During More Than 50% of Sampling Events in Flint Creek at County Road 400 West, County Road 700 South, and Turner Road

Total Page:16

File Type:pdf, Size:1020Kb

During More Than 50% of Sampling Events in Flint Creek at County Road 400 West, County Road 700 South, and Turner Road Region of the Great Bend of the Wabash River Watershed Management Plan 10 May 2011 during more than 50% of sampling events in Flint Creek at County Road 400 West, County Road 700 South, and Turner Road. Concentrations measured as high as 3,500 colonies/100 mL. Undersaturated conditions were observed in Flint Creek at County Road 700 South and at County Road 375 West. Dissolved oxygen saturations measured between 45 and 55% at both sites during multiple sampling events. Turbidity routinely measured higher than the target concentration at all sites where observations occur. This suggests that Flint Creek may contain a high background suspended sediment concentration or that the high sinuosity and prevalence of easily erodible soils results in elevated suspended sediment concentrations on a routine basis. Figure 135. Water quality impairments in the Flint Creek subwatershed. Data used to create this map are detailed in Appendix A. Habitat Volunteer monitors assessed habitat at nine sites within the Flint Creek subwatershed using the Citizen’s Qualitative Habitat Evaluation Index (CQHEI). As previously detailed, the CQHEI scores sites based on the presence or absence of specific natural characteristics within a stream reach. Although a comparison scale for the CQHEI has not yet been developed, Hoosier Riverwatch indicates that scores greater than 60 rate as habitat conducive to supporting warm-water biota (IDNR, 2004). Scores ranged from 40.5 at County Road 700 South (west of SR 25) to 75.5 at County Road 700 South (SR 25). Volunteer assessments of Flint Creek at County Road 700 South (west of SR 25), County Road 375 West, and County Road 700 South (west of CR 700 West) indicate that habitat rated poorer than the level at which habitat is conducive to supporting warm-water biota. These reaches received low scores for fish habitat and for riffle-run development. Wabash River Enhancement Corporation Page 213 ARN #305-9-54 Region of the Great Bend of the Wabash River Watershed Management Plan 10 May 2011 The Qualitative Habitat Evaluation Index (QHEI) was used to evaluate habitat at one site during the 1999 fish community assessment. As previously detailed and similarly to the CQHEI, the QHEI scores habitat within a reach based on the presence or absence of specific characteristics. Streams with QHEI scores greater than 51 are considered to be fully supporting of their aquatic life use designation. The score (53) indicates good quality habitat that is fully in support of the streams designated aquatic life use. Poor substrate, instream habitat, and pool-riffle complex development scores indicate that habitat could be improved. Three Purdue field personnel conducted QHEI assessments during the June 2010 fish sampling, and the mean of those scores was calculated to assign a QHEI score for the surveyed site. Flint Creek at County Road 510 South had a mean QHEI score of 61.5 which indicates that the stream meets its aquatic life use. Improving instream cover (8) and adjacent riparian (5.5) would increase the QHEI scores. Fish The IDEM assessed the fish community once during 1999 at County Road 600 South, while Curry and Spacie (1972) and Fisher et al. (1994) assessed two and three sites, respectively. IDEM data indicate that the fish community in Flint Creek rates as good scoring 36 using the IBI. At the time of the assessment, the community was limited by the number of minnow and sensitive species with low density and diversity of fish species. Purdue field personnel sampled the fish community on multiple occasions in 2009 and 2010. Sampling methods followed Simon (1991). A fish IBI score was calculated for each sampling event. In 2009, sample collection occurred as follows: Sample I - June 18; Sample II – July 22; Sample III – September 23; and Sample IV – November 5. The 2010 samples were collected as follows: Sample V – March 20; Sample VI – June 18; Sample VII – August 11; and Sample VIII – October 31. The mean IBI score for 2009-2010 was 45. The June 2010 sample (36) was considerably lower than any of the other samples (50, 48, 46, 52, 40, 48, and 46). The dominant species included central stonerollers (1150), mottled sculpin (425), western blacknose dace (236), and rainbow darters (200) present within Flint Creek. Macroinvertebrates Flint Creek at County Road 510 South was sampled four times in 2009 and four times in 2010. Mean mIBI and mean HBI scores for Flint Creek were 5.3 and 4.1, respectively. The mIBI score ranged between 3.4 during the November 2009 assessment and 6.4 during the October 2010 assessment indicating that the site is slightly impaired. Flint Creek rated the highest quality macroinvertebrate community monitored. The HBI score supports this and was the lowest of all 10 sites sampled in the 2009-2010 sampling. Dominant taxa at Flint Creek include Hydropsychidae (1828 total individuals), Baetidae (1114), Chironomidae (834), Isonychiidae (494), and Heptageniidae (412). Abundances of aquatic macroinvertebrates were relatively high and 5 of the 7 most abundant species are considered Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa. Mussels Myers-Kinzie assessed the mussel community at three locations within the Flint Creek subwatershed. During the surveys, two species were identified at one site. Both species, the cylindrical papershell (Alasmindonta viridis) and slippershell (Anodontoides ferussacianus) were weathered dead shells. Both species are headwaters species typical of small streams and rivers. 4.7.6 Flint Creek Subwatershed Summary The Flint Creek subwatershed is dominated by agricultural land uses. These lands lie on relatively flat soils with much of the headwaters covered by hydric soils. The mainstem of Wabash River Enhancement Corporation Page 214 ARN #305-9-54 Region of the Great Bend of the Wabash River Watershed Management Plan 10 May 2011 Flint Creek is unique to the watershed with shale and cobble dominating the substrate. The habitat scores reflect the unique conditions present within the streams; however, biological community scores indicate that elevated E. coli, suspended sediments, and nutrients may inhibit conditions within the Flint Creek watershed. As development and urban land uses are not influences on the Flint Creek subwatershed, addressing narrow buffer strips, livestock access, and streambank erosion concerns throughout the watershed is necessary to improve conditions within Flint Creek. 4.8 Little Pine Creek Subwatershed Little Creek forms a portion of the northwestern watershed boundary draining portions of Warren, Benton, and Tippecanoe counties. The Little Pine Creek subwatershed includes two 12-digit HUC watersheds – Otterbein Ditch-Little Pine Creek (HUC 051201080505) and Armstrong Creek-Little Pine Creek (HUC 051201080506; Figure 136). In total, Little Pine Creek drains 33,316 acres or 52.1 square miles. In total, 91.5 miles of stream are present within the Little Pine Creek subwatershed. Of these, approximately six miles from just downstream of Green Hill to Little Pine Creek’s confluence with the Wabash River are considered high quality or outstanding waters. Wabash River Enhancement Corporation Page 215 ARN #305-9-54 Region of the Great Bend of the Wabash River Watershed Management Plan 10 May 2011 Figure 136. Little Pine Creek subwatershed. Data used to create this map are detailed in Appendix A. 4.8.1 Soils Soils in the Little Pine Creek subwatershed are dominated by those that are unsuitable for use in septic treatment. Additionally, soils located on steeply sloped, easily erodible areas cover 4.4 square miles while those considered potentially highly erodible cover an additional 7 square miles (Figure 137). In total, nearly 35% of the watershed is considered highly erodible or potentially highly erodible. A majority of highly erodible soils are located along the lower portion of Little Pine Creek in Tippecanoe County, while potentially highly erodible soils border Little Pine Creek within Warren County. An additional 15.8 square miles or 30% of the subwatershed are covered by hydric soils. These soils indicate that much of the headwaters of Little Pine Creek were historically in wetland land. Current estimates indicate that wetlands cover approximately 3.1% of the subwatershed suggesting that less than 10% of historic wetlands are still present within the Little Pine Creek subwatershed. Wabash River Enhancement Corporation Page 216 ARN #305-9-54 Region of the Great Bend of the Wabash River Watershed Management Plan 10 May 2011 Figure 137. Properties of soils located in the Little Pine Creek subwatershed. Data used to create this map are detailed in Appendix A. 4.8.2 Land Use Agricultural land uses dominate the Little Pine Creek subwatershed accounting for 84% of land use. Urban land uses including the towns of Otterbein, Green Hill, and Armstrong account for 5.5% of the subwatershed land use. Forest and wetland land uses account for 10% of the subwatershed, while open water in the form of farm ponds covers less than 1% of the Little Pine Creek subwatershed. Continued development is of little concern in the Little Pine Creek subwatershed with no observable development occurring between 1992 and 2002. No observable plans for development were identified during the watershed inventory. Additionally, the Little Pine Creek subwatershed remains relatively undeveloped with only 0.8% of the subwatershed covered by impervious surfaces. Compared to estimates from the Center for Watershed Protection (CWP), this is a low impervious percentage indicating that runoff from hardscape should not be of great concern in the Little Pine Creek subwatershed. A large volume of publicly-owned or publicly-accessible lands are present in the Little Pine Creek Wabash River Enhancement Corporation Page 217 ARN #305-9-54 Region of the Great Bend of the Wabash River Watershed Management Plan 10 May 2011 subwatershed (Figure 138). NICHES Land Trust, Purdue Research Foundation, and Purdue University own land in the Indian Creek subwatershed.
Recommended publications
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • Town of St. Joseph, Wisconsin Natural Areas Inventory/ Land Cover Mapping September 2016
    Town of St. Joseph, Wisconsin Natural Areas Inventory/ Land Cover Mapping September 2016 Prepared for: Town of St. Joseph, Wisconsin Prepared by: Stantec Consulting Services Inc. TOWN OF ST. JOSEPH, WISCONSIN NATURAL AREAS INVENTORY/ LAND COVER MAPPING SEPTEMBER 2016 Table of Contents EXECUTIVE SUMMARY ............................................................................................................. III 1.0 INTRODUCTION ...........................................................................................................1.1 1.1 GOALS AND OBJECTIVES OF THE NRI .......................................................................... 1.1 2.0 A BRIEF LOOK AT THE NATURAL HISTORY OF THE STUDY AREA ..................................2.4 2.1 BEDROCK GEOLOGY AND GLACIAL LANDSCAPES .................................................. 2.4 2.2 AFTER THE GLACIERS ...................................................................................................... 2.4 2.3 INFLUENCE OF LANDFORM AND CLIMATE ON VEGETATION TYPES ......................... 2.9 2.4 PRE-HISTORIC INFLUENCE OF HUMANS ON THE LANDSCAPE ................................. 2.10 2.5 VEGETATION AT THE TIME OF LAND SURVEY ............................................................. 2.10 2.6 POST-SETTLEMENT INFLUENCES ON THE LANDSCAPE ............................................... 2.10 3.0 PROJECT METHODOLOGY ........................................................................................3.12 3.1 GATHER AND REVIEW BACKGROUND INFORMATION............................................
    [Show full text]
  • New State Records of Aquatic Insects for Ohio, U.S.A
    Volume 121, Number 1, January and February 2010 75 NEW STATE RECORDS OF AQUATIC INSECTS FOR OHIO, U.S.A. (EPHEMEROPTERA, PLECOPTERA, TRICHOPTERA, COLEOPTERA)1 Michael J. Bolton2 ABSTRACT: Biomonitoring of Ohio streams by the Ohio Environmental Protection Agency has found new state records for the Ephemeroptera (mayflies): Baetis brunneicolor McDunnough, Iswaeon anoka (Daggy), Paracloeodes fleeki McCafferty and Lenat, Plauditus cestus (Provonsha and McCafferty), and Rhithrogena manifesta Eaton; the Plecoptera (stoneflies): Pteronarcys cf. biloba Newman; the Trichop- tera (caddisflies): Brachycentrus numerosus (Say) and Psilotreta rufa (Hagen); and the Coleoptera (bee- tles): Gyretes sinuatus LeConte, Dicranopselaphus variegatus Horn, and Microcylloepus pusillus (Le Conte). Additional records are given for the mayfly Paracloeodes minutus (Daggy). KEY WORDS: Ohio, state record, Ephemeroptera, Plecoptera, Trichoptera, Coleoptera The Ohio Environmental Protection Agency conducts biological and water qual- ity studies of Ohio streams to ascertain the condition of the aquatic resource. One component of these studies is an evaluation of the macroinvertebrate communities. As a result of this sampling, species of aquatic insects in the Ephemeroptera (may- flies), Plecoptera (stoneflies), Trichoptera (caddisflies), and Coleoptera (beetles) orders have been collected that have never been reported from Ohio. Randolph and McCafferty (1998) compiled the first state list of mayflies for Ohio. Gaufin (1956) produced a state list of stoneflies for Ohio with additions by Tkac and Foote (1978), Robertson (1979), and Fishbeck (1987). Listing of species distributions by state in Stewart and Stark (2002) and Stark and Armitage (2000, 2004) incorporated Ohio records found in the various revisionary publications. Huryn and Foote (1983) pro- duced the first comprehensive state list of caddisflies which was amended by Mac Lean and MacLean (1984), Usis and MacLean (1986), Garono and MacLean (1988), Usis and Foote (1989), and Keiper and Bartolotta (2003).
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Vulnerability of the Biota in Riverine and Seasonally Flooded Habitats to Damming of Amazonian Rivers
    Received: 11 December 2019 Revised: 8 April 2020 Accepted: 5 June 2020 DOI: 10.1002/aqc.3424 SPECIAL ISSUE ARTICLE Vulnerability of the biota in riverine and seasonally flooded habitats to damming of Amazonian rivers Edgardo M. Latrubesse1 | Fernando M. d'Horta2 | Camila C. Ribas2 | Florian Wittmann3 | Jansen Zuanon2 | Edward Park4 | Thomas Dunne5 | Eugenio Y. Arima6 | Paul A. Baker7 1Asian School of the Environment and Earth Observatory of Singapore (EOS), Nanyang Abstract Technological University (NTU), Singapore 1. The extent and intensity of impacts of multiple new dams in the Amazon basin on 2 National Institute of Amazonian Research specific biological groups are potentially large, but still uncertain and need to be (INPA), Manaus, Brazil 3Institute of Floodplain Ecology, Karlsruhe better understood. Institute of Technology, Rastatt, Germany 2. It is known that river disruption and regulation by dams may affect sediment sup- 4 National Institute of Education (NIE), plies, river channel migration, floodplain dynamics, and, as a major adverse conse- Nanyang Technological University, Singapore quence, are likely to decrease or even suppress ecological connectivity among 5Bren School of Environmental Science and Management, University of California (UCSB), populations of aquatic organisms and organisms dependent upon seasonally Santa Barbara, California, USA flooded environments. 6Department of Geography and the Environment, University of Texas at Austin, 3. This article complements our previous results by assessing the relationships Austin, Texas, USA between dams, our Dam Environmental Vulnerability Index (DEVI), and the biotic 7 Nicholas School of the Environment, Duke environments threatened by the effects of dams. Because of the cartographic rep- University, Durham, North Carolina, USA resentation of DEVI, it is a useful tool to compare the potential hydrophysical Correspondence impacts of proposed dams in the Amazon basin with the spatial distribution of Edgardo Latrubesse, Asian School of the Environment and Earth Observatory of biological diversity.
    [Show full text]
  • Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Ann Forsyth DESIGNING SMALL PARKS
    Ann Forsyth DESIGNING SMALL PARKS DESIGNING SMALL PARKS r -. A Manual Addressing Social and Ecological Concerns B~ An-f1? Musacchi. With Frank I John Wiley & Sons, Inc. This book is printed on acid-free paper. @ Copyright O 2005 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada This project was supported by the USDA Forest Service Urban and Community Forestry Program on the recommendation of the National Urban and Community Forestry Advisory Council. Except where noted, all drawings are from the Metropolitan Design Center, University of Minnesota, Minneapolis, Minnesota, and used by permission. All photographs without additional credits are available in the Metropolitan Design Center's Image Bank at www.designcenter.umn.edu. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com1golpermission. Limit of LiabilitylDisclaimer of Warranty: While the publisher and the author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Supplementary Material 1. References of Ephemeroptera Descriptions Species from Brazil Used in the Analysis
    Document downloaded from http://www.elsevier.es, day 30/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Supplementary Material 1. References of Ephemeroptera descriptions species from Brazil used in the analysis. Allen, R.K., 1973. New species of Leptohyphes Eaton (Ephemeroptera: Tricorythidae). Pan- Pacific Entomologist 49, 363–372. Allen, R.K., 1967. New species of New World Leptohyphinae (Ephemeroptera: Tricorythidae). Canadian Entomologist 99, 350–375. Banks, N., 1913. The Stanford Expedition to Brazil. 1911. Neuropteroid insects from Brazil. Psyche 20, 83–89. Belmont, E.L., Salles, F.F., Hamada, N., 2011. Three new species of Leptohyphidae (Insecta: Ephemeroptera) from Central Amazon, Brazil. Zootaxa 3047, 43–53. Belmont, E.L., Salles, F. F., Hamada, N., 2012. Leptohyphidae (Insecta, Ephemeroptera) do Estado do Amazonas, Brasil: novos registros, nova combinação, nova espécie e chave de identificação para estágios ninfais. Revista Brasileira de Entomologia 56, 289–296. Berner, L., Thew, T. B., 1961. Comments on the mayfly genus Campylocia with a description of a new species (Euthyplociidae: Euthyplociinae). American Midland Naturalist 66, 329–336. Boldrini, R., Salles, F.F., 2009. A new species of two-tailed Camelobaetidius (Insecta, Ephemeroptera, Baetidae) from Espírito Santo, southeastern Brazil. Boletim do Museu de Biologia Mello Leitão (N. Sér.) 25, 5–12. Boldrini, R., Pes, A.M.O., Francischetti, C.N., Salles, F.F., 2012. New species and new records of Camelobaetidius Demoulin, 1966 (Ephemeroptera: Baetidae) from Southeartern Brazil. Zootaxa 3526, 17–30. Boldrini, R., Salles, F.F., Cabette, H.R.S., 2009. Contribution to the taxonomy of the Terpides lineage (Ephemeroptera: Leptophlebiidae).
    [Show full text]
  • Draft 1/13/2020
    Ecological Assessment of the 91st Street and College Avenue Property For Schmidt Associates By Kevin Tungesvick Senior Ecologist Eco Logic LLC Ecological Assessment of the 91st and College Property Background This approximately 52 acre property is located at the southwest corner of 91st Street and College Ave on the north side of Indianapolis, Indiana. Approximately 28 of these acres are mowed turf containing soccer fields with an accompanying parking lot. The remaining acreage is occupied by unmanaged woodlands and a detention basin. This report is an assessment of current ecological condition of these unmanaged areas. Soils and Geology This property is located on the Tipton Till Plain of central Indiana, a region covered by Wisconsin age glacial till. All of the soils on the site are derived from this till. The three soil types that occur on this property are Miami silt loam, 2 to 6 percent slopes (MmB2), Crosby silt loam, 0 to 2 percent slopes (CrA), and Treat silty clay, 0 to 1 percent slopes (ThrA). Of these soils, the Miami is considered moderately well drained, the Crosby is considered somewhat poorly drained, and the Treaty is considered poorly drained. Treaty soils are considered hydric soils and harbor most of the probable wetlands on the site. A map showing the locations of these soil types is attached to this report and labeled with the above abbreviations for each soil type. Heritage Trees Heritage Trees are defined below: The majority of the woodlands on this property are in an early successional state, mostly containing trees less than 75 year old and in many cases, less than 50 years old.
    [Show full text]
  • Lima2019ecologicaltransactions
    Edinburgh Research Explorer Ecological value of abandoned wild landscapes in Chinese cities Citation for published version: Hu, X & Lima, MF 2019, Ecological value of abandoned wild landscapes in Chinese cities. in WIT Transactions on Ecology and the Environment. vol. 238, Wessex Institute, Southampton, pp. 331-342. https://doi.org/10.2495/SC190301 Digital Object Identifier (DOI): 10.2495/SC190301 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: WIT Transactions on Ecology and the Environment General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Sep. 2021 The Sustainable City XIII 331 ECOLOGICAL VALUE OF ABANDONED WILD LANDSCAPES IN CHINESE CITIES XINLEI HU & MARIA FRANCISCA LIMA Edinburgh School of Architecture and Landscape Architecture, The University of Edinburgh, UK ABSTRACT This paper is focused on urban industrial abandoned wild landscapes which have experienced structural changes, and where abandonment triggered a natural vegetation succession process, as well as fauna’s progressive reoccupation. Due to such natural regeneration, abandoned wild landscapes have high biodiversity and ecological value and have been gaining attention from the scientific and planning communities.
    [Show full text]
  • Natural Heritage Program List of Rare Animal Species of North Carolina 2020
    Natural Heritage Program List of Rare Animal Species of North Carolina 2020 Hickory Nut Gorge Green Salamander (Aneides caryaensis) Photo by Austin Patton 2014 Compiled by Judith Ratcliffe, Zoologist North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Animal Species of North Carolina 2020 Compiled by Judith Ratcliffe, Zoologist North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. The list is published periodically, generally every two years.
    [Show full text]