Project Description Advanced LIGO: Context and Overview
Total Page:16
File Type:pdf, Size:1020Kb
LIGO M030023-00M Project Description Advanced LIGO: Context and Overview Advanced LIGO Gravitational waves offer a remarkable opportunity to see the universe from a new perspective, providing access to astrophysical insights that are available in no other way. The initial LIGO gravitational wave detectors have started observations, and are already yielding data that are being interpreted to establish new upper limits on gravitational-wave flux. The sensitivity of the initial LIGO instruments is such that it is perfectly possible that discoveries will be made. If they succeed, there will be a strong demand from the community to improve the sensitivity allowing more astrophysical information to be recovered from the signals. If no discovery is made, there will be no lesser urgency to improve the sensitivity of the instrument to the point where there is a general consensus that gravitational waves will be detected often and with a good signal-to-noise ratio. The development of the next generation of instrument must be pursued aggressively to make the transition from the initial to the Advanced detector in a timely way – after the complete science run of the initial detector, but as quickly as possible thereafter. The Advanced LIGO detector upgrade meets these requirements for an instrument that will establish gravitational-wave astronomy. It is more than ten times more sensitive, and over a much broader frequency band, than initial LIGO. It can see a volume of space more than a thousand times greater than initial LIGO, and extends the range of compact masses that can be observed at a fixed signal strength by a factor of four or more. This proposal to build Advanced LIGO has grown out of the LIGO Scientific Collaboration and has broad support both nationally and internationally from that community. A closely coordinated community R&D program, exploring the instrument science and building and testing prototype subsystem elements, has brought the design to a highly refined state. The LIGO Laboratory will lead and coordinate the fabrication and construction of the instruments, with the continued strong participation of the community. Advanced LIGO can lead the gravitational-wave field to maturity. The LIGO Mission From its outset, LIGO has been approved by the National Science Foundation to directly observe gravitational waves from cosmic sources, and to open the field of gravitational wave astronomy. The program and mission of the LIGO Laboratory is to: • observe gravitational wave sources, • develop advanced detectors that approach and exploit the facility limits on interferometer performance, • operate the LIGO facilities to support the national and international scientific community, • provide data archiving for the LIGO data and contribute computational resources for the analysis of data, • develop the software infrastructure for data analysis and participate in the search and analysis, • and support scientific education and public outreach related to gravitational wave astronomy. 1 LIGO M030023-00M LIGO is envisioned as a new capability contained in a set of facilities and not as a single experiment. The LIGO construction project has provided the facilities that support the scientific instrumentation, and the initial set of laser interferometers to be used in the first LIGO scientific observation periods. The facilities include the buildings and vacuum systems at the two observatory sites. The two observatories are located at Hanford, Washington and Livingston, Louisiana. The performance requirements on the LIGO facilities were intended to accommodate the initial interferometers and future interferometer upgrades and replacements, and possible additional interferometers with complementary capabilities. The requirements on the LIGO facilities were intended to permit future interferometers to reach levels of sensitivity approaching the ultimate limits of ground- based interferometers, limited by reasonable practical constraints on a large facility at a specific site. This proposal is for the second generation of instruments to be installed in the LIGO infrastructure, and is expected to bring the science of gravitational radiation from a discovery mode to a mode of astrophysical observation. LIGO Detector Scientific Goals The scientific program for LIGO is both to test relativistic gravitation and to open the field of gravitational wave astrophysics. More precise tests of General Relativity (and competing theories) will be made. LIGO will enable the establishment of a brand new field of astronomy, using a completely new information carrier: the gravitational field. Initial LIGO represents an advance over all previous searches of two or three orders of magnitude in sensitivity and in bandwidth. Its reach is such that, for the first time, foreseeable signals due to neutron-star binary “inspirals” from the Virgo Cluster (15 Mpc distant) would be detectable. At this level of sensitivity, it is plausible, though not certain, that the first observations of gravitational waves will be made. If signals are not observed with initial LIGO, we will have set challenging upper limits on gravitational wave flux, far beyond the capability of any previously existing technology. The Advanced LIGO interferometers proposed here promise an improvement over initial LIGO in the limiting sensitivity by more than a factor of 10 over the entire initial LIGO frequency band. It also increases the bandwidth of the instrument to lower frequencies (from ~40 Hz to ~10 Hz) and allows high-frequency operation due to its tunability. This translates into an enhanced physics reach that during its first several hours of operation will exceed the integrated observations of the 1 year LIGO Science Run. These improvements will enable the next generation of interferometers to study sources not accessible to initial LIGO, and to extract detailed astrophysical information. For example, the Advanced LIGO detectors will be able to see inspiraling binaries made up of two 1.4 MO• neutron stars to a distance of 300 Mpc, some 15x further than the initial LIGO, and giving an event rate some 3000x greater. Neutron star – black hole (BH) binaries will be visible to 650 Mpc; and coalescing BH+BH systems will be visible to cosmological distance, to z=0.4. The existence of gravitational waves is a crucial prediction of the General Theory of Relativity, so far unverified by direct observation. Although the existence of gravitational radiation is not a unique property of General Relativity, that theory makes a number of unambiguous predictions about the character of gravitational radiation. These can be verified by observations with LIGO. These include probes of strong-field gravity associated with black holes, high-order post- Newotonian effects in inspiraling binaries, the spin character of the radiation field, and the wave propagation speed. 2 LIGO M030023-00M The gravitational wave “sky” is entirely unexplored. Since many prospective gravitational wave sources have no corresponding electromagnetic signature (e.g., black hole interactions), there are good reasons to believe that the gravitational-wave sky will be substantially different from the electromagnetic one. Mapping the gravitational-wave sky will provide an understanding of the universe in a way that electromagnetic observations cannot. As a new field of astrophysics it is quite likely that gravitational wave observations will uncover new classes of sources not anticipated in our current thinking. Detector Design Fundamentals The effect of a propagating gravitational wave is to deform space in a quadrupolar form. The effect alternately elongates space in one direction while compressing space in an orthogonal direction and vice versa, with the frequency of the gravitational wave. A Michelson interferometer operating between freely suspended masses is ideally suited to detect these antisymmetric distortions of space induced by the gravitational waves; the strains are converted into changes in light intensity and consequently to electrical signals via photodetectors. Limitations to the sensitivity come from two sources: extraneous forces on the test masses, and a limited ability to sense the response of the masses to the gravitational wave strain. The thermally excited motion of the test mass and the suspension is a fundamental limitation, intrinsic to the way in which the measurement is performed; this influence is managed through the selection of low-mechanical-loss materials and designs which capitalize on them. Seismic motion causes forces on the mirrors due to the direct coupling through the isolation and suspension system, a technical noise source which is minimized through design; and due to the time-varying mass distribution near the mass (the Newtonian background). Sensing limitations arise most fundamentally due to the statistical nature of the laser light used in the interferometry, and the momentum transferred to the test masses by the photons (linking the sensing and stochastic noise limitations to sensitivity). Technical noise sources that limit the ability to sense include frequency noise and intensity fluctuations in the laser light. Scattered light, which adds random phase fluctuations to the light, can also mask gravitational signals. In the limit, valid for LIGO, that the instrument is short compared with the gravitational wavelength, longer arms give larger signals. In contrast, most competing noise sources remain constant with length; this motivates the 4km baseline of the Observatories. More generally,