Sex-Specific Growth and Survival in the Mole Crab Emerita Portoricensis (Schmitt)

Total Page:16

File Type:pdf, Size:1020Kb

Sex-Specific Growth and Survival in the Mole Crab Emerita Portoricensis (Schmitt) 0045258 JOURNALOF CRUSTACEANBIOLOGY, 11(1): 103-112, 1991 SEX-SPECIFIC GROWTH AND SURVIVAL IN THE MOLE CRAB EMERITA PORTORICENSIS (SCHMITT) Miguel P. Sastre ABSTRACT The anomurancrab Emerita portoricensis often occursin the intertidalzone of sandybeaches in the Caribbean.Four sites on PuertoRico, within Mayagiiezand Aiiasco bays, were sampled for 2 yearsin orderto constructsize-frequency distributions and determinerelative growth and survival of each sex. Emeritaportoricensis was regardedas a dioecious species, since no inter- mediateforms were found in any of the 30,755 specimens.Size frequencydistributions of male and female mole crabs were not significantlydifferent between sites. However, the maximum length of the carapaceof male mole crabs (11 mm) was shorterthan that of females (19 mm). Growthcurves based on size-frequencydistributions indicated that females grew significantly fasterthan males. Densities of males were greatestfollowing recruitment. The percentagesur- vival of youngindividuals (< 5 months of age)was higherfor males than femalesand percentage survival of older mole crabs was greaterfor females. Results of this study indicate that sexual heterogeneitiesin size structureof populations can be explained by differentialgrowth and survival of the sexes. Mole crabs of the genus Emerita (Ano- spermatophoresto pleopods of larger fe- mura: Hippidae) are commonly encoun- males (MacGintie, 1938; Wharton, 1942; tered in the intertidalzone of temperateand Knox and Boolotian, 1963; Efford, 1967; tropical sandy beaches. These crabs usually Diaz, 1980; Subramoniam, 1984). aggregateand migrate alongshore (Dillery Caribbean mole crabs, E. portoricensis and Knapp, 1970). Smaller crabs typically (Schmitt, 1935), spawn continuously occur in the upper portion of the littoral throughout the year. The proportion of zone, while largerorganisms are usually lo- ovigerous females increases with growth to cated at lower levels within this zone (Ef- larger size classes. The largest carapace ford, 1965). Like other beach organisms, length observed for megalopae is approxi- species of Emerita migrate synchronously mately 3 mm, which coincides with the with the tide and maintain zonation smallest carapacelength of the firstjuvenile (MacGintie, 1938; Wharton, 1942; Efford, instar (Sastre, 1988). 1965; Cubit, 1969). The hypothesis of whether sexual heter- Within the genus, male crabs generally ogeneities in size structuresof E. portori- are smaller than female crabs (Goodbody, censis are caused by differentialgrowth and 1965; Barnes and Wenner, 1968; Wenner, survival rates between sexes is examined. 1972; Subramoniam, 1977; Diaz, 1980). The possible occurrenceof protandricher- This sexual differencein size has been ex- maphroditismis also examined in this spe- plained in terms of differentialsurvival and cies. growth rates for Emerita analoga (see Ef- ford, 1967) and Emerita talpoida(see Diaz, 1980). Subramoniam (1981) proposed re- MATERIALSAND METHODS version of sex from male to female for the A descriptionof study sites and methods employed case of Emerita asiatica. Although protan- to monitor populationsof E. portoricensiswere pre- dry also was suggested for E. analoga (see viously described(Morelock et al., 1983;Sastre, 1988). Barnes and Wenner, 1968; Wenner, Briefly,four study sites wererandomly selected at Ma- 1972), yagiiezBay and two at Aiiasco Bay, Puerto Rico. Sed- a further study did not support this hy- iment enclosed in 30 quadrats(1,254 cm2each) 10 cm pothesis (Wennerand Haley, 1981). deep was sampled at monthly intervals for 2 years at Precocious sexual maturity (neoteny) in each site. All sediment was sieved through2-mm and males has been reportedin at least five spe- 1-mm mesh size sieves. Emeritaportoricensis retained in each quadratwere sexed and the carapacelength cies of Emerita (not includingEmerita por- was measured. These data were used to construct toricensis) (see Efford, 1967). Neotenous monthly size-frequencydistributions (Figs. 1, 2). The males attach ribbon-shaped or spherical presenceof eggs in the abdomenof femalesand sperm 103 0045259 - 104 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 11, NO. 1, 1991 240 - February 1984 210 180 - 24( C) July 1983 21C 150 120 - 18c 0- 15t 0- 90- 60 - 12C 0- 30 910- 6( 0- 0 - 240 March 1984 3( 0- ' 210 10- 180 241 0- August 1983 211 150 18( 120 15( 90 121 60 0- 9( 30 61 0 3; 570 0- >. 540 Zz 24( 0- September 1983 510 211 480 18l 450 15! 420 12 0- 390 0 9 360 !O 6 330 -I 3 300 LL 270 2424 o - October 1983 240 Rpril 1984 21 0- 210 18 0- 180 15 0 - LU 150 121! 0- 120 9 0 LJ 90 6 60 3 30 24 0 480 21 LO0 - 450 18 420 15 0 - 390 WJ 12 tO 360 9 0 - 330 6 ;O 0 O - 300, 310 C,) 270 24 10 - DeceMber 1983 240 nay 1984 21 .O 210 18 180 s0 - 15 150 20 - 12 120 990 - 90 6i0 _ 60 3 30 0 24 40 - January 1984 240 June 1984 2J LO 210 11 10 - 180 - SO 150 121;20 120 90 - 90 60 - 60 30 30 0 . .. 0 3 4 S 6 7 8 9 10 1 12 13 14 15 16 17 18 19 3 4 5 6 7 8 9 10 14 12 13 14 15 16 17 18 19 CARAPACE LENGTH (MM) Fig. 1. Size-frequency distributions of females of Emerita portoricensis (individuals/15.48 m2) at all sites for 1983-1985. 0045260 SASTRE: GROWTH AND SURVIVAL IN EMERITA PORTORICENSIS 105 240 July 1984 210 180 150 120 90 60 30 1984 August 24( 0 - January 1985 21C 18C - 15( 120 - 12( 0 90 - 92 0 60 6C0 - 30 31 - 0 240 SepteMber 1984 0 24( - February 1985 210 211 00- 180 z 18( 0 - 150 151 0 - 120 121 90 _ 9( 60 6 0 30 3 C~ O 0 - 540 24 510 21 480 18 - 0 450 15 420 12 ;00 -r 390 9 360 6 lO - 330 3 10 4 300 270 24 t0 Apri 1 1985 21 LO 240 October 1984 I-m 210 18 0 - 180 15 O 150 12 - 9 0 - 120 30 -J 6 390 60 330 30 mG...~...,~ 27 ?o 0 240 HoveMber 1984 24 (In 210 21 180 18 150 15 50 - 120 12 90 9 60 620 30 330 0 0 240 Decemnber 1984 24 40- June 1985 210 21 LO 180 150 15 50- 0 120 12 20 90 90- 60 60 30 30 0 O 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CARAPACE LENGTH (MM) . 0045261 106 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 11, NO. 1, 1991 360 July 1983 320 280- 240- 360 - February 1984 200- 320 160 - 280 120 240 80 200 40- 160 0 . L 480 120 440 _ 80 400- 40 360 August 1983 0 360 March 1984 320 - 320 280 - 280 240 - 240 200- 200 160 160 120- 120 80 80 40- 0 40 0 0 360 - eptenber 1983 600 z 320 560 280- 520 240 - 480 200- 440 160 - 400 120 360 April 1984 80 320 40- 280 U- 0 240 LLI 360 October 1983 200 320 160 280- 120 240- 80 200- 40 160 - 0 120 880 LLI 80 840 40 - (I) 800 36( o'D L November 1983 760 32t 720 28C 680 1 - 24C D - 640 600 20C 0 - 16C O - 560 12C O - 520 8(C 480 4( 440 400 36C 30 1.December 1983 360 Hay 1984 (n 320 32C 28C o - 280 m 24C o - 240 20( 3 - 200 160 16? o - 3 121 120 81 80 4( 40 0 0 - 361 0 - January 1984 360 June 1984 0 321 320 28( O0 - 280 - 241 240 0 - 20( 200 16 0- 160 121 0 120 8 80 0 - 4 0 - 40 0 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 CARAPACE LENGTH (MM) Fig. 2. Size-frequency distributions of males of Emerita portoricensis (individuals/15.48 m2) at all sites for 1983-1985. 0045262 0 SASTRE: GROWTH AND SURVIVAL IN EMERITA PORTORICENSIS 107 600 560 520 480 440 400 360 320 280 240 200 160 361 0 January 1985 120 321 0. 80 28( 0 40 24( 0 0 20( D 360 August 1984 16( 0 320 12( 280 8( D 240 4( 0: 200 0 0. 160 361 0 February 1985 D- 0 120 32( 0 80 281 0 z 40 24( 0 0 201 LU 360 Septexber 1984 16( 0 320 12( 0 0. 280 8( 0 240 4( UI 200 OC 160 361 120 32( LLJ 80 28( 40 24( 0 201 0 - 680 16( o - LU 640 121 0 600 81 560 4(41 520 480 36( 0 - April 1985 w 440 321 0- 400 28( 360 October 1984 24( O 320 201 280 16( 240 121 o - 0 200 8( 0 - 0 - 160 41 120 O 80 48( 40 441 40( C') 0 360 - oveber- 1984 361 D - May 1985 320 32( o_ - m 280 28( 240 24( o 200 201 160 16( 120 12( 80 8( 40 4( 0 360 December 1984 36( 0O - _ June 1985 320 32( 0 - 280 281 0 240 24( 0 200 20( 160 161 120 121 80 8 40 4 un - I, m 3 4 5 6 7 8 9 101o 1 3 4 5 6 i 8 9 10 11 CARAPACE LENGTH (MM) 0045263 108 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 11, NO. 1, 1991 Percentagesurvival was calculatedfor each size class as: (S,,+/S) x 100. A three-wayANOVA test was used to evaluatedif- 560 - O \ ferences in percentagesurvival among age, months, W 40-40 - and sexes (Sokal and Rohlf, 1981). Regressionanalysis was used to determinepossible Z 30 - relationshipsbetween monthly growth and carapace W 20 - lengthfor each sex.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • The Panamic Biota: Some Observations Prior to a Sea-Level Canal
    Bulletin of the Biological Society of Washington No. 2 THE PANAMIC BIOTA: SOME OBSERVATIONS PRIOR TO A SEA-LEVEL CANAL A Symposium Sponsored by The Biological Society of Washington The Conservation Foundation The National Museum of Natural History The Smithsonian Institution MEREDITH L. JONES, Editor September 28, 1972 CONTENTS Foreword The Editor - - - - - - - - - - Introduction Meredith L. Jones ____________ vi A Tribute to Waldo Lasalle Schmitt George A. Llano 1 Background for a New, Sea-Level, Panama Canal David Challinor - - - - - - - - - - - Observations on the Ecology of the Caribbean and Pacific Coasts of Panama - - - - Peter W. Glynn _ 13 Physical Characteristics of the Proposed Sea-Level Isthmian Canal John P. Sheffey - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 31 Exchange of Water through the Proposed Sea-Level Canal at Panama Donald R. F. Harleman - - - - - - - - - - - - - - - - - - - - - - - - - - - 41 Biological Results of the University of Miami Deep-Sea Expeditions. 93. Comments Concerning the University of Miami's Marine Biological Survey Related to the Panamanian Sea-Level Canal Gilbert L. Voss - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 49 Museums as Environmental Data Banks: Curatorial Problems Posed by an Extensive Biological Survey Richard S. Cowan - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 59 A Review of the Marine Plants of Panama Sylvia A. Earle - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 69 Ecology and Species Diversity of
    [Show full text]
  • Emerita Analoga (Stimpson)--Possible New Indicator
    Emerita analoga (Stimpson)-Possible New Indicator Species for the Phycotoxin Domoic Acid in California Coastal Waters M. E. Ferdin1*, Rikk G. Kvitek 1, Carolyn Bretz1, Christine L. Powell2, Gregory J. Doucette 2, Mary W. Silver 3, Christopher A. Scholin4 Abstract Common Sand Crab ( E. analoga) We evaluate and confirm the utility of the common Sand Crab Mussel sand crab (Emerita analoga) to monitor the algal toxin domoic acid (DA) in the coastal environment. Emerita 2a 2a ¢ and sea mussels (Mytilus sp . ), a general sentinel Introduction Control Control indicator for DA, were collected from natural Table 1. Extraction Efficiency Experiments populations over an 11-month period in Monterey Bay, The potential impact to human health, fisheries, and marine California, and tested for DA using the HPLC-UV Tissue Type Concentration % Recovery life posed by harmful algal blooms (HAB’s) is mediated by our method. DA levels in Emerita ranged from 0.07 to 10.4 (N=3) ability to successfully detect HAB species and the toxins they ug DA g-1 and coincided with observed density trends 2b 2b¢ produce. While sophisticated analytical tools have greatly aided in Pseudo- nitzschia sp nearshore. The toxin was not Sand Crabs 25 ug DA/g 99% our efforts in the field and in the laboratory, monitoring for the (±2.19) DA DA detected for any of the mussels collected for this study. presence of natural marine toxins with general sentinel 50 ug DA/ g 97% Spiked Sample Spiked Sample indicators is still the fundamental approach in safeguarding (±1.91) public health for government agencies tracking marine toxins in North America (Altwein et al, 1995).
    [Show full text]
  • Short Note Records of Hippa Strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico
    Nauplius 22(1): 63-65, 2014 63 Short Note Records of Hippa strigillata (Stimpson, 1860) (Crustacea: Decapoda: Hippidae) in the SE Gulf of California, Mexico Daniela Ríos-Elósegui and Michel E. Hendrickx* (DRE) Posgrado en Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected] (DRE, MEH) Laboratorio de Invertebrados Bentónicos, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, P.O. Box 811, Mazatlán, Sinaloa 82000, Mexico. E-mail: [email protected]; *Corresponding author ABSTRACT - This paper presents details regarding the collections and records of H. strigillata in the Bay of Mazatlán, SE Gulf of California, Mexico. Samples of H. strigillata were obtained in this bay and suroundings area during different periods and deposited in the collection of UNAM, Mazatlán. Morphometric data, distribution, biological and ecological data were furnished. Key words: Distribution, Gulf of California, Hippa, mole crab Because they represent a very dynamic synonym of Remipes pacificus Dana, 1852) environment, often with high energy wave (Boyko, 2002, Boyko and McLaughlin, action, sandy beaches are considered low 2010) and H. strigillata (Stimpson, 1860) diversity habitats for macro and mega fauna (Hendrickx, 1995; Hendrickx and Harvey, (Tait, 1972). This is particularly true along the 1999). Hippa marmorata occurs from the west coast of Mexico (Dexter, 1976; Hendrickx, central Gulf of California to Colombia, 1996). The intertidal habitat is mostly including several oceanic islands of the eastern dominated by species of bivalve mollusks and Pacific (Revillagigedo, del Coco, Galapagos, small (Amphipoda, Isopoda) to medium size and Clipperton) (Hendrickx, 2005).
    [Show full text]
  • Impact of Sand Organic Carbon and Climatic Changes on the Population Density and Morphometric Characters of Emerita Asiatica in the East Coast of Southern India
    Indian Journal of Biochemistry & Biophysics Vol. 56, June 2019, pp. 240-244 Impact of sand organic carbon and climatic changes on the population density and morphometric characters of Emerita asiatica in the East Coast of Southern India US Mahadeva Rao1, L Krishnasamy2, J Sivakumar2 & C Shanmuga Sundaram3* 1Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu- 20400, Malaysia 2PG & Research Department of Biotechnology; 3PG & Research Department of Microbiology, Hindustan College of Arts & Science, Padur, Chennai- 603 103, Tamil Nadu, India Received 15 December 2018; revised 03 February 2019 A population density of Emerita asiatica in relation to sand organic carbon in the Nemmeli beach, East coast, Kanchipuram District of Tamil Nadu was studied. Specimens were collected once in a fortnight from April 2017 to March 2018 by hand picking method in the intertidal region of Nemmeli beach. The total sand organic carbon level was recorded once in a fortnight. The population presented a smaller incidence of males in relation to females (48.66:51.34); however, in May 2017 an inverse pattern occurred (73:27). Ovigerous females were present in all samples with greater frequencies in October and November 2017 whereas, the highest juveniles were present in May and September 2017. The variation noted in a population of Emerita asiatica showed there is a relationship to sand organic carbon fluctuations; it can be determined that the sand organic carbon fluctuations have an influence on the population density of this species in Nemmeli beach. Hence, the rather stable sand organic carbon throughout the year and moderate changes in the sand may well be conducive to population biology of Emerita asiatica.
    [Show full text]
  • Sand Beach Monitoring at Channel Islands National Park, 2007-2012
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Sand Beach Monitoring at Channel Islands National Park 2007-2012 Natural Resource Report NPS/MEDN/NRR—2015/1049 ON THE COVER Clockwise from Upper left: wrack on China Camp Beach, Old Ranch House Canyon Lagoon, elephant seals on China Camp Beach, Jacob Elliott and Stephen Whitaker conducting core samples on upper beach transect at Water Canyon, Santa Rosa Island. Photograph by: Dan Richards Sand Beach Monitoring at Channel Islands National Park 2007-2012 Natural Resource Report NPS/MEDN/NRR—2015/1049 Daniel V. Richards and Stephen G. Whitaker National Park Service Channel Islands National Park 1901 Spinnaker Drive Ventura, CA 93001 October 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • EMERITA TALPOIDA and DONAX VARIABILIS DISTRIBUTION THROUGHOUT CRESCENTIC FORMATIONS; PEA ISLAND NATIONAL WILDLIFE REFUGE a Thesi
    EMERITA TALPOIDA AND DONAX VARIABILIS DISTRIBUTION THROUGHOUT CRESCENTIC FORMATIONS; PEA ISLAND NATIONAL WILDLIFE REFUGE A thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in ENVIRONMENTAL STUDIES by BLAIK PULLEY AUGUST 2008 at THE GRADUATE SCHOOL OF THE COLLEGE OF CHARLESTON Approved by: Dennis Stewart, Thesis Advisor Dr. Robert Dolan Dr. Scott Harris Dr. Lindeke Mills Dr. Amy T. McCandless, Dean of the Graduate School 1454471 1454471 2008 ABSTRACT EMERITA TALPOIDA AND DONAX VARIABILIS DISTRIBUTION THROUGHOUT CRESCENTIC FORMATIONS; PEA ISLAND NATIONAL WILDLIFE REFUGE A thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in ENVIRONMENTAL STUDIES by BLAIK PULLEY JULY 2008 at THE GRADUATE SCHOOL OF THE COLLEGE OF CHARLESTON Pea Island National Wildlife Refuge is a 13-mile stretch of shoreline located on the Outer Banks of North Carolina, 40 miles north of Cape Hatteras and directly south of Oregon Inlet. This Federal Navigation Channel is periodically dredged and sand is placed on the north end of the Pea Island beach. While the sediment nourishes the beach in a particularly sand-starved environment, it also alters the physical and ecological conditions. Most affected are invertebrates living in the swash, the most dominant being the mole crab (Emerita talpoida) and the coquina clam (Donax variabilis). These two species serve as a major food source for shorebirds on the island. It is especially important to protect this food resource on the federal Wildlife Refuge, which operates under a mandate to protect resources for migratory birds. For this research, beach cusps of various sizes were sampled to determine whether there is a correlation between invertebrate populations and the physical characteristics associated with these crescentic features.
    [Show full text]
  • ARTHROPOD LABORATORY Phylum Arthropoda Subphylum Cheliceriformes Class Celicerata Subclass Merostomata 1. Limulus Polyphemus
    ARTHROPOD LABORATORY Phylum Arthropoda Subphylum Cheliceriformes Class Celicerata Subclass Merostomata 1. Limulus polyphemus – horseshoe crab, identify external characteristics (see lecture notes) Subclass Arachnida 1. Latrodectus mactans – Southern black widow spider 2. Aphonopelma sp. – Tarantula 3. Lycosal tarantula – Wolf spider 4. Pruroctonus sp. – American scorpion 5. Slides of ticks and mites (identify different body parts) Sublcass Pycnogonida 1. sea spider demonstration specimens Subphylum Crustacea Class Brachiopoda 1. Daphnia magna – live specimens to study feeding activity and monitor heart rate using several stimulatory and inhibitory chemicals 2. Daphnia magna – body components (see lecture notes) 3. Artemia salina – brine shrimp, living specimens Class Ostracoda Class Copepoda 1. live representative specimen to observe movement and body components (see lecture notes) Class Branchiura No representatives Class Cirripedia 1. Lepas sp. – gooseneck barnacle 2. Balanus balanoides – acorn barnacle 3. Live barnacles to observe movement of cirri and feeding activity Class Malacostraca Order Stomatopoda 1. Lysiosquilla sp. – Mantis shrimp Order Amphipoda 1. Armadillium sp. – pillbug or roly poly Order Isopoda Live isopods to observe movement Order Decapoda Suborder Natancia – swimming decapods 1. Penaeus – common shrimp Suborder Reptancia 1. Cambarus sp. – freshwater crawfish for dissection 2. Homarus americanus – American lobster 3. Pagurus sp. – hermit crab 4. Emerita sp. – mole crab 5. Callinectes sapidus – blue crab 6. Libinia
    [Show full text]
  • Decapoda, Brachyura
    APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA de Decápodos Braquiuros de la Península Ibérica bérica I enínsula P raquiuros de la raquiuros B ecápodos D de APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA LA DE IDENTIFICACIÓN EN LA Y MOLECULARES MORFOLÓGICAS TÉCNICAS DE APLICACIÓN Herrero - MEGALOPA “big eyes” Leach 1793 Elena Marco Elena Marco-Herrero Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 Tesis Doctoral, Valencia 2015 Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA DE DECÁPODOS BRAQUIUROS DE LA PENÍNSULA IBÉRICA TESIS DOCTORAL Elena Marco-Herrero Valencia, septiembre 2015 Directores José Antonio Cuesta Mariscal / Ferran Palero Pastor Tutor Álvaro Peña Cantero Als naninets AGRADECIMIENTOS-AGRAÏMENTS Colaboración y ayuda prestada por diferentes instituciones: - Ministerio de Ciencia e Innovación (actual Ministerio de Economía y Competitividad) por la concesión de una Beca de Formación de Personal Investigador FPI (BES-2010- 033297) en el marco del proyecto: Aplicación de técnicas morfológicas y moleculares en la identificación de estados larvarios planctónicos de decápodos braquiuros ibéricos (CGL2009-11225) - Departamento de Ecología y Gestión Costera del Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) - Club Náutico del Puerto de Santa María - Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR) - Instituto Español de Oceanografía (IEO), Centros de Mallorca y Cádiz - Institut de Ciències del Mar (ICM-CSIC) de Barcelona - Institut de Recerca i Tecnología Agroalimentàries (IRTA) de Tarragona - Centre d’Estudis Avançats de Blanes (CEAB) de Girona - Universidad de Málaga - Natural History Museum of London - Stazione Zoologica Anton Dohrn di Napoli (SZN) - Universitat de Barcelona AGRAÏSC – AGRADEZCO En primer lugar quisiera agradecer a mis directores, el Dr.
    [Show full text]
  • The 1940 Ricketts-Steinbeck Sea of Cortez Expedition: an 80-Year Retrospective Guest Edited by Richard C
    JOURNAL OF THE SOUTHWEST Volume 62, Number 2 Summer 2020 Edited by Jeffrey M. Banister THE SOUTHWEST CENTER UNIVERSITY OF ARIZONA TUCSON Associate Editors EMMA PÉREZ Production MANUSCRIPT EDITING: DEBRA MAKAY DESIGN & TYPOGRAPHY: ALENE RANDKLEV West Press, Tucson, AZ COVER DESIGN: CHRISTINE HUBBARD Editorial Advisors LARRY EVERS ERIC PERRAMOND University of Arizona Colorado College MICHAEL BRESCIA LUCERO RADONIC University of Arizona Michigan State University JACQUES GALINIER SYLVIA RODRIGUEZ CNRS, Université de Paris X University of New Mexico CURTIS M. HINSLEY THOMAS E. SHERIDAN Northern Arizona University University of Arizona MARIO MATERASSI CHARLES TATUM Università degli Studi di Firenze University of Arizona CAROLYN O’MEARA FRANCISCO MANZO TAYLOR Universidad Nacional Autónoma Hermosillo, Sonora de México RAYMOND H. THOMPSON MARTIN PADGET University of Arizona University of Wales, Aberystwyth Journal of the Southwest is published in association with the Consortium for Southwest Studies: Austin College, Colorado College, Fort Lewis College, Southern Methodist University, Texas State University, University of Arizona, University of New Mexico, and University of Texas at Arlington. Contents VOLUME 62, NUMBER 2, SUmmer 2020 THE 1940 RICKETTS-STEINBECK SEA OF CORTEZ EXPEDITION: AN 80-YEAR RETROSPECTIVE GUesT EDITed BY RIchard C. BRUsca DedIcaTed TO The WesTerN FLYer FOUNdaTION Publishing the Southwest RIchard C. BRUsca 215 The 1940 Ricketts-Steinbeck Sea of Cortez Expedition, with Annotated Lists of Species and Collection Sites RIchard C. BRUsca 218 The Making of a Marine Biologist: Ed Ricketts RIchard C. BRUsca AND T. LINdseY HasKIN 335 Ed Ricketts: From Pacific Tides to the Sea of Cortez DONald G. Kohrs 373 The Tangled Journey of the Western Flyer: The Boat and Its Fisheries KEVIN M.
    [Show full text]
  • An Illustrated Key to the Malacostraca (Crustacea) of the Northern Arabian Sea. Part VI: Decapoda Anomura
    An illustrated key to the Malacostraca (Crustacea) of the northern Arabian Sea. Part 6: Decapoda anomura Item Type article Authors Kazmi, Q.B.; Siddiqui, F.A. Download date 04/10/2021 12:44:02 Link to Item http://hdl.handle.net/1834/34318 Pakistan Journal of Marine Sciences, Vol. 15(1), 11-79, 2006. AN ILLUSTRATED KEY TO THE MALACOSTRACA (CRUSTACEA) OF THE NORTHERN ARABIAN SEA PART VI: DECAPODA ANOMURA Quddusi B. Kazmi and Feroz A. Siddiqui Marine Reference Collection and Resource Centre, University of Karachi, Karachi-75270, Pakistan. E-mails: [email protected] (QBK); safianadeem200 [email protected] .in (FAS). ABSTRACT: The key deals with the Decapoda, Anomura of the northern Arabian Sea, belonging to 3 superfamilies, 10 families, 32 genera and 104 species. With few exceptions, each species is accompanied by illustrations of taxonomic importance; its first reporter is referenced, supplemented by a subsequent record from the area. Necessary schematic diagrams explaining terminologies are also included. KEY WORDS: Malacostraca, Decapoda, Anomura, Arabian Sea - key. INTRODUCTION The Infraorder Anomura is well represented in Northern Arabian Sea (Paldstan) (see Tirmizi and Kazmi, 1993). Some important investigations and documentations on the diversity of anomurans belonging to families Hippidae, Albuneidae, Lithodidae, Coenobitidae, Paguridae, Parapaguridae, Diogenidae, Porcellanidae, Chirostylidae and Galatheidae are as follows: Alcock, 1905; Henderson, 1893; Miyake, 1953, 1978; Tirmizi, 1964, 1966; Lewinsohn, 1969; Mustaquim, 1972; Haig, 1966, 1974; Tirmizi and Siddiqui, 1981, 1982; Tirmizi, et al., 1982, 1989; Hogarth, 1988; Tirmizi and Javed, 1993; and Siddiqui and Kazmi, 2003, however these informations are scattered and fragmentary. In 1983 McLaughlin suppressed the old superfamily Coenobitoidea and combined it with the superfamily Paguroidea and placed all hermit crab families under the superfamily Paguroidea.
    [Show full text]