Backward Differentiation Formulas

Total Page:16

File Type:pdf, Size:1020Kb

Backward Differentiation Formulas American Journal of Computational and Applied Mathematics 2014, 4(2): 51-59 DOI: 10.5923/j.ajcam.20140402.03 A Family of One-Block Implicit Multistep Backward Euler Type Methods Ajie I. J.1,*, Ikhile M. N. O.2, Onumanyi P.1 1National Mathematical Centre, Abuja, Nigeria 2Department of Mathematics, University of Benin, Benin City, Nigeria Abstract A family of k-step Backward Differentiation Formulas (BDFs)and the additional methods required to form blocks that possess L(α)-stability properties are derived by imposing order k on the general formula of continuous BDF. This leads to faster derivation of the coefficients compare to collocation and integrand approximation methods. Linear stability analysis of the resultant blocks show that they are L(α)-stable. Numerical examples are presented to show the efficacy of the methods. Keywords Backward Differentiation Formulas (BDFs), One-Block Implicit Backward Euler Type, L(α)-stable, A(α)-stable, Region of Absolute Stability (RAS) We require that the methods belonging to (1.4) converge 1. Introduction efficiently like (1.1) but with better accuracy of order k, k 1 . The popular one-step Backward Euler Method (BEM) is given by the formula yn11 y n h n f n n = 1, 2, 3, … (1.1) 2. Derivation of Formulae (1.4) (1.1) is known to possess a correct behaviour when the Consider the general linear multistep method given by stiffness ratio is severe in a stiff system of initial value kk problem of ordinary differential equations given in the form ry n r h n r f t n r, y n r (2.1) y f( t , y ); t [ a , b ] (1.2) rr00 where the step number k0, h t t is a variable y(), t00 y (1.3) n n1 n step length, αk and βk are both not zero. Following Lambert Our main concern in this paper is to propose a new family (1973) by making use of Taylor expansion of(2.1) and the of One-Block Implicit Backward Euler Type method of the associated linear operator L defined as form k A Y A Y h B F (1.4) (1)n 1 (0) n m (1) n 1 L[y(t);hn ] r y ( t rh ) r0 where (2.2) k T Y ( y , y , y , ..., y ) n1 n 1 n 2 n 3 n k hnr y() t rh T r0 Yn ( y n k 1 , ..., y n 2 , y n 1 , y n ) where y(t) is an arbitrary function which is continuously T Fn1 ( f n 1 , f n 2 , f n 3 , ..., f n k ) differentiable on the interval [a, b] and expanding the test and function y(t+rh) and its derivative y'(t+rh) about t gives (2.3) if we collect like terms, A(1), A (0) and B (1) are of order k by k. Lyxh ( );nn cyx01 ( ) chyx ( ) (2.3) * Corresponding author: qq() [email protected] (Ajie I. J.) cqn h y Published online at http://journal.sapub.org/ajcam Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved where 52 Ajie I. J. et al.: A Family of One-Block Implicit Multistep Backward Euler Type Methods c , 0 0 1 2 k 0 1 1 1 1. .1 0 ck10 0 1 1 2 2 kk 0 1 0 1 2 3. .k 1 1 2jk 0 1 22 3 2 . 2 and 2 1 ... (2.7) qq ckqk00 1 1 2 2 ... q! 1 ... qq11 12 2 k k k1 k k k (q 1)! kj0 1 2 3 . .. k k Equation (2.7) is used to derive k-step BDFs at point qk 2,3, , are constants. (2.4) For backward differentiation formulas (BDFs), we put in tt nk , additional methods are obtained by evaluating the derivative function at the points (2.1) i 0,ik 0,1, 2, ..., 1; and k 1 This gives t tnj ; j 1, 2, ..., k 1. This is done by computing k the vandermonde matrix at jk1, 2, ..., 1. The k-step y h f t, y (2.5) r n r n k n r n r Backward Differentiation Formula and the additional r0 methods are then combined to obtain a self-starting block If continuous coefficients of (2.5) are assumed, we have that can simultaneously generate the solutions k {yn1 , y n 2 , y n 3 , ..., y n k } of (1.2)-(1.3) at points ()(),t y h t f t y (2.6) r n r n j n r n r {tn1 , t n 2 , t n 3 , ..., t n k }. r0 We then express the block methods for a fixed value of k like the one-step Backward Euler Method (BEM) of the form where the coefficients i (t ), i 0,1, 2, ..., k , in formula (1.4) where A(1), A (0) and B (1) for the first six members (2.6), are evaluated at t tj j1, 2 ,..., k by are as given in this work. The computer finds it easier to imposing order k on it, that is c0 c 1 c 2 ... ck 0. compute the inverse of the vandermonde matrix with real This leads to the following k by k vandermonde matrix (see 1 constants in (2.7) than the matrix inverse D associated Brugnano and Trigiante (1998)). with the direct construction of interpolation and collocation matrix 1 1x x2 x 3 . xkk 1 x n n n n n 2 3kk 1 1xn1 x n 1 x n 1 . x n 1 x n 1 2 3kk 1 1xn2 x n 2 x n 2 . x n 2 x n 2 1 ......... D C (2.8) ......... ......... 1x x2 x 3 . xkk 1 x n k 1 n k 1 n k 1 n k 1 n k 1 3kk 2 1 0 1 2xn k 3 x n k . ( k 1) x n k kx n k such that CD = Ikxk identity matrix. The columns of C contains the constant coefficients of the continuous multistep method. (see Onumanyi et al. (2001), Akinfenwa et al (2011)). The first six members of the family expressed in form (1.4) have the following as A(1), A (0) and B (1) Case k = 1 Case k = 2 American Journal of Computational and Applied Mathematics 2014, 4(2): 51-59 53 Case k = 3 Case k = 4 Case k = 5 Case k = 6 54 Ajie I. J. et al.: A Family of One-Block Implicit Multistep Backward Euler Type Methods 3. Linear Stability Analysis of 1.4 (kz 1) k2 Applying (1.4) to the test equation 00 zzik 1 0 2 i k yy ; < 0 (3.1) R(z) i2 (3.6) k1 0 (kz 1) ik gives 00 i zz 2 i2 Y1 D(); z Y z h (3.2) where Case k = 1 1 D()() z A(1) zB (1) A (0) (3.3) From (3.3), we obtain the stability function R(z) which is a rational function of real coefficients given by Case k = 2 R( z ) Det [ IR D ( z )] (3.4) where I is a kk identity matrix. The stability domain S of a one-step block method is Sz{ C:R(z) 1} (3.5) Case k = 3 From the analysis given we easily obtain as follows the rational functions R(z) for k 1,2,3,...,11 which satisfies (3.5). American Journal of Computational and Applied Mathematics 2014, 4(2): 51-59 55 Case k = 4 Case k = 5 Case k = 6 Case k = 7 Case k =8 Case k = 9 Case k = 10 Case k = 11 56 Ajie I. J. et al.: A Family of One-Block Implicit Multistep Backward Euler Type Methods The characteristics polynomial of the method is (r, z) Det(A(1) r A (0) -zB (1) r) 0 The methods are absolutely stable in the region where rj (z ) 1, j 1,2,..., k . Using the boundary locus method, the regions of instabilities are as given below Figure 1. Boundary loci of the proposed blocked methods of order k, k = 1, 2, 3, …, 12 L() stable family Let k denote the step number, p = k the order and (0, ) 2 K 1 2 3 4 5 6 7 8 9 10 11 12 90o 90o 89o 85o 78o 75o 90 89o 89o 88o 85o 81.5o The methods are A() stable since its region of absolute stability (RAS) contains an infinite wedge w z: arg( z ) and L() stable since (D ( ) ) 0. (see Chartier (1994)) 4. Numerical Examples Example 4.1 American Journal of Computational and Applied Mathematics 2014, 4(2): 51-59 57 x The test equation y y; y (0) 1, with solution ye is solved with h = 0.01 and 5 using different order of the proposed methods. The results of the absolute errors are displayed in table 1 below Table 1. Absolute errors in example 4.1 when solved with different order of the proposed methods X Order 1 Order 3 Order 5 Order 7 Order 8 Order 9 0.02 4.10e-002 1.72e-006 3.82e-009 8.57e-012 4.22e-013 1.90e-014 0.04 3.52e-002 3.53e-006 3.45e-009 7.79e-012 3.84e-013 1.72e-014 0.06 3.01e-002 3.21e-006 6.69e-009 7.00e-012 3.47e-013 1.53e-014 0.08 2.57e-002 4.18e-006 5.95e-009 1.33e-011 3.02e-013 1.44e-014 0.10 2.19e-002 5.25e-006 5.50e-009 1.18e-011 5.56e-013 2.49e-014 0.12 1.85e-002 4.75e-006 7.30e-009 1.07e-011 5.05e-013 2.45e-014 Example 4.2 Consider the following linear constant coefficient initial value problem taken from Lambert (1973), 21 19 20 1 y19 21 20 y ; y (0) 0 40 40 40 1 Its theoretical solution is e2tt e 40 (cos(40 t ) sin(40 t )) 1 y( t ) e2tt e 40 (cos(40 t ) sin(40 t )) 2 2e40t (sin(40 t ) cos(40 t )) The above problem was solved by Brugnano and Trigiante (1998) using Generalized Backward Differentiation Formula (GBDF) of different order.
Recommended publications
  • Numerical Solution of Ordinary Differential Equations
    NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Kendall Atkinson, Weimin Han, David Stewart University of Iowa Iowa City, Iowa A JOHN WILEY & SONS, INC., PUBLICATION Copyright c 2009 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
    [Show full text]
  • Chapter 16: Differential Equations
    ✐ ✐ ✐ ✐ Chapter 16 Differential Equations A vast number of mathematical models in various areas of science and engineering involve differ- ential equations. This chapter provides a starting point for a journey into the branch of scientific computing that is concerned with the simulation of differential problems. We shall concentrate mostly on developing methods and concepts for solving initial value problems for ordinary differential equations: this is the simplest class (although, as you will see, it can be far from being simple), yet a very important one. It is the only class of differential problems for which, in our opinion, up-to-date numerical methods can be learned in an orderly and reasonably complete fashion within a first course text. Section 16.1 prepares the setting for the numerical treatment that follows in Sections 16.2–16.6 and beyond. It also contains a synopsis of what follows in this chapter. Numerical methods for solving boundary value problems for ordinary differential equations receive a quick review in Section 16.7. More fundamental difficulties arise here, so this section is marked as advanced. Most mathematical models that give rise to differential equations in practice involve partial differential equations, where there is more than one independent variable. The numerical treatment of partial differential equations is a vast and complex subject that relies directly on many of the methods introduced in various parts of this text. An orderly development belongs in a more advanced text, though, and our own description in Section 16.8 is downright anecdotal, relying in part on examples introduced earlier. 16.1 Initial value ordinary differential equations Consider the problem of finding a function y(t) that satisfies the ordinary differential equation (ODE) dy = f (t, y), a ≤ t ≤ b.
    [Show full text]
  • Introduction to Numerical Analysis
    INTRODUCTION TO NUMERICAL ANALYSIS Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University 10. NUMERICAL INTEGRATION 10.1 Background 10.11 Local Truncation Error in Second‐Order 10.2 Euler's Methods Range‐Kutta Method 10.3 Modified Euler's Method 10.12 Step Size for Desired Accuracy 10.4 Midpoint Method 10.13 Stability 10.5 Runge‐Kutta Methods 10.14 Stiff Ordinary Differential Equations 10.6 Multistep Methods 10.7 Predictor‐Corrector Methods 10.8 System of First‐Order Ordinary Differential Equations 10.9 Solving a Higher‐Order Initial Value Problem 10.10 Use of MATLAB Built‐In Functions for Solving Initial‐Value Problems 10.1 Background Ordinary differential equation A differential equation that has one independent variable A first‐order ODE . The first derivative of the dependent variable with respect to the independent variable Example Rates of water inflow and outflow The time rate of change of the mass in the tank Equation for the rate of height change 10.1 Background Time dependent problem Independent variable: time Dependent variable: water level To obtain a specific solution, a first‐order ODE must have an initial condition or constraint that specifies the value of the dependent variable at a particular value of the independent variable. In typical time‐dependent problems . Initial condition . Initial value problem (IVP) 10.1 Background First order ODE statement General form Ex) . Flow lines Analytical solution In many situations an analytical solution is not possible! Numerical solution of a first‐order ODE A set of discrete points that approximate the function y(x) Domain of the solution: , N subintervals 10.1 Background Overview of numerical methods used/or solving a first‐order ODE Start from the initial value Then, estimate the value at a second nearby point third point … Single‐step and multistep approach .
    [Show full text]
  • Numerical Methods for Evolutionary Systems, Lecture 2 Stiff Equations
    Numerical Methods for Evolutionary Systems, Lecture 2 C. W. Gear Celaya, Mexico, January 2007 Stiff Equations The history of stiff differential equations goes back 55 years to the very early days of machine computation. The first identification of stiff equations as a special class of problems seems to have been due to chemists [chemical engineers] in 1952 (C.F. Curtiss and J.O. Hirschfelder, Integration of stiff equations, Proc. of the National Academy of Sciences of U.S., 38 (1952), pp 235--243.) For 15 years stiff equations presented serious difficulties and were hard to solve, both in chemical problems (reaction kinetics) and increasingly in other areas (electrical engineering, mechanical engineering, etc) until around 1968 when a variety of methods began to appear in the literature. The nature of the problems that leads to stiffness is the existence of physical phenomena with very different speeds (time constants) so that, while we may be interested in relative slow aspects of the model, there are features of the model that could change very rapidly. Prior to the availability of electronic computers, one could seldom solve problems that were large enough for this to be a problem, but once electronic computers became available and people began to apply them to all sorts of problems, we very quickly ran into stiff problems. In fact, most large problems are stiff, as we will see as we look at them in a little detail. L2-1 Copyright 2006, C. W. Gear Suppose the family of solutions to an ODE looks like the figure below. This looks to be an ideal problem for integration because almost no matter where we start the final solution finishes up on the blue curve.
    [Show full text]
  • Nonlinear Problems 5
    Nonlinear Problems 5 5.1 Introduction of Basic Concepts 5.1.1 Linear Versus Nonlinear Equations Algebraic equations A linear, scalar, algebraic equation in x has the form ax C b D 0; for arbitrary real constants a and b. The unknown is a number x. All other algebraic equations, e.g., x2 C ax C b D 0, are nonlinear. The typical feature in a nonlinear algebraic equation is that the unknown appears in products with itself, like x2 or x 1 2 1 3 e D 1 C x C 2 x C 3Š x C ::: We know how to solve a linear algebraic equation, x Db=a, but there are no general methods for finding the exact solutions of nonlinear algebraic equations, except for very special cases (quadratic equations constitute a primary example). A nonlinear algebraic equation may have no solution, one solution, or many solutions. The tools for solving nonlinear algebraic equations are iterative methods,wherewe construct a series of linear equations, which we know how to solve, and hope that the solutions of the linear equations converge to a solution of the nonlinear equation we want to solve. Typical methods for nonlinear algebraic equation equations are Newton’s method, the Bisection method, and the Secant method. Differential equations The unknown in a differential equation is a function and not a number. In a linear differential equation, all terms involving the unknown function are linear in the unknown function or its derivatives. Linear here means that the unknown function, or a derivative of it, is multiplied by a number or a known function.
    [Show full text]
  • Numerical Methods for Ordinary Differential Equations
    Numerical methods for ordinary differential equations Ulrik Skre Fjordholm May 1, 2018 Chapter 1 Introduction Consider the ordinary differential equation (ODE) x.t/ f .x.t/; t/; x.0/ x0 (1.1) P D D d d d where x0 R and f R R R . Under certain conditions on f there exists a unique solution of (1.1), and2 for certainW types of! functions f (such as when (1.1) is separable) there are techniques available for computing this solution. However, for most “real-world” examples of f , we have no idea how the solution actually looks like. We are left with no choice but to approximate the solution x.t/. Assume that we would like to compute the solution of (1.1) over a time interval t Œ0; T for some T > 01. The most common approach to finding an approximation of the solution of2 (1.1) starts by partitioning the time interval into a set of points t0; t1; : : : ; tN , where tn nh is a time step and h T is the step size2. A numerical method then computes an approximationD of the actual solution D N value x.tn/ at time t tn. We will denote this approximation by yn. The basis of most numerical D methods is the following simple computation: Integrate (1.1) over the time interval Œtn; tn 1 to get C Z tn 1 C x.tn 1/ x.tn/ f .x.s/; s/ ds: (1.2) C D C tn Although we could replace x.tn/ and x.tn 1/ by their approximations yn and yn 1, we cannot use the formula (1.2) directly because the integrandC depends on the exact solution x.s/C .
    [Show full text]
  • Solving Differential Equations in R
    Use R! Solving Differential Equations in R Bearbeitet von Karline Soetaert, Jeff Cash, Francesca Mazzia 1. Auflage 2012. Taschenbuch. xvi, 248 S. Paperback ISBN 978 3 642 28069 6 Format (B x L): 15,5 x 23,5 cm Gewicht: 409 g Weitere Fachgebiete > Mathematik > Stochastik > Mathematische Statistik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Initial Value Problems Abstract In the previous chapter we derived a simple finite difference method, namely the explicit Euler method, and we indicated how this can be analysed so that we can make statements concerning its stability and order of accuracy. If Euler’s method is used with constant time step h then it is convergent with an error of order O(h) for all sufficiently smooth problems. Thus, if we integrate from 0 to 1 with step h = 10−5, we will need to perform 105 function evaluations to complete the integration and obtain a solution with error O(h). To achieve extra accuracy using this method we could reduce the step size h. This is not in general efficient and in many cases it is preferable to use higher order methods rather than decreasing the step size with a lower order method to obtain higher accuracy. One of the main differences between Euler’s and higher order methods is that, whereas Euler’s method uses only information involving the value of y and its derivative (slope) at the start of the integration interval to advance to the next integration step, higher order methods use information at more than one point.
    [Show full text]
  • Numerical Solution of Ordinary Differential Equations
    11 Numerical Solution of Ordinary Differential Equations In this chapter we deal with the numerical solutions of the Cauchy problem for ordinary differential equations (henceforth abbreviated by ODEs). After a brief review of basic notions about ODEs, we introduce the most widely used techniques for the numerical approximation of scalar equations. The concepts of consistency, convergence, zero-stability and absolute stability will be addressed. Then, we extend our analysis to systems of ODEs, with emphasis on stiff problems. 11.1 The Cauchy Problem The Cauchy problem (also known as the initial-value problem) consists of finding the solution of an ODE, in the scalar or vector case, given suitable initial conditions. In particular, in the scalar case, denoting by I an interval of R containing the point t0, the Cauchy problem associated with a first order ODE reads: find a real-valued function y C1(I), such that ∈ y′(t)=f(t, y(t)),tI, ∈ (11.1) ! y(t0)=y0, where f(t, y) is a given real-valued function in the strip S = I ( , + ), which is continuous with respect to both variables. Should f×depend−∞ on∞ t only through y, the differential equation is called autonomous. 470 11. Numerical Solution of Ordinary Differential Equations Most of our analysis will be concerned with one single differential equa- tion (scalar case). The extension to the case of systems of first-order ODEs will be addressed in Section 11.9. If f is continuous with respect to t, then the solution to (11.1) satisfies t y(t) y = f(τ,y(τ))dτ.
    [Show full text]
  • Stabilizing Integrators for Real-Time Physics
    9 Stabilizing Integrators for Real-Time Physics DIMITAR DINEV, University of Utah TIANTIAN LIU, University of Pennsylvania LADISLAV KAVAN, University of Utah We present a new time integration method featuring excellent stability and plausibility is especially pronounced in real-time applications, energy conservation properties, making it particularly suitable for real- such as computer games or surgery simulators. Interactive appli- time physics. The commonly used backward Euler method is stable but cations need to refresh the screen at fixed time intervals, typically introduces artificial damping. Methods such as implicit midpoint do not 33ms or even less, to create the illusion of smooth motion. In real- suffer from artificial damping but are unstable in many common simula- time simulations, we need to advance the state of the virtual world tion scenarios. We propose an algorithm that blends between the implicit by 33ms while using strictly less than 33ms of computing time on midpoint and forward/backward Euler integrators such that the resulting simulation is stable while introducing only minimal artificial damping. We a given hardware (CPU/GPU). Games or training simulators are achieve this by tracking the total energy of the simulated system, taking complex software systems composed of many subsystems (render- into account energy-changing events: damping and forcing. To facilitate ing, networking, human-computer interaction, etc.), and therefore real-time simulations, we propose a local/global solver, similar to Projec- the time budget for physics will be typically only a small frac- tive Dynamics, as an alternative to Newton’s method. Compared to the tion of the total frame time (33ms).
    [Show full text]
  • A Brief Note on Linear Multistep Methods
    A brief note on linear multistep methods Alen Alexanderian* Abstract We review some key results regarding linear multistep methods for solving intial value prob- lems. Moreover, we discuss some common classes of linear multistep methods. 1 Basic theory Here we provide a summary of key results regarding stability and consistency of linear mul- tistep methods. We focus on the initial value problem, 0 y = f(x; y); x 2 [a; b]; y(a) = y0: (1.1) Here y(x) 2 R is the state variable, and all throughout, we assume that f satisfies a uniform Lipschitz condition with respect to y. Definition of a multistep method. The generic description of a linear multistep method is as follows: define nodes xn = a + nh, n = 0;:::;N, with h = (b − a)=N. The general form of a multistep method is p p X X yn+1 = αjyn−j + h βjf(xn−j; yn−j); n ≥ p: (1.2) j=0 j=−1 p p Here fαigi=0, and fβigi=−1 are constant coefficients, and p ≥ 0. If either αp 6= 0 or βp 6= 0, then the method is called a p + 1 step method. The initial values, y0; y1; : : : ; yp, must be obtained by other means (e.g., an appropriate explicit method). Note that if β−1 = 0, then the method is explicit, and if β−1 6= 0, the method is implicit. Also, here we use the convention that y(xn) is the exact value of y at xn and yn is the numerically computed approximation to y(xn); i.e., yn ≈ y(xn).
    [Show full text]
  • Explicit and Implicit Methods in Solving Differential Equations Timothy Bui University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-9-2010 Explicit and Implicit Methods In Solving Differential Equations Timothy Bui University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Mathematics Commons Recommended Citation Bui, Timothy, "Explicit and Implicit Methods In Solving Differential Equations" (2010). Honors Scholar Theses. 119. https://opencommons.uconn.edu/srhonors_theses/119 Explicit and Implicit Methods In Solving Differential Equations By: Timothy Bui Peoplesoft ID# 1500510 Honors Thesis Advisor: Dr. Yung S. Choi 12/11/2009 Contents 1 Abstract………………………………………………………………………………………… 1 2 Introduction…………………………………………………………………………………… 2 3 Explicit and Implicit Methods in Solving Differential Equations……… 3-19 4 Conclusion and Future Work…………………………………………………………… 20-21 5 Works Cited…………………………………………………………………………………… 22-23 6 Appendix………………………………………………………………………………………… 24-45 Bui 1 Abstract: Differential equations are equations that involve an unknown function and derivatives. There will be times when solving the exact solution for the equation may be unavailable or the means to solve it will be unavailable. At these times and most of the time explicit and implicit methods will be used in place of exact solution. In the simpler cases, ordinary differential equations or ODEs, the forward Euler's method and backward Euler's method are efficient methods to yield fairly accurate approximations of the actual solutions. By manipulating such methods, one can find ways to provide good approximations compared to the exact solution of parabolic partial differential equations and nonlinear parabolic differential equations. Further, the experimental results show that smaller h values result in reduction in error which is true in both cases of differential equations.
    [Show full text]
  • Wiki: Linear Multistep Method "Adams Method" Redirects Here. for the Electoral Apportionment Method, See Method of Smallest Divisors
    Wiki: Linear multistep method "Adams method" redirects here. For the electoral apportionment method, see Method of smallest divisors. Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution. Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge-Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it. Consequently, multistep methods refer to several previous points and derivative values. In the case of linear multistep methods, a linear combination of the previous points and derivative values is used. Contents: 1. Definitions 2. Examples 3. Multistep Method Families 4. Analysis 5. First and second Dahlquist barriers 6. See also 7. References 8. External links 1. Definitions Numerical methods for ordinary differential equations approximate solutions to initial value problems of the form The result is approximations for the value of at discrete times : where h is the time step (sometimes referred to as ). A linear multistep method uses a linear combination of and to calculate the value of y for the desired current step. Multistep method will use the previous s steps to calculate the next value.
    [Show full text]