Section 1 Facts and History

Total Page:16

File Type:pdf, Size:1020Kb

Section 1 Facts and History Section 1 Facts and History Fields of Study 11 Research Laboratories, Centers, and Programs 12 Digital Learning 13 Academic and Research Affiliations 14 Education Highlights 16 Research Highlights 21 Faculty and Staff 32 Faculty 32 Researchers 34 Postdoctoral Scholars 35 Awards and Honors of Current Faculty and Staff 36 Award Highlights 37 9 MIT Briefing Book approximately 4.6 million people, and generated Facts and History annual world sales of $1.9 trillion, or the equivalent of the tenth-largest economy in the world in 2014. The Massachusetts Institute of Technology is one of the world’s preeminent research universities, dedi- MIT has forged educational and research collabora- cated to advancing knowledge and educating students tions with universities, governments, and companies in science, technology, and other areas of scholarship throughout the world, and draws its faculty and that will best serve the nation and the world. It is students from every corner of the globe. The result known for rigorous academic programs, cutting-edge is a vigorous mix of people, ideas, and programs research, a diverse campus community, and its long- dedicated to enhancing the world’s well-being. standing commitment to working with the public and private sectors to bring new knowledge to bear on the world’s great challenges. MIT Campaign for a Better World Launched to the public in May 2016, the MIT Campaign for a Better World is a $5 billion fund- William Barton Rogers, the Institute’s founding presi- raising initiative that seeks to advance the Institute’s dent, believed that education should be both broad work on some of the most urgent global challenges and useful, enabling students to participate in “the facing humanity. The Campaign—which spans the humane culture of the community” and to discover breadth of MIT’s schools and departments, labs, and apply knowledge for the benefit of society. His and centers—is focusing MIT’s distinctive strengths emphasis on “learning by doing,” on combining in education, research, and innovation on six key liberal and professional education, and on the value priority areas: defining the future of human health of useful knowledge continues to be at the heart of through advances from the laboratory to the clinic; MIT’s educational mission. transforming our world through fundamental scien- tific research; addressing mankind’s critical environ- MIT’s commitment to innovation has led to a host of mental and sustainability challenges; reimagining scientific breakthroughs and technological advances. education for the 21st-century learner; accelerating Achievements by the Institute’s faculty and gradu- the journey from idea to investment and investment ates include the first chemical synthesis of penicillin to impact; and attracting extraordinary students and and vitamin A, the development of inertial guidance faculty to MIT and providing them with the tools and systems, modern technologies for artificial limbs, infrastructure to do their pioneering work. and the magnetic core memory that enabled the development of digital computers. Today, MIT is As part of its commitment to strengthening the making a better world by focusing its strengths in MIT core, the Campaign is increasing resources for research, innovation, and education in such areas as: undergraduate financial aid, graduate fellowships, the secrets of the brain and mind and the origins and and professorships; reimagining residential living and evolution of life; practical solutions for environmental educational spaces; transforming MIT’s presence in sustainability, clean energy, and water and food the innovation hub of Kendall Square; and developing security; the convergence of disciplines in tackling leading-edge research facilities such as MIT.nano. human health challenges, from disease prevention to personalized medicine to affordable health care; Early support for the Campaign from MIT’s alumni improved innovation and entrepreneurship systems and friends has been directed toward such areas as that speed ideas to impact; and pedagogical innova- education, water and food security, autism research, tion on campus and online thanks to new avenues in and urbanization. Across campus, new teaching, the science of learning and cutting-edge digital tools. learning, and research spaces are providing MIT’s faculty and students with the advanced facilities they University research is one of the mainsprings of need. Donor support is also providing MIT with funds growth in an economy that is increasingly defined to invest in the daring, high-risk research that is the by technology. A study released by MIT in December Institute’s hallmark and sustain support for students, 2015 estimated that MIT graduates had founded at faculty, and the physical campus. least 30,000 active companies. These firms employed 10 MIT Briefing Book Facts and History Fields of Study Sloan School of Management Management MIT supports a large variety of fields of study, from science and engineering to the arts. MIT’s five School of Science academic schools are organized into departments Biology and other degree-granting programs. In addition, Brain and Cognitive Sciences several programs, laboratories, and centers cross Chemistry traditional boundaries and encourage creative Earth, Atmospheric and Planetary Sciences thought and research. Mathematics Physics School of Architecture and Planning Architecture Interdisciplinary Undergraduate Programs Media Arts and Sciences Chemistry and Biology Urban Studies and Planning Computer Science and Molecular Biology Center for Real Estate Computer Science, Economics, and Data Science Humanities School of Engineering Humanities and Engineering Aeronautics and Astronautics Humanities and Science Biological Engineering Chemical Engineering Interdisciplinary Graduate Programs Civil and Environmental Engineering Computation for Design and Optimization Data, Systems, and Society Computational and Systems Biology Electrical Engineering and Computer Science Computational Science and Engineering Materials Science and Engineering Computer Science and Molecular Biology Mechanical Engineering Design and Management (Integrated Design and Nuclear Science and Engineering Management & System Design and Management) Harvard-MIT Health Sciences and School of Humanities, Arts, and Social Sciences Technology Program Anthropology Joint Program with Woods Hole Comparative Media Studies/Writing Oceanographic Institution Economics Leaders for Global Operations Global Studies and Languages Microbiology History Operations Research Linguistics and Philosophy Polymers and Soft Matter Literature Social and Engineering Systems Music and Theater Arts Statistics Political Science Supply Chain Management Science, Technology, and Society Technology and Policy Transportation 11 MIT Briefing Book Research Laboratories, Centers, Knight Science Journalism Program Koch Institute for Integrative Cancer Research and Programs Laboratory for Financial Engineering In addition to teaching and conducting research Laboratory for Information and Decision Systems within their departments, faculty, students, and staff Laboratory for Manufacturing and Productivity work in laboratories, centers, and programs. Laboratory for Nuclear Science Legatum Center for Development Some of these include: and Entrepreneurship Leventhal Center for Advanced Urbanism Abdul Latif Jameel Poverty Action Lab Lincoln Laboratory Abdul Latif Jameel World Water and Food Security Lab Martin Trust Center for MIT Entrepreneurship Center for Archaeological Materials Materials Research Laboratory Center for Bits and Atoms McGovern Institute for Brain Research Center for Collective Intelligence Microsystems Technology Laboratories Center for Computational Engineering MIT Center for Art, Science, and Technology Center for Computational Research in Economics and MIT Energy Initiative Management Science MIT Environmental Solutions Initiative Center for Energy and Environmental Policy Research MIT Innovation Initiative Center for Environmental Health Sciences MIT Kavli Institute for Astrophysics and Center for Global Change Science Space Research Center for International Studies MIT Media Lab Center for Information Systems Research MIT Portugal Program Center for Real Estate MIT Program in Art, Culture, and Technology Center for Transportation and Logistics MIT Sea Grant College Program Clinical Research Center MIT/Woods Hole Oceanographic Institution Joint Computer Science and Artificial Program in Oceanography/Applied Ocean Science Intelligence Laboratory and Engineering Concrete Sustainability Hub Nuclear Reactor Laboratory Deshpande Center for Technological Innovation Operations Research Center Division of Comparative Medicine Picower Institute for Learning and Memory Edgerton Center/D-Lab Plasma Science and Fusion Center Haystack Observatory Research Laboratory of Electronics Initiative on the Digital Economy Sloan School of Management-Research Centers Institute for Data, Systems, and Society Simons Center for the Social Brain Institute for Medical Engineering and Science Singapore–MIT Alliance for Research and Technology Institute for Soldier Nanotechnologies Sociotechnical Systems Research Center Institute for Work and Employment Research Women’s and Gender Studies Program Joint Program on the Science and Policy of Global Change http://web.mit.edu/research/ 12 MIT Briefing Book Facts and History Digital Learning • Digital learning research and learning analytics. Online learning systems have the ability to Since the
Recommended publications
  • March 12, 2008 (Download PDF)
    Volume 52, Number 19 Wednesday, March 12, 2008 TechTalk S ERVING THE MIT CO mm UNI T Y MIT boosts aid for students Increases number of undergraduates who can attend tuition-free More MIT students will have their tuition and fees completely covered next year under a series of financial aid enhancements that the Institute unveiled March 7. Under the new plan, families earning IMAGE / ELLENZWEIG ARCHITECTURE | PLANNING less than $75,000 a year will have all tuition covered. For parents with total annual David H. Koch Institute for Integrative Cancer Research groundbreaking income below $75,000 and typical assets, MIT will ensure that all tuition charges are An artist’s rendering of the new David H. Koch Institute for Integrative Cancer Research at MIT, which will be constructed at the corner covered with an MIT scholarship, federal of Main and Ames streets. Groundbreaking on the research institution was held on March 7, for more on the event see page 8. and state grants and/or outside scholar- ship funds. Nearly 30 percent of MIT stu- dents fall into this tuition-free category. For families earning less than $75,000 a year, MIT will eliminate the student loan Marine bacteria’s mealtime dash is a swimming success expectation. MIT will no longer expect Denise Brehm take up nutrients before they students from families with total annual Civil and Environmental Engineering undergo chemical changes. A income below $75,000 and typical assets to paper published in the March 10 take out loans to cover expenses beyond online edition of the Proceedings tuition.
    [Show full text]
  • Section 1: MIT Facts and History
    1 MIT Facts and History Economic Information 9 Technology Licensing Office 9 People 9 Students 10 Undergraduate Students 11 Graduate Students 12 Degrees 13 Alumni 13 Postdoctoral Appointments 14 Faculty and Staff 15 Awards and Honors of Current Faculty and Staff 16 Awards Highlights 17 Fields of Study 18 Research Laboratories, Centers, and Programs 19 Academic and Research Affiliations 20 Education Highlights 23 Research Highlights 26 7 MIT Facts and History The Massachusetts Institute of Technology is one nologies for artificial limbs, and the magnetic core of the world’s preeminent research universities, memory that enabled the development of digital dedicated to advancing knowledge and educating computers. Exciting areas of research and education students in science, technology, and other areas of today include neuroscience and the study of the scholarship that will best serve the nation and the brain and mind, bioengineering, energy, the envi- world. It is known for rigorous academic programs, ronment and sustainable development, informa- cutting-edge research, a diverse campus commu- tion sciences and technology, new media, financial nity, and its long-standing commitment to working technology, and entrepreneurship. with the public and private sectors to bring new knowledge to bear on the world’s great challenges. University research is one of the mainsprings of growth in an economy that is increasingly defined William Barton Rogers, the Institute’s founding pres- by technology. A study released in February 2009 ident, believed that education should be both broad by the Kauffman Foundation estimates that MIT and useful, enabling students to participate in “the graduates had founded 25,800 active companies.
    [Show full text]
  • Ligo-India Proposal for an Interferometric Gravitational-Wave Observatory
    LIGO-INDIA PROPOSAL FOR AN INTERFEROMETRIC GRAVITATIONAL-WAVE OBSERVATORY IndIGO Indian Initiative in Gravitational-wave Observations PROPOSAL FOR LIGO-INDIA !"#!$ Indian Initiative in Gravitational wave Observations http://www.gw-indigo.org II Title of the Project LIGO-INDIA Proposal of the Consortium for INDIAN INITIATIVE IN GRAVITATIONAL WAVE OBSERVATIONS IndIGO to Department of Atomic Energy & Department of Science and Technology Government of India IndIGO Consortium Institutions Chennai Mathematical Institute IISER, Kolkata IISER, Pune IISER, Thiruvananthapuram IIT Madras, Chennai IIT, Kanpur IPR, Bhatt IUCAA, Pune RRCAT, Indore University of Delhi (UD), Delhi Principal Leads Bala Iyer (RRI), Chair, IndIGO Consortium Council Tarun Souradeep (IUCAA), Spokesperson, IndIGO Consortium Council C.S. Unnikrishnan (TIFR), Coordinator Experiments, IndIGO Consortium Council Sanjeev Dhurandhar (IUCAA), Science Advisor, IndIGO Consortium Council Sendhil Raja (RRCAT) Ajai Kumar (IPR) Anand Sengupta(UD) 10 November 2011 PROPOSAL FOR LIGO-INDIA II PROPOSAL FOR LIGO-INDIA LIGO-India EXECUTIVE SUMMARY III PROPOSAL FOR LIGO-INDIA IV PROPOSAL FOR LIGO-INDIA This proposal by the IndIGO consortium is for the construction and subsequent 10- year operation of an advanced interferometric gravitational wave detector in India called LIGO-India under an international collaboration with Laser Interferometer Gravitational–wave Observatory (LIGO) Laboratory, USA. The detector is a 4-km arm-length Michelson Interferometer with Fabry-Perot enhancement arms, and aims to detect fractional changes in the arm-length smaller than 10-23 Hz-1/2 . The task of constructing this very sophisticated detector at the limits of present day technology is facilitated by the amazing opportunity offered by the LIGO Laboratory and its international partners to provide the complete design and all the key components required to build the detector as part of the collaboration.
    [Show full text]
  • View Print Program (Pdf)
    PROGRAM November 3 - 5, 2016 Hosted by Sigma Pi Sigma, the physics honor society 2016 Quadrennial Physics Congress (PhysCon) 1 31 Our students are creating the future. They have big, bold ideas and they come to Florida Polytechnic University looking for ways to make their visions a reality. Are you the next? When you come to Florida Poly, you’ll be welcomed by students and 3D faculty who share your passion for pushing the boundaries of science, PRINTERS technology, engineering and math (STEM). Florida’s newest state university offers small classes and professors who work side-by-side with students on real-world projects in some of the most advanced technology labs available, so the possibilities are endless. FLPOLY.ORG 2 2016 Quadrennial Physics Congress (PhysCon) Contents Welcome ........................................................................................................................... 4 Unifying Fields: Science Driving Innovation .......................................................................... 7 Daily Schedules ............................................................................................................. 9-11 PhysCon Sponsors .............................................................................................................12 Planning Committee & Staff ................................................................................................13 About the Society of Physics Students and Sigma Pi Sigma ���������������������������������������������������13 Previous Sigma Pi Sigma
    [Show full text]
  • Stouffer's Starts Running Morss Hall Food Service
    NEWSPAPEROF THE UNDERGRADUATES OF THE ASSACHUSETTS INSTITUE OF TECHNLOGY OFFICIAL .. NWSPPEROF THE UNDERGRADUATES OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY OL. LXKVII NOo. I CAMBRIDGE, MASSACHUSETTS, FRIDAY, FEBRUARY 8, 1957 5 CENT i r i -4 -- , - I -- , ry Library Guards Stouffer's Starts Running o Curb Book Thefts aut Chief Woe Is $s Morss Hall Food Service "I honestly don't lknow of any food- about the deterioration of Commons "We are the last major urban in- meals, Mr. Maclaurin said that about itution to initiate such a plan," service company which serves as good food at such low prices." In this way, the only appreciable change made tes Professor W. N. Locke, Direc- was in limiting the number of bev- r of the Institute Libraries, of the R. Colin Maclaurin, Director of Gen- eral Services, describes Stouffer's, elages served on Commons to one in- ew library "Book checking" policy. stead of three, as previously. This -ting. the inconvenience to Institute the firm which will manage the din- ing service in Morss Hall and Pritch- and the other minor changes in the udents and faculty of the some five food were necessary in view of the ousand odd dollars of "missing" et Lounge this term. In a few weeks, Stouffer's recipes rising costs of food and labor within oks which plague the system annu- the last few years. For example, the ly, Locke emphasized the "frustrat- will be used to prepare the food serv- ed in Walker Memorial, and the firm salaries of the employees were re- g" nature of book disappearances cently raised by 10%.
    [Show full text]
  • The Perils of Complacency
    THE PERILS OF COMPLACENCYTHE PERILS : America at a Tipping Point in Science & Engineering : America at a Tipping Point THE PERILS OF COMPLACENCY America at a Tipping Point in Science & Engineering An Update to Restoring the Foundation: The Vital Role of Research in Preserving the American Dream AMERICAN ACADEMY OF ARTS & SCIENCES AMERICAN ACADEMY THE PERILS OF COMPLACENCY America at a Tipping Point in Science & Engineering An Update to Restoring the Foundation: The Vital Role of Research in Preserving the American Dream american academy of arts & sciences Cambridge, Massachusetts This report and its supporting data were finalized in April 2020. While some new data have been released since then, the report’s findings and recommendations remain valid. Please note that Figure 1 was based on nsf analysis, which used existing oecd purchasing power parity (ppp) to convert U.S. and Chinese financial data.oecd adjusted its ppp factors in May 2020. The new factors for China affect the curves in the figure, pushing the China-U.S. crossing point toward the end of the decade. This development is addressed in Appendix D. © 2020 by the American Academy of Arts & Sciences All rights reserved. isbn: 0- 87724- 134- 1 This publication is available online at www.amacad.org/publication/perils-of-complacency. The views expressed in this report are those held by the contributors and are not necessarily those of the Officers and Members of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, Massachusetts 02138- 1996 Telephone: 617- 576- 5000 Email: [email protected] Website: www.amacad.org Contents Acknowledgments 5 Committee on New Models for U.S.
    [Show full text]
  • Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate
    Giving to the Department of Physics by Erin McGrath RAINER WEISS ’55, PHD ’62 Bryce Vickmark Rai Weiss has established a fellowship in the Physics Department because he is eternally grateful to his advisor, the late Jerrold Zacharias, for all that he did for Rai, so he knows firsthand the importance of supporting graduate students. Rainer Weiss, Professor of Physics Emeritus and 2017 Nobel Laureate. Rainer “Rai” Weiss was born in Berlin, Germany in 1932. His father was a physician and his mother was an actress. His family was forced out of Germany by the Nazis since his father was Jewish and a Communist. Rai, his mother and father fled to Prague, Czecho- slovakia. In 1937 a sister was born in Prague. In 1938, after Chamberlain appeased Hitler by effectively giving him Czechoslovakia, the family was able to obtain visas to enter the United States through the Stix Family in St. Louis, who were giving bond to professional Jewish emigrants. When Rai was 21 years-old, he visited Mrs. Stix and thanked her for what she had done for his family. The family immigrated to New York City. Rai’s father had a hard time passing the medi- cal boards because of his inability to answer multiple choice exams. His mother, who Rai says “held the family together,” worked in a number of retail stores. Through the services of an immigrant relief organization Rai received a scholarship to attend the prestigious Columbia Grammar School. At the end of 1945, when Rai was 13 years old, he became fascinated with electronics and music.
    [Show full text]
  • Physics of LIGO Lecture 4
    Physics of LIGO Lecture 4 40KG § Advanced LIGO SAPPHIRE, 31.4CMf SILICA, HERAEUS SV 35CMf INPUT MODE SILICA, LIGO I GRADE § LIGO Data analysis CLEANER ~26CMf ACTIVE THERMAL CORRECTION T=0.5% 125W 830KW LASER MOD. BS PRM ITM ETM time T~6% SRM T=7% OUTPUT MODE CLEANER PD Ringdowns GW READOUT Broadband Background Bursts frequency CW (quasi-periodic) Chirps LIGO-G000165-00-R AJW, Caltech, LIGO Project 1 Initial LIGO Þ Advanced LIGO schedule 1995 NSF Funding secured ($360M) 1996 Construction Underway (mostly civil) 1997 Facility Construction (vacuum system) 1998 Interferometer Construction (complete facilities) 1999 Construction Complete (interferometers in vacuum) 2000 Detector Installation (commissioning subsystems) 2001 Commission Interferometers (first coincidences) 2002 Sensitivity studies (initiate LIGO I Science Run) 2003+ Initial LIGO data run (one year integrated data at h ~ 10-21) 2007 Begin Advanced LIGO installation 2008 Advanced LIGO science run (2.5 hours ~ 1 year of Initial LIGO) LIGO-G000165-00-R AJW, Caltech, LIGO Project 2 Advanced LIGO incremental improvements § Reduce shot noise: higher power CW-laser: 12 watts Þ120 watts § Reduce shot noise: Advanced optical configuration: signal recycling mirror (7th suspended optic) to tune shot-noise response in frequency § Reduce seismic noise: Advanced (active) seismic isolation. Seismic wall moved from 40 Hz Þ ~ 12 Hz. § Reduce seismic and suspension noise: Quadrupal pendulum suspensions to filter environmental noise in stages. § Reduce suspension noise: Fused silica fibers, silica welds. § Reduce test mass thermal noise: Last pendulum stage (test mass) is controlled via electrostatic or photonic forces (no magnets). § Reduce test mass thermal noise: High-Q material (40 kg sapphire).
    [Show full text]
  • National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory
    e National Science Foundation LIGO FACTSHEET NSF and the Laser Interferometer Gravitational-Wave Observatory In 1916, Albert What is LIGO? Einstein published the LIGO consists of two widely separated laser paper that predicted interferometers located within the United States – one gravitational waves – in Hanford, Washington, and the other in Livingston, ripples in the fabric of Louisiana – each housed inside an L-shaped, ultra-high space-time resulting vacuum tunnel. The twin LIGO detectors operate in from the most violent unison to detect gravitational waves. Caltech and MIT phenomena in our led the design, construction and operation of the NSF- universe, from funded facilities. supernovae explosions to the collision of black What are gravitational waves? holes. For 100 years, Gravitational waves are distortions of the space and that prediction has time which emit when any object that possesses mass stimulated scientists accelerates. This can be compared in some ways to how around the world who accelerating charges create electromagnetic fields (e.g. have been seeking light and radio waves) that antennae detect. To generate to directly detect gravitational waves that can be detected by LIGO, the gravitational waves. objects must be highly compact and very massive, such as neutron stars and black holes. Gravitational-wave In the 1970s, the National Science Foundation (NSF) detectors act as a “receiver.” Gravitational waves travel joined this quest and began funding the science to Earth much like ripples travel outward across a pond. and technological innovations behind the Laser However, these ripples in the fabric of space-time carry Interferometer Gravitational-Wave Observatory (LIGO), information about their violent origins and about the the instruments that would ultimately yield a direct nature of gravity – information that cannot be obtained detection of gravitational waves.
    [Show full text]
  • A Brief History of Gravitational Waves
    Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, Mexico State C.P.52750, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, 999077 Kowloon, Hong Kong, China. 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13, France. 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, CA 94720, USA. * Correspondence: [email protected]; Tel.:+1-510-486-5505 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered. Even if they were detectable, Einstein also wondered if they would ever be useful enough for use in science.
    [Show full text]
  • 50 Years of Pulsars: Jocelyn Bell Burnell an Interview P
    LIGO Scientific Collaboration Scientific LIGO issue 11 9/2017 LIGO MAGAZINE O2: Third Detection! 10:11:58.6 UTC, 4 January 2017 ELL F, H O L P IS L A E ! Y B D O O G 50 Years of Pulsars: Jocelyn Bell Burnell An interview p. 6 The Search for Continuous Waves To name a neutron star p.10 ... and in 1989: The first joint interferometric observing run p. 26 Before the Merger: Spiraling Black Holes Front cover image: Artist’s conception shows two merging black holes similar to those detected by LIGO. The black holes are spinning in a non-aligned fashion, which means they have different orientations relative to the overall orbital motion of the pair. LIGO found a hint of this phenomenon in at least one black hole of the GW170104 system. Image: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) Image credits Front cover main image – Credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) Front cover inset LISA – Courtesy of LISA Consortium/Simon Barke Front cover inset of Jocelyn Bell Burnell and the 4 acre telescope c 1967 courtesy Jocelyn Bell Burnell. Front cover inset of the supernova remnant G347.3-0.5 – Credit: Chandra: NASA/CXC/SAO/P.Slane et al.; XMM-Newton:ESA/RIKEN/J.Hiraga et al. p. 3 Comic strip by Nutsinee Kijbunchoo p. 4-5 Photos by Matt Gush, Bryce Vickmark and Josh Meister p. 6 Jocelyn Bell Burnell and the 4 acre telescope courtesy Jocelyn Bell Burnell. Paper chart analysis courtesy Robin Scagell p. 8 Pulsar chart recordings courtesy Mullard Radio Astronomy Observatory p.
    [Show full text]
  • Fall 2016 for Basic Research in Science
    The Adolph C. and Mary Sprague Newsletter MILLER INSTITUTE Fall 2016 for Basic Research in Science Understanding Dark Energy and Neutrinos Inside this edition: from the South Pole Miller Fellow Focus 1-3 From the Executive Director 4 Miller Fellow Focus: Tijmen de Haan Call for Nominations 5 odern cosmology provides an 6 Mincredibly powerful description In the News of the universe we live in. The stan- 20th Annual Symposium 7 dard model of Big Bang cosmology 8 takes only a few assumptions about Next Steps & Birth Announcements the physical laws and initial condi- tions, and makes a wealth of predic- Call for Nominations: tions. As our techniques for measur- ing the large-scale properties of the Miller Research Fellowship universe improve, the observations are found to be consistent with the Nominations predictions of the standard model Deadline: Saturday, September 10, 2016 of Big Bang cosmology time and time again. However, several open ques- Miller Research Professorship tions remain. Applications e can also use our measure- Deadline: Thursday, September 15, 2016 n the late 1990s, we learned that the Wments of the expansion rate Iexpansion of the universe is current- and growth of structure in the uni- Visiting Miller Professorship ly accelerating. This is due to a mysteri- verse to determine the properties of Departmental Nominations ous type of energy cosmologists have its contents. Around the turn of the Deadline: Friday, September 16, 2016 termed dark energy. This discovery millenium, neutrinos, long thought to led to the 2011 Nobel Prize in Phys- be massless particles, were found to See page 5 for more details.
    [Show full text]