Predation of Liolaemus Huacahuasicus Born Each Summer

Total Page:16

File Type:pdf, Size:1020Kb

Predation of Liolaemus Huacahuasicus Born Each Summer View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Cuad. herpetol., 24 (2):(2): 123123–124,–124, 20102010 123 N OTA ember 2009 at ca. 1500, we found an adult male scorpion (Brachistosternus PREDATION OF LIOLAEMUS intermedius) under a rock holding with HUACAHUASICUS (SQUAMATA: the chelae and eating the remains of a IGUANIA: LIOLAEMINI) BY neonate lizard (posterior midbody, mis- BRACHISTOSTERNUS sing tip of tail) (Fig. 1). We identified INTERMEDIUS (SCORPIONES: the remnant carcass as Liolaemus hua- BOTHRIURIDAE) IN CUMBRES cahuasicus with an estimated snout– vent length (SVL) of 30 mm and a tail CALCHAQUIES, TUCUMÁN length (TL) of 75 mm. Voucher speci- PROVINCE, NORTHWESTERN mens were housed in the herpetological ARGENTINA collection LJAMM-CNP of the Centro Nacional Patagónico (CENPAT-CONI- CET), Puerto Madryn, Chubut, Argenti- CRISTIAN HERNÁN FULVIO PÉREZ na (LJAMM-CNP 13170). Liolaemus hua- LUCIANO JAVIER ÁVILA cahuasicus is a medium-sized (SVL = 76 CENPAT – CONICET, Boulevard Almirante Guiller- mo Brown 2915, U9120ACD, Puerto Madryn, Chu- mm), viviparous, and insectivorous li- but, Argentina zard inhabiting the Puna habitats of [email protected] Cumbres Calchaquies Mountains, in Ca- [email protected] tamarca and Tucumán provinces, Ar- [email protected] gentina (Cei, 1993). Brachistosternus in- termedius is a small scorpion that ran- ARLEY CAMARGO ges from southwestern Bolivia to nor- Department of Biology, Brigham Young Univer- thwestern Argentina from 2500–4000 m sity, Provo, Utah 84602, USA. (Ojanguren Affilastro, 2003); nothing is [email protected] known about its natural history. At the time of our finding, numerous Scorpions are often acknowledged as neonates of Liolaemus huacahuasicus preying on lizards and other small squa- were observed, sometimes in groups of mates (Bauer, 1990; McCormick and two or three individuals together under Polis, 1990), but observations of preda- rocks of different sizes, and usually with tion are relatively rare under natural an adult female. According to Halloy conditions. Large scorpions, such as and Halloy (1997) at the beginning of Centruroides exilicauda have been re- the summer (late December), females ported to eat Phyllodactylus sp. (leaf- give birth to 4–8 young after 8–10 mon- toed geckos), Parabuthus villosus prey ths of gestation. The scorpion was on Pachydactylus rangei (palmate desert found in a tunnel beneath the rock ea- geckos), Hadrurus sp. feed on Lepto- ting the neonate L. huacahuasicus. The- typhlops humilis (western blind snakes), re was another live neonate lizard at and similar interactions have been re- the end of the tunnel. During periods ported for other scorpion–vertebrate of food shortage, scorpions consume pairs (McCormick and Polis, 1990). fewer, smaller prey, whereas during pe- In the course of a herpetological sur- riods of food abundance, scorpions con- vey of the summit of the Cumbres Cal- sume the most abundant prey available chaquíes Mountains, on a rocky outcrop (McCormick and Polis, 1990). Given the facing south east, near Provincial Road abundance of juvenile lizards at this 352 (26º22'45.7”S, 65º43'54.7”W, 3612 m), site during our surveys, neonate L. 38.3 km W Hualinchay, Trancas Depar- huacahuasicus likely constitute a com- tment, Tucumán Province, on 16 Dec- mon prey for scorpions when they are Recibido: 08/07/10 – Revisado: 03/08/10 – Aceptado: 02/09/10 Ed. asoc.: R. Espinoza 124 C. H. F. PÉREZ et al.: Predation of Liolaemus huacahuasicus born each summer. To our knowledge, Scienze Naturali Torino Monogra- this is the first record of presumed pre- fie 14: 1–949. dation of L. huacahuasicus by a scor- BAUER, A. M. 1990. Gekkonid lizards pion (Brachistosternus intermedius). as prey of invertebrates and pre- dators of vertebrates. Herpetologi- cal Review 21: 83–87. ACKNOWLEDGEMENTS HALLOY, M. & S. HALLOY. 1997. An in- direct form of parental care in a We thank M. Morando and F. Wer- high altitude viviparous lizard, Lio- neck for commenting previous drafts of laemus huacahuasicus (Tropiduri- this note. M. Magnanelli identified the dae). Bulletin of the Maryland Her- scorpion. Financial support for fieldwork petological Society 33: 139–155. was provided by NSF-OISE 0530267, MCCORMICK, S. & G. A. POLIS. 1990. FONCYT PICT 06-00506 and Field Su- Prey, predators, and parasites: pport Grants from Brigham Young Uni- 145–156. In: POLIS, G. A. (ed.), versity (Monte L. Bean Museum) issued Biology of Scorpions. Stanford to J.W. Sites, Jr. University Press, California, USA. OJANGUREN AFFILASTRO, A. A. 2003. The genus Brachistosternus LITERATURE CITED in Argentina, with a description of a new Patagonian species (Scor- CEI, J. M. 1993. Reptiles del Noroeste, piones, Bothriuridae). Journal of Noreste y Este de la Argentina. Arachnology 31: 317–330. Figure 1. Brachistosternus intermedius and the remains of a neonate Liolaemus huacahuasi- cus found under a stone at the summit of the Cumbres Calchaquíes Mountains, Tucumán Pro- vince, Argentina. Photograph by C. H. F. Perez..
Recommended publications
  • African Herp News
    African Herp News Newsletter of the Herpetological Association of Africa Number 59 APRIL 2013 HERPETOLOGICAL ASSOCIATION OF AFRICA http://www. wits.ac.za/haa FOUNDED 1965 The HAA is dedicated to the study and conservation of African reptiles and amphibians. Membership is open to anyone with an interest in the African herpetofauna. Members receive the Association’s journal, African Journal of Herpetology (which publishes review papers, research articles, and short communications – subject to peer review) and African Herp News, the Newsletter (which includes short communications, natural history notes, geographical distribution notes, herpetological survey reports, venom and snakebite notes, book reviews, bibliographies, husbandry hints, announcements and news items). NEWSLETTER EDITOR’S NOTE Articles shall be considered for publication provided that they are original and have not been published elsewhere. Articles will be submitted for peer review at the Editor’s discretion. Authors are requested to submit manuscripts by e-mail in MS Word ‘.doc’ or ‘.docx’ format. COPYRIGHT: Articles published in the Newsletter are copyright of the Herpetological Association of Africa and may not be reproduced without permission of the Editor. The views and opinions expressed in articles are not necessarily those of the Editor. COMMITTEE OF THE HERPETOLOGICAL ASSOCIATION OF AFRICA CHAIRMAN Aaron Bauer, Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. [email protected] SECRETARY Jeanne Tarrant, African Amphibian Conservation Research Group, NWU. 40A Hilltop Road, Hillcrest 3610, South Africa. [email protected] TREASURER Abeda Dawood, National Zoological Gardens, Corner of Boom and Paul Kruger Streets, Pretoria 0002, South Africa. [email protected] JOURNAL EDITOR John Measey, Applied Biodiversity Research, Kirstenbosch Research Centre, South African Biodiversity Institute, P/Bag X7, Claremont 7735, South Africa.
    [Show full text]
  • Phylogenetic Analysis of the Scorpion Genus Brachistosternus Pocock (Bothriuridae) Is Presented
    PhylogeneticBlackwell Publishing Ltd analysis of the scorpion genus Brachistosternus (Arachnida, Scorpiones, Bothriuridae) ANDRÉS A. OJANGUREN-AFFILASTRO & MARTÍN J. RAMÍREZ Submitted: 16 April 2008 Ojanguren-Affilastro, A. A. & Ramírez, M. J. (2009). Phylogenetic analysis of the scorpion Accepted: 4 October 2008 genus Brachistosternus (Arachnida, Scorpiones). — Zoologica Scripta, 38, 183–198. doi:10.1111/j.1463-6409.2008.00367.x A phylogenetic analysis of the scorpion genus Brachistosternus Pocock (Bothriuridae) is presented. The analysis is based on a data set including 38 of the 41 described species of Brachistosternus plus eight outgroup representatives of seven additional bothriurid genera and one buthid, scored for 116 morphological characters. The cladistic analysis of this matrix under implied weighting results in four most parsimonious trees. The monophyly of genus Brachistosternus is well supported; its subgeneric subdivision is redefined: the subgenera Brachistosternus Pocock and Ministernus Francke are considered valid, whereas Leptosternus Maury is synonymized with Brachistosternus. Illustrations of diagnostic structures are provided. The hemispermatophores of Brachistosternus peruvianus Toledo-Piza and Brachistosternus pegnai Cekalovic are illustrated for the first time. A key to species of Brachistosternus and maps with the distribution of the subgenera and main groups of species are provided. Corresponding author: Andrés A. Ojanguren-affilastro, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, División Aracnología,
    [Show full text]
  • Repeated Origin and Loss of Adhesive Toepads in Geckos
    Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Publications Biological Sciences, Department of 6-27-2012 Repeated Origin and Loss of Adhesive Toepads in Geckos Tony Gamble Eli Greenbaum Todd R. Jackman Anthony P. Russell Aaron M. Bauer Follow this and additional works at: https://epublications.marquette.edu/bio_fac Part of the Biology Commons Repeated Origin and Loss of Adhesive Toepads in Geckos Tony Gamble1,2, Eli Greenbaum3¤, Todd R. Jackman3, Anthony P. Russell4, Aaron M. Bauer3* 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Bell Museum of Natural History, University of Minnesota, St. Paul, Minnesota, United States of America, 3 Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America, 4 Department of Biological Sciences, University Department of Calgary, Calgary, Canada Abstract Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency.
    [Show full text]
  • Phylogeography and Population Structure of Two Brachistosternus Species (Scorpiones: Bothriuridae) from the Chilean Coastal Desert – the Perils of Coastal Living
    Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 75–89. With 1 figures Phylogeography and population structure of two Brachistosternus species (Scorpiones: Bothriuridae) from the Chilean coastal desert – the perils of coastal living F. SARA CECCARELLI1*, JAIME PIZARRO-ARAYA2 and ANDRES A. OJANGUREN- AFFILASTRO1 Downloaded from https://academic.oup.com/biolinnean/article/120/1/75/2864989 by guest on 29 September 2021 1Division de Aracnologıa, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina 2Laboratorio de Entomologıa Ecologica, Departamento de Biologıa, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile Received 2 May 2016; revised 22 June 2016; accepted for publication 22 June 2016 Coastal deserts are geologically dynamic areas of the Earth, affected by historical changes in sea levels and in some cases also by fault-line tectonic activity. An example of such a dynamic area is the Chilean coastal desert of the Antofagasta and Atacama regions, which harbours many endemic species, such as the bothriurid scorpion species Brachistosternus paposo and Brachistosternus roigalsinai. In this work, we carry out phylogeographic and population genetic analyses on these scorpions, using two mitochondrial (COI and cyt b) and two nuclear (Actin 5C and wingless) markers to identify species and population structuring, and link these findings to the geological history of the area. The geographical feature separating the two species is identified as the Huasco River, and distinguishing morphological features for these scorpions are presented. Population genetic and phylogeographic outcomes reflect an unstable history across this region for B.
    [Show full text]
  • 3.4. Integrated Biodiversity and Ecology Assessment
    1 STRATEGIC ENVIRONMENTAL ASSESSMENT FOR EXPANSION OF ELECTRICITY GRID INFRASTRUCTURE IN SOUTH AFRICA 1 STRATEGIC ENVIRONMENTAL ASSESSMENT FOR THE EXPANSION OF 2 ELECTRICITY GRID INFRASTRUCTURE IN SOUTH AFRICA 3 4 Draft v3 Specialist Assessment Report for Stakeholder Review 5 6 BIODIVERSITY AND ECOLOGY 7 TERRESTRIAL AND AQUATIC ECOSYSTEMS, AND SPECIES 8 Contributing Authors Albert Froneman8 & Chris van Rooyen8 Avifauna Kate McEwan9, 10 Bats Lizande Kellerman2 & Simon Todd3 Desert, Nama Karoo & Succulent Karoo Dr. Lara van Niekerk7, Carla-Louise Ramjukadh7 Estuaries Steven Weerts7 & Dr. Susan Taljaard7 Gary de Winnaar6 & Dr. Vere Ross-Gillespie6 Freshwater ecosystems Dr. David le Maitre1 Fynbos Dr. Graham von Maltitz5 Grassland & Savanna Simon Bundy4 & Alex Whitehead4 Indian Ocean Coastal Belt Integrating Authors Luanita Snyman-van der Walt2 9 10 11 1 Council for Scientific and Industrial Research, Natural Resources and the Environment, Biodiversity 12 and Ecosystem Services Research Group. 13 2 Council for Scientific and Industrial Research, Environmental Management Services. 14 3 Three Foxes Consulting. 15 4 SDP Ecological and Environmental Services. 16 5 Council for Scientific and Industrial Research, Natural Resources and Environment, Global Change 17 and Ecosystems Dynamics. 18 6 GroundTruth 19 7 Council for Scientific and Industrial Research, Natural Resources and the Environment Coastal 20 Systems Research Group. 21 8 Chris van Rooyen Consulting 22 9 Inkululeko Wildlife Services (Pty) Ltd. 23 10 South African Bat Assessment Association
    [Show full text]
  • Dartmouth in Namibia ENVS 84 Final Reports 2015
    Dartmouth in Namibia Dartmouth College, Environmental Studies Program, Hanover NH USA October-November 2015 Table of Contents !Nara Phenology and Pollination ..................................................................................................2 References ..................................................................................................................................20 Appendix .....................................................................................................................................23 Towards a Comprehensive Environmental Education Program at Gobabeb: Case Study of Grade 7 Curriculum Development for the J.P. Brand School ................................................24 References ..................................................................................................................................46 Appendices ..................................................................................................................................49 Long Term Study of the !Nara Plant Year III: A Continuation and Expansion of Monitoring Methods ....................................................................................................................70 References ..................................................................................................................................87 Appendices .................................................................................................................................90 Vegetation Distribution and Livestock
    [Show full text]
  • Orthoptera: Tettigoniidae: Pseudophyllinae) 3 4 5 6 7 8 Andrew Alexander Bakera, Thorin Jonssona, Sarah Aldridgea, and Fernando Montealegre-Za
    Baker et al. Complex stridulation in a katydid 1 1 Complex wing motion during stridulation in Nastonotus foreli 2 (Orthoptera: Tettigoniidae: Pseudophyllinae) 3 4 5 6 7 8 Andrew Alexander Bakera, Thorin Jonssona, Sarah Aldridgea, and Fernando Montealegre-Za. 9 10 11 12 aUniversity of Lincoln, School of Life Sciences, Joseph Banks Laboratories, United Kingdom. 13 14 Corresponding Author: Fernando Montealegre-Z ([email protected]) 15 16 17 18 A.A.B ORCID: 0000-0001-5832-6909 19 T.J. ORCID: 0000-0002-5049-7612 20 S.A. ORCID: 0000-0002-5158-1242 21 F.M-Z ORCID: 0000-0001-5186-2186 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Baker et al. Complex stridulation in a katydid 2 52 Abstract 53 54 Male Katydids (Orthoptera: Tettigoniidae) rub together their specialised forewings to produce 55 sound, a process known as stridulation. During wing closure, a lobe on the anal margin of the right 56 forewing (a scraper), engages with a teeth-covered file on the left forewing. The movement of the 57 scraper across the file produces vibrations which are amplified by a large wing cell adjacent to the 58 scraper, the mirror. Katydids are known to stridulate with either sustained or interrupted sweeps of 59 the file, generating resonant pure-tone (narrowband frequency) or non-resonant (broadband 60 frequencies) calls. However, some species can conserve some purity in their calls despite 61 incorporating discrete pulses and silent intervals.
    [Show full text]
  • Potential Invasion Risk of Pet Traded Lizards, Snakes, Crocodiles, And
    diversity Article Potential Invasion Risk of Pet Traded Lizards, Snakes, Crocodiles, and Tuatara in the EU on the Basis of a Risk Assessment Model (RAM) and Aquatic Species Invasiveness Screening Kit (AS-ISK) OldˇrichKopeck˛ *, Anna Bílková, Veronika Hamatová, Dominika K ˇnazovická, Lucie Konrádová, Barbora Kunzová, Jana Slamˇeníková, OndˇrejSlanina, Tereza Šmídová and Tereza Zemancová Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kam˛cká 129, Praha 6 - Suchdol 165 21, Prague, Czech Republic; [email protected] (A.B.); [email protected] (V.H.); [email protected] (D.K.); [email protected] (L.K.); [email protected] (J.S.); [email protected] (B.K.); [email protected] (O.S.); [email protected] (T.S.); [email protected] (T.Z.) * Correspondence: [email protected]; Tel.: +420-22438-2955 !"#!$%&'(! Received: 30 June 2019; Accepted: 9 September 2019; Published: 13 September 2019 !"#$%&' Abstract: Because biological invasions can cause many negative impacts, accurate predictions are necessary for implementing e↵ective restrictions aimed at specific high-risk taxa. The pet trade in recent years became the most important pathway for the introduction of non-indigenous species of reptiles worldwide. Therefore, we decided to determine the most common species of lizards, snakes, and crocodiles traded as pets on the basis of market surveys in the Czech Republic, which is an export hub for ornamental animals in the European Union (EU). Subsequently, the establishment and invasion potential for the entire EU was determined for 308 species using proven risk assessment models (RAM, AS-ISK). Species with high establishment potential (determined by RAM) and at the same time with high potential to significantly harm native ecosystems (determined by AS-ISK) included the snakes Thamnophis sirtalis (Colubridae), Morelia spilota (Pythonidae) and also the lizards Tiliqua scincoides (Scincidae) and Intellagama lesueurii (Agamidae).
    [Show full text]
  • Arachnides 88
    ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky,
    [Show full text]
  • New Scorpion Records from the Gran Chaco of Paraguay (Chelicerata, Scorpiones)
    © Zoologisches Museum Hamburg; www.zobodat.at Entomol. Mitt. Mus. Hamburg 14(166): 63-69Hamburg, 15. Oktober 2002 ISSN 0044-5223 New scorpion records from the Gran Chaco of Paraguay (Chelicerata, Scorpiones) T homas Z iegler and W ilson R. Lourenqo* (with 5 figures) Abstract A small scorpion collection from the Gran Chaco in western Paraguay is repor­ ted. Most of the material was sampled during the rainy season in early 2001 in the Dry (= Upper) Chaco. It comprises eight specimens belonging to two families, three genera and four species. One species, Timogenes dorbignyi (Guérin Méneville, 1843), previously known only from Argentina and Bolivia, represents a new record for the fauna of Paraguay. The first data on the habitat and natural history of the species in the Dry Chaco are provided. Introduction Even if some early works on Neotropical scorpions referred also to Pa­ raguay (e.g. Kraepelin 1895; Borelli 1899, 1901), the Paraguayan scorpion fauna remained poorly known until recently when compared to that of other South American countries. As supposed by Lourenço (1994), one of the possible reasons was the lack of early prospecting, since even during the 19th century very few expeditions have been done in Paraguay (see also Papavero 1973). Those pioneer papers, together with subsequent publica­ tions and other available data on Paraguayan scorpions were first summa­ rised by Mello-Leitâo (1945) in his South American monograph. More recently two new syntheses have been proposed for the scorpion fauna of Paraguay: one by Maury (1984), and the second by Lourenço (1994). The last one provides a checklist and a key for two families, six genera and 12 species.
    [Show full text]
  • Scorpiones: Bothriuridae) in Chile, with Descriptions of Two New Species
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3564, 44 pp., 77 figures, 2 tables May 16, 2007 The genus Brachistosternus (Scorpiones: Bothriuridae) in Chile, with Descriptions of Two New Species ANDRE´ S A. OJANGUREN AFFILASTRO,1 CAMILO I. MATTONI,2 AND LORENZO PRENDINI3 ABSTRACT We review the taxonomy of the Brachistosternus Pocock, 1893 scorpions of Chile, providing revised diagnoses, comprehensive distribution maps (based on all known locality records), and an illustrated key to all Chilean species of the genus. Two new species, Brachistosternus (Leptosternus) chango, n.sp., and Brachistosternus (Leptosternus) kamanchaca, n.sp., are described from northern Chile. The phylogenetic affinities of B. chango are unclear. Some characters suggest that this species may be related to Brachistosternus (L.) artigasi Cekalovic, 1974 but others suggest that it may be related to Brachistosternus (L.) roigalsinai Ojanguren Affilastro, 2002. Brachistosternus kamanchaca, in contrast, appears to be closely related to Brachistosternus (L.) donosoi Cekalovic, 1974 and other species from the plains of northern Chile and southern Peru´. RESUMEN Se revisa la taxonomı´a de los escorpiones del ge´nero Brachistosternus Pocock, 1893 de Chile, se brindan diagnosis revisadas, mapas de distribucio´n completos (basados en todos los registros conocidos) y una clave ilustrada de todas las especies. Se describe a Brachistosternus (Leptosternus) chango, n.sp., y a Brachistosternus (Leptosternus) kamanchaca, n.sp., del norte de Chile. Las relaciones filogene´ticas de B. chango son poco claras. Algunos caracteres de esta especie sugieren que puede estar relacionada con Brachistosternus (L.) artigasi Cekalovic, 1974, aunque otros parecerı´an relacionarla con Brachistosternus (L.) roigalsinai Ojanguren Affilastro, 2002.
    [Show full text]
  • Patterns of Species Richness, Endemism and Environmental Gradients of African Reptiles
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Patterns of species richness, endemism ARTICLE and environmental gradients of African reptiles Amir Lewin1*, Anat Feldman1, Aaron M. Bauer2, Jonathan Belmaker1, Donald G. Broadley3†, Laurent Chirio4, Yuval Itescu1, Matthew LeBreton5, Erez Maza1, Danny Meirte6, Zoltan T. Nagy7, Maria Novosolov1, Uri Roll8, 1 9 1 1 Oliver Tallowin , Jean-Francßois Trape , Enav Vidan and Shai Meiri 1Department of Zoology, Tel Aviv University, ABSTRACT 6997801 Tel Aviv, Israel, 2Department of Aim To map and assess the richness patterns of reptiles (and included groups: Biology, Villanova University, Villanova PA 3 amphisbaenians, crocodiles, lizards, snakes and turtles) in Africa, quantify the 19085, USA, Natural History Museum of Zimbabwe, PO Box 240, Bulawayo, overlap in species richness of reptiles (and included groups) with the other ter- Zimbabwe, 4Museum National d’Histoire restrial vertebrate classes, investigate the environmental correlates underlying Naturelle, Department Systematique et these patterns, and evaluate the role of range size on richness patterns. Evolution (Reptiles), ISYEB (Institut Location Africa. Systematique, Evolution, Biodiversite, UMR 7205 CNRS/EPHE/MNHN), Paris, France, Methods We assembled a data set of distributions of all African reptile spe- 5Mosaic, (Environment, Health, Data, cies. We tested the spatial congruence of reptile richness with that of amphib- Technology), BP 35322 Yaounde, Cameroon, ians, birds and mammals. We further tested the relative importance of 6Department of African Biology, Royal temperature, precipitation, elevation range and net primary productivity for Museum for Central Africa, 3080 Tervuren, species richness over two spatial scales (ecoregions and 1° grids). We arranged Belgium, 7Royal Belgian Institute of Natural reptile and vertebrate groups into range-size quartiles in order to evaluate the Sciences, OD Taxonomy and Phylogeny, role of range size in producing richness patterns.
    [Show full text]