Kutta method Example 10‐6: A user‐defined function for solving a first‐order ODE using the fourth‐ order Runge‐Kutta method.
Recommended publications
  • Numerical Solution of Ordinary Differential Equations
    NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Kendall Atkinson, Weimin Han, David Stewart University of Iowa Iowa City, Iowa A JOHN WILEY & SONS, INC., PUBLICATION Copyright c 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
    [Show full text]
  • Chapter 16: Differential Equations
    ✐ ✐ ✐ ✐ Chapter 16 Differential Equations A vast number of mathematical models in various areas of science and engineering involve differ- ential equations. This chapter provides a starting point for a journey into the branch of scientific computing that is concerned with the simulation of differential problems. We shall concentrate mostly on developing methods and concepts for solving initial value problems for ordinary differential equations: this is the simplest class (although, as you will see, it can be far from being simple), yet a very important one. It is the only class of differential problems for which, in our opinion, up-to-date numerical methods can be learned in an orderly and reasonably complete fashion within a first course text. Section 16.1 prepares the setting for the numerical treatment that follows in Sections 16.2–16.6 and beyond. It also contains a synopsis of what follows in this chapter. Numerical methods for solving boundary value problems for ordinary differential equations receive a quick review in Section 16.7. More fundamental difficulties arise here, so this section is marked as advanced. Most mathematical models that give rise to differential equations in practice involve partial differential equations, where there is more than one independent variable. The numerical treatment of partial differential equations is a vast and complex subject that relies directly on many of the methods introduced in various parts of this text. An orderly development belongs in a more advanced text, though, and our own description in Section 16.8 is downright anecdotal, relying in part on examples introduced earlier. 16.1 Initial value ordinary differential equations Consider the problem of finding a function y(t) that satisfies the ordinary differential equation (ODE) dy = f (t, y), a ≤ t ≤ b.
    [Show full text]
  • Differential Equations
    Differential Equations • Overview of differential equation • Initial value problem • Explicit numeric methods • Implicit numeric methods • Modular implementation Physics-based simulation • It’s an algorithm that produces a sequence of states over time under the laws of physics • What is a state? Physics-based simulation xi xi+1 xi xi+1 = xi +∆x ∆x Physics-based simulation xi Newtonian laws gravity wind gust xi+1 elastic force . integrator xi xi+1 = xi +∆x ∆x Differential equations • What is a differential equation? • It describes the relation between an unknown function and its derivatives • Ordinary differential equation (ODE) • is the relation that contains functions of only one independent variable and its derivatives Ordinary differential equations An ODE is an equality equation involving a function and its derivatives known function x˙(t)=f(x(t)) time derivative of the unknown function that unknown function evaluates the state given time What does it mean to “solve” an ODE? Symbolic solutions • Standard introductory differential equation courses focus on finding solutions analytically • Linear ODEs can be solved by integral transforms • Use DSolve[eqn,x,t] in Mathematica Differential equation: x˙(t)= kx(t) − kt Solution: x(t)=e− Numerical solutions • In this class, we will be concerned with numerical solutions • Derivative function f is regarded as a black box • Given a numerical value x and t, the black box will return the time derivative of x Physics-based simulation xi Newtonian laws gravity wind gust xi+1 elastic force . integrator
    [Show full text]
  • Numerical Methods for Evolutionary Systems, Lecture 2 Stiff Equations
    Numerical Methods for Evolutionary Systems, Lecture 2 C. W. Gear Celaya, Mexico, January 2007 Stiff Equations The history of stiff differential equations goes back 55 years to the very early days of machine computation. The first identification of stiff equations as a special class of problems seems to have been due to chemists [chemical engineers] in 1952 (C.F. Curtiss and J.O. Hirschfelder, Integration of stiff equations, Proc. of the National Academy of Sciences of U.S., 38 (1952), pp 235--243.) For 15 years stiff equations presented serious difficulties and were hard to solve, both in chemical problems (reaction kinetics) and increasingly in other areas (electrical engineering, mechanical engineering, etc) until around 1968 when a variety of methods began to appear in the literature. The nature of the problems that leads to stiffness is the existence of physical phenomena with very different speeds (time constants) so that, while we may be interested in relative slow aspects of the model, there are features of the model that could change very rapidly. Prior to the availability of electronic computers, one could seldom solve problems that were large enough for this to be a problem, but once electronic computers became available and people began to apply them to all sorts of problems, we very quickly ran into stiff problems. In fact, most large problems are stiff, as we will see as we look at them in a little detail. L2-1 Copyright 2006, C. W. Gear Suppose the family of solutions to an ODE looks like the figure below. This looks to be an ideal problem for integration because almost no matter where we start the final solution finishes up on the blue curve.
    [Show full text]
  • Nonlinear Problems 5
    Nonlinear Problems 5 5.1 Introduction of Basic Concepts 5.1.1 Linear Versus Nonlinear Equations Algebraic equations A linear, scalar, algebraic equation in x has the form ax C b D 0; for arbitrary real constants a and b. The unknown is a number x. All other algebraic equations, e.g., x2 C ax C b D 0, are nonlinear. The typical feature in a nonlinear algebraic equation is that the unknown appears in products with itself, like x2 or x 1 2 1 3 e D 1 C x C 2 x C 3Š x C ::: We know how to solve a linear algebraic equation, x Db=a, but there are no general methods for finding the exact solutions of nonlinear algebraic equations, except for very special cases (quadratic equations constitute a primary example). A nonlinear algebraic equation may have no solution, one solution, or many solutions. The tools for solving nonlinear algebraic equations are iterative methods,wherewe construct a series of linear equations, which we know how to solve, and hope that the solutions of the linear equations converge to a solution of the nonlinear equation we want to solve. Typical methods for nonlinear algebraic equation equations are Newton’s method, the Bisection method, and the Secant method. Differential equations The unknown in a differential equation is a function and not a number. In a linear differential equation, all terms involving the unknown function are linear in the unknown function or its derivatives. Linear here means that the unknown function, or a derivative of it, is multiplied by a number or a known function.
    [Show full text]
  • Numerical Methods for Ordinary Differential Equations
    Numerical methods for ordinary differential equations Ulrik Skre Fjordholm May 1, 2018 Chapter 1 Introduction Consider the ordinary differential equation (ODE) x.t/ f .x.t/; t/; x.0/ x0 (1.1) P D D d d d where x0 R and f R R R . Under certain conditions on f there exists a unique solution of (1.1), and2 for certainW types of! functions f (such as when (1.1) is separable) there are techniques available for computing this solution. However, for most “real-world” examples of f , we have no idea how the solution actually looks like. We are left with no choice but to approximate the solution x.t/. Assume that we would like to compute the solution of (1.1) over a time interval t Œ0; T for some T > 01. The most common approach to finding an approximation of the solution of2 (1.1) starts by partitioning the time interval into a set of points t0; t1; : : : ; tN , where tn nh is a time step and h T is the step size2. A numerical method then computes an approximationD of the actual solution D N value x.tn/ at time t tn. We will denote this approximation by yn. The basis of most numerical D methods is the following simple computation: Integrate (1.1) over the time interval Œtn; tn 1 to get C Z tn 1 C x.tn 1/ x.tn/ f .x.s/; s/ ds: (1.2) C D C tn Although we could replace x.tn/ and x.tn 1/ by their approximations yn and yn 1, we cannot use the formula (1.2) directly because the integrandC depends on the exact solution x.s/C .
    [Show full text]
  • The N-Body Problem Applied to Exoplanets
    Chapter 1 The N-body problem applied to exoplanets 1.1 Motivation The N-body problem is the problem of solving the motion of N > 1 stars or planets that are mutually gravitationally attracting each other. The 2-body problem is a special case which can be solved analytically. The solutions to the 2-body problem are the Kepler orbits. For N > 2 there is, however, no analytical solution. The only way to solve the N > 2 problem is by numerical integration of the Newtonian equations of motion. Of course there are limiting cases where the N > 2 problem reduces to a set of independent N = 2 problems: To first order the orbit of the planets around the Sun are Kepler orbits: N = 2 solutions in which the two bodies are the Sun and the planet. That is because the mutual gravitational force between e.g. Venus and Earth is much smaller than the gravitational force of the Sun. So for the planets of our Solar System, and for most planets around other stars, the N-body problem can, to first order, be simplified into N 1 independent 2-body problems. That means that e.g. the − Earth’s orbit is only very slightly modified by the gravitational attraction by Venus or Mars. For most purposes we can ignore this tiny effect, meaning that the Kepler orbital characteristic are sufficiently accurate to describe most of what we want to know about the system. However, for exoplanetary systems where the planets are closer to each other, the situation may be different.
    [Show full text]
  • Numerical Integration
    Game Physics Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Numerical Integration Updating position • Recall that 퐹푂푅퐶퐸 = 푀퐴푆푆 × 퐴퐶퐶퐸퐿퐸푅퐴푇퐼푂푁 – If we assume that the mass is constant then 퐹 푝표, 푡 = 푚 ∗ 푎(푝표, 푡) ′ ′ – We know that 푣 푡 = 푎(푡) and 푝표 푡 = 푣(푡) ′′ – So we have 퐹 푝표, 푡 = 푚 ∗ 푝표 (푡) • This is a differential equation – Well studied branch of mathematics – Often difficult to solve in real-time applications Game Physics 3 Taylor series • Taylor expansion series of a function can be applied on 푝0 at t + ∆푡 푝표 푡 + ∆푡 ∆푡2 = 푝 푡 + ∆t ∗ 푝 ′ 푡 + 푝 ′′ 푡 + ⋯ 표 표 2 표 ∆푡푛 + 푝 푛 푡 푛! 표 • But of course we don’t know the values of the entire infinite series, at best we have 푝표 푡 and the first two derivatives Game Physics 4 First order approximation • Hopefully, if ∆푡 is small enough, we can use an approximation ′ 푝표 푡 + ∆푡 ≈ 푝표 푡 + ∆t ∗ 푝표 푡 • Separating out position and velocity gives 퐹(푡) 푣 푡 + ∆푡 = 푣 푡 + 푎 푡 ∆푡 = 푣 푡 + ∆푡 푚 푝표(푡 + ∆푡) = 푝표(푡) + 푣(푡)∆푡 Game Physics 5 Euler’s method 5.1 • This is known as Euler’s method 푣 푡 + ∆푡 = 푣 푡 + 푎 푡 ∆푡 푝표(푡 + ∆푡) = 푝표(푡) + 푣(푡)∆푡 푣(푡 − ∆푡) 푡 푎(푡 − ∆푡) 푣(푡) 푡 + ∆푡 푣(푡) 푣(푡 + ∆푡) 푎(푡) Game Physics 6 Euler’s method • So by assuming the velocity is constant for the time ∆푡 elapsed between two frames – We compute the acceleration of the object from the net force applied on it 푎 푡 = 퐹(푡)/푚 – We compute the velocity from the acceleration 푣 푡 + ∆푡 = 푣 푡 + 푎 푡 ∆푡 – We compute the position from the velocity 푝표 푡 + ∆푡 = 푝표 푡 + 푣(푡)∆푡 Game Physics 7 Issues with linear dynamics • We only look at a sequence of instants without meaning – E.g.
    [Show full text]
  • Solving Differential Equations in R
    Use R! Solving Differential Equations in R Bearbeitet von Karline Soetaert, Jeff Cash, Francesca Mazzia 1. Auflage 2012. Taschenbuch. xvi, 248 S. Paperback ISBN 978 3 642 28069 6 Format (B x L): 15,5 x 23,5 cm Gewicht: 409 g Weitere Fachgebiete > Mathematik > Stochastik > Mathematische Statistik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Initial Value Problems Abstract In the previous chapter we derived a simple finite difference method, namely the explicit Euler method, and we indicated how this can be analysed so that we can make statements concerning its stability and order of accuracy. If Euler’s method is used with constant time step h then it is convergent with an error of order O(h) for all sufficiently smooth problems. Thus, if we integrate from 0 to 1 with step h = 10−5, we will need to perform 105 function evaluations to complete the integration and obtain a solution with error O(h). To achieve extra accuracy using this method we could reduce the step size h. This is not in general efficient and in many cases it is preferable to use higher order methods rather than decreasing the step size with a lower order method to obtain higher accuracy. One of the main differences between Euler’s and higher order methods is that, whereas Euler’s method uses only information involving the value of y and its derivative (slope) at the start of the integration interval to advance to the next integration step, higher order methods use information at more than one point.
    [Show full text]
  • MATH 1080 Spring 2020, Second Half of Semester Notes for the Remote Teaching 1
    MATH 1080 Spring 2020, second half of semester Notes for the remote teaching 1. Numerical methods for Ordinary Differential Equations (ODEs). DEFINITION 1.1 (ODE of order p). d py d p−1y dy + a + ··· + a + a y = f (t;y;y0;:::;y(p−1)): (1.1) dt p p−1 dt p−1 1 dt 0 REMARK 1.1. An ODE of order p can be written as a system of p first-order equations, with the unknowns: 0 00 (p−2) (p−1) y1 = y;;y2 = y ; y3 = y ;;:::; yp−1 = y ;yp = y ; hence satisfying 8 y0 = y > 1 2 > y0 = y ; > 2 3 < . > y0 = y ; > p−1 p :> 0 yp = f (t;y1;y2;:::;yp−1) − ap−1yp − ··· − a1y2 − a0y1: EXAMPLE 1.1 (Logistic equation). y y0 = cy 1 − : (scalar equation) B EXAMPLE 1.2 (Lotka-Volterra). 0 y1 = c1y1(1 − b1y1 − d2y2) 0 (system of 2 first-order equations) y2 = c2y2(1 − b2y2 − d1y1): EXAMPLE 1.3 (Vibrating spring / simple harmonic motion). u00(x) + k(x)u0(x) + m(x)u(x) = f (x): (2nd order scalar equation) n n DEFINITION 1.2 (The Cauchy problem, Initial Value Problem (IVP)). Find y : I ! R ;y 2 C1(R ) such that y0 = f (t;y(t)); t 2 (0;T] (IVP) y(t0) = y0: n 1 Here I = [t0;T], y0 2 R is called ’initial datum’, and y(·) 2 C (R) satisfying (IVP) is a classical solution. Moreover, if f (t;y(t)) ≡ f (y(t)), the equation/system (IVP) is called ‘autonomous’. DEFINITION 1.3.
    [Show full text]
  • Backward Differentiation Formulas
    American Journal of Computational and Applied Mathematics 2014, 4(2): 51-59 DOI: 10.5923/j.ajcam.20140402.03 A Family of One-Block Implicit Multistep Backward Euler Type Methods Ajie I. J.1,*, Ikhile M. N. O.2, Onumanyi P.1 1National Mathematical Centre, Abuja, Nigeria 2Department of Mathematics, University of Benin, Benin City, Nigeria Abstract A family of k-step Backward Differentiation Formulas (BDFs)and the additional methods required to form blocks that possess L(α)-stability properties are derived by imposing order k on the general formula of continuous BDF. This leads to faster derivation of the coefficients compare to collocation and integrand approximation methods. Linear stability analysis of the resultant blocks show that they are L(α)-stable. Numerical examples are presented to show the efficacy of the methods. Keywords Backward Differentiation Formulas (BDFs), One-Block Implicit Backward Euler Type, L(α)-stable, A(α)-stable, Region of Absolute Stability (RAS) We require that the methods belonging to (1.4) converge 1. Introduction efficiently like (1.1) but with better accuracy of order k, k 1 . The popular one-step Backward Euler Method (BEM) is given by the formula yn11 y n h n f n n = 1, 2, 3, … (1.1) 2. Derivation of Formulae (1.4) (1.1) is known to possess a correct behaviour when the Consider the general linear multistep method given by stiffness ratio is severe in a stiff system of initial value kk problem of ordinary differential equations given in the form ry n r h n r f t n r, y n r (2.1) y f( t , y ); t [ a , b ] (1.2) rr00 where the step number k0, h t t is a variable y(), t00 y (1.3) n n1 n step length, αk and βk are both not zero.
    [Show full text]
  • Numerical Solution of Ordinary Differential Equations
    11 Numerical Solution of Ordinary Differential Equations In this chapter we deal with the numerical solutions of the Cauchy problem for ordinary differential equations (henceforth abbreviated by ODEs). After a brief review of basic notions about ODEs, we introduce the most widely used techniques for the numerical approximation of scalar equations. The concepts of consistency, convergence, zero-stability and absolute stability will be addressed. Then, we extend our analysis to systems of ODEs, with emphasis on stiff problems. 11.1 The Cauchy Problem The Cauchy problem (also known as the initial-value problem) consists of finding the solution of an ODE, in the scalar or vector case, given suitable initial conditions. In particular, in the scalar case, denoting by I an interval of R containing the point t0, the Cauchy problem associated with a first order ODE reads: find a real-valued function y C1(I), such that ∈ y′(t)=f(t, y(t)),tI, ∈ (11.1) ! y(t0)=y0, where f(t, y) is a given real-valued function in the strip S = I ( , + ), which is continuous with respect to both variables. Should f×depend−∞ on∞ t only through y, the differential equation is called autonomous. 470 11. Numerical Solution of Ordinary Differential Equations Most of our analysis will be concerned with one single differential equa- tion (scalar case). The extension to the case of systems of first-order ODEs will be addressed in Section 11.9. If f is continuous with respect to t, then the solution to (11.1) satisfies t y(t) y = f(τ,y(τ))dτ.
    [Show full text]