179986V1.Full.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I FLATWORM PREDATION on JUVENILE FRESHWATER
FLATWORM PREDATION ON JUVENILE FRESHWATER MUSSELS A Thesis Presented to the Graduate College of Southwest Missouri State University In Partial Fulfillment of the Requirements for the Master of Science Degree By Angela Marie Delp July 2002 i FLATWORM PREDATION OF JUVENILE FRESHWATER MUSSELS Biology Department Southwest Missouri State University, July 27, 2002 Master of Science in Biology Angela Marie Delp ABSTRACT Free-living flatworms (Phylum Platyhelminthes, Class Turbellaria) are important predators on small aquatic invertebrates. Macrostomum tuba, a predominantly benthic species, feeds on juvenile freshwater mussels in fish hatcheries and mussel culture facilities. Laboratory experiments were performed to assess the predation rate of M. tuba on newly transformed juveniles of plain pocketbook mussel, Lampsilis cardium. Predation rate at 20 oC in dishes without substrate was 0.26 mussels·worm-1·h-1. Predation rate increased to 0.43 mussels·worm-1·h-1 when a substrate, polyurethane foam, was present. Substrate may have altered behavior of the predator and brought the flatworms in contact with the mussels more often. An alternative prey, the cladoceran Ceriodaphnia reticulata, was eaten at a higher rate than mussels when only one prey type was present, but at a similar rate when both were present. Finally, the effect of flatworm size (0.7- 2.2 mm long) on predation rate on mussels (0.2 mm) was tested. Predation rate increased with predator size. The slope of this relationship decreased with increasing predator size. Predation rate was near zero in 0.7 mm worms. Juvenile mussels grow rapidly and can escape flatworm predation by exceeding the size of these tiny predators. -
Manual of Experimentation in Planaria
l\ MANUAL .OF PSYCHOLOGICAL EXPERIMENTATION ON PLANARIANS Ed;ted by James V. McConnell A MANUAL OF PSYCHOLOGICAL EXPERIMENTATI< ON PlANARIANS is a special publication of THE WORM RUNNER'S DIGEST James V. McConnell, Editor Mental Health Research Institute The University of Michigan Ann Arbor, Michigan BOARD OF CONSULTING EDITORS: Dr. Margaret L. Clay, Mental Health Research Institute, The University of Michigan Dr. WiHiam Corning, Department of Biophysics, Michigan State University Dr. Peter Driver, Stonehouse, Glouster, England Dr. Allan Jacobson, Department of Psychology, UCLA Dr. Marie Jenkins, Department of Biology, Madison College, Harrisonburg, Virginir Dr. Daniel P. Kimble, Department of Psychology, The University of Oregon Mrs. Reeva Jacobson Kimble, Department of Psychology, The University of Oregon Dr. Alexander Kohn, Department of Biophysics, Israel Institute for Biological Resear( Ness-Ziona, Israel Dr. Patrick Wells, Department of Biology, Occidental College, Los Angeles, Calif 01 __ Business Manager: Marlys Schutjer Circulation Manager: Mrs. Carolyn Towers Additional copies of this MANUAL may be purchased for $3.00 each from the Worm Runner's Digest, Box 644, Ann Arbor, Michigan. Information concerning subscription to the DIGEST itself may also be obtained from this address. Copyright 1965 by James V. McConnell No part of this MANUAL may be ;e�p� oduced in any form without prior written consen MANUAL OF PSYCHOLOGICAL EXPERIMENTATION ON PLANARIANS ·� �. : ,. '-';1\; DE DI�C A T 1 a'li � ac.-tJ.l that aILe. plle.J.le.l1te.cl iVl thiJ.l f, fANUA L [ve.lle. pUIlc.ilaJ.le.d blj ituVldlle.dJ.l 0& J.lc.ie.l1tiJ.ltJ.lo wil , '{'l1d.{.vidua"tlu aVld c.olle.c.t- c.aVlVlot be.g.{.Vl to l1ame. -
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD. -
Cephalopodologie
Reprint Series W /~»T ¥7 "IVT^l? 18 May 1990, Volume 248, pp. 898-899 OvJ-lLllL/EJ Cephalopodologie CLYDE F. E. ROPER Copyright © 1990 by the American Association for the Advancement of Science Cephalopodologie work to be outdated, Portmann abandoned the notes and wrote a 200-page manuscript, which he submitted in 1954. Because the Traits de Zoologie. Anatomic, Systcmatique, recendy submitted gastropod and bivalve Biologic. PIERRE P. GRASSE, Ed. Tome 5, fasci- manuscripts ran to 4600 pages, Grasse re- cule 4, Cephalopodes. KATHARINA. MANGOLD, quired that the cephalopod section be in- Ed. Masson, Paris, 1989. 804 pp. F1100. creased to 400, a task the displeased Port- Comprehensive reference works frequent- mann was unwilling to undertake until the ly require a number of years to compile, are early 1960s. The resurgence of research on eagerly awaited by specialists, and once pub- cephalopods then prompted Portmann to lished gradually come into general use by enlist Katharina Mangold, a former student researchers, educators, and students. The and established cephalopod specialist at La- volumes of The Invertebrates inaugurated by boratoire Arago, Banyuls-sur-Mer, France, Libbie Hyman in 1940 provide an excellent to incorporate the new literature into the example of such a history, as does the classic manuscript. By the time one section was Traite de Zoologie directed by Pierre P. updated, preceding ones had become obso- Grasse. lete, and, as the objective of the Traite was to Among works of such lengthy gestation be "comprehensive," the project became the present installment of the Traite surely locked in a cycle of updates. -
Occurrence of the Land Planarians Bipalium Kewense and Geoplana Sp
Journal of the Arkansas Academy of Science Volume 35 Article 22 1981 Occurrence of the Land Planarians Bipalium kewense and Geoplana Sp. in Arkansas James J. Daly University of Arkansas for Medical Sciences Julian T. Darlington Rhodes College Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Daly, James J. and Darlington, Julian T. (1981) "Occurrence of the Land Planarians Bipalium kewense and Geoplana Sp. in Arkansas," Journal of the Arkansas Academy of Science: Vol. 35 , Article 22. Available at: http://scholarworks.uark.edu/jaas/vol35/iss1/22 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 35 [1981], Art. 22 GENERAL NOTES WINTER FEEDING OF FINGERLING CHANNEL CATFISH IN CAGES* Private warmwater fish culture of channel catfish (Ictalurus punctatus) inthe United States began inthe early 1950's (Brown, E. E., World Fish Farming, Cultivation, and Economics 1977. AVIPublishing Co., Westport, Conn. 396 pp). Early culture techniques consisted of stocking, harvesting, and feeding catfish only during the warmer months. -
Tec-1 Kinase Negatively Regulates Regenerative Neurogenesis in Planarians Alexander Karge1, Nicolle a Bonar1, Scott Wood1, Christian P Petersen1,2*
RESEARCH ARTICLE tec-1 kinase negatively regulates regenerative neurogenesis in planarians Alexander Karge1, Nicolle A Bonar1, Scott Wood1, Christian P Petersen1,2* 1Department of Molecular Biosciences, Northwestern University, Evanston, United States; 2Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States Abstract Negative regulators of adult neurogenesis are of particular interest as targets to enhance neuronal repair, but few have yet been identified. Planarians can regenerate their entire CNS using pluripotent adult stem cells, and this process is robustly regulated to ensure that new neurons are produced in proper abundance. Using a high-throughput pipeline to quantify brain chemosensory neurons, we identify the conserved tyrosine kinase tec-1 as a negative regulator of planarian neuronal regeneration. tec-1RNAi increased the abundance of several CNS and PNS neuron subtypes regenerated or maintained through homeostasis, without affecting body patterning or non-neural cells. Experiments using TUNEL, BrdU, progenitor labeling, and stem cell elimination during regeneration indicate tec-1 limits the survival of newly differentiated neurons. In vertebrates, the Tec kinase family has been studied extensively for roles in immune function, and our results identify a novel role for tec-1 as negative regulator of planarian adult neurogenesis. Introduction The capacity for adult neural repair varies across animals and bears a relationship to the extent of adult neurogenesis in the absence of injury. Adult neural proliferation is absent in C. elegans and *For correspondence: rare in Drosophila, leaving axon repair as a primary mechanism for healing damage to the CNS and christian-p-petersen@ northwestern.edu PNS. Mammals undergo adult neurogenesis throughout life, but it is limited to particular brain regions and declines with age (Tanaka and Ferretti, 2009). -
A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum. -
The Effect of Caffeine and Ethanol on Flatworm Regeneration
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2007 The ffecE t of Caffeine nda Ethanol on Flatworm Regeneration. Erica Leighanne Collins East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Chemical and Pharmacologic Phenomena Commons Recommended Citation Collins, Erica Leighanne, "The Effect of Caffeine nda Ethanol on Flatworm Regeneration." (2007). Electronic Theses and Dissertations. Paper 2028. https://dc.etsu.edu/etd/2028 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. The Effect of Caffeine and Ethanol on Flatworm Regeneration ____________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology ____________________ by Erica Leighanne Collins August 2007 ____________________ Dr. J. Leonard Robertson, Chair Dr. Thomas F. Laughlin Dr. Kevin Breuel Keywords: Regeneration, Planarian, Dugesia tigrina, Flatworms, Caffeine, Ethanol ABSTRACT The Effect of Caffeine and Ethanol on Flatworm Regeneration by Erica Leighanne Collins Flatworms, or planarian, have a high potential for regeneration and have been used as a model to investigate regeneration and stem cell biology for over a century. Chemicals, temperature, and seasonal factors can influence planarian regeneration. Caffeine and ethanol are two widely used drugs and their effect on flatworm regeneration was evaluated in this experiment. -
New Zealand Flatworm
www.nonnativespecies.org Produced by Max Wade, Vicky Ames and Kelly McKee of RPS New Zealand Flatworm Species Description Scientific name: Arthurdendyus triangulatus AKA: Artioposthia triangulata Native to: New Zealand Habitat: Gardens, nurseries, garden centres, parks, pasture and on wasteland This flatworm is very distinctive with a dark, purplish-brown upper surface with a narrow, pale buff spotted edge and pale buff underside. Many tiny eyes. Pointed at both ends, and ribbon-flat. A mature flatworm at rest is about 1 cm wide and 6 cm long but when extended can be 20 cm long and proportionally narrower. When resting, it is coiled and covered in mucus. It probably arrived in the UK during the 1960s, with specimen plants sent from New Zealand to a botanic garden. It was only found occasionally for many years, but by the early 1990s there were repeated findings in Scotland, Northern Ireland and northern England. Native to New Zealand, the flatworm is found in shady, wooded areas. Open, sunny pasture land is too hot and dry with temperatures over 20°C quickly lethal to it. New Zealand flatworms prey on earthworms, posing a potential threat to native earthworm populations. Further spread could have an impact on wild- life species dependent on earthworms (e.g. Badgers, Moles) and could have a localised deleterious effect on soil structure. For details of legislation go to www.nonnativespecies.org/legislation. Key ID Features Underside pale buff Ribbon flat Leaves a slime trail Pointed at Numerous both ends tiny eyes 60 - 200 mm long; 10 mm wide Upper surface dark, purplish-brown with a narrow, pale buff edge Completely smooth body surface Forms coils when at rest Identification throughout the year Distribution Egg capsules are laid mainly in spring but can be found all year round. -
The Genome of Schmidtea Mediterranea and the Evolution Of
OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5. -
Platyhelminthes: Tricladida: Terricola) of the Australian Region
ResearchOnline@JCU This file is part of the following reference: Winsor, Leigh (2003) Studies on the systematics and biogeography of terrestrial flatworms (Platyhelminthes: Tricladida: Terricola) of the Australian region. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24134/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24134/ Studies on the Systematics and Biogeography of Terrestrial Flatworms (Platyhelminthes: Tricladida: Terricola) of the Australian Region. Thesis submitted by LEIGH WINSOR MSc JCU, Dip.MLT, FAIMS, MSIA in March 2003 for the degree of Doctor of Philosophy in the Discipline of Zoology and Tropical Ecology within the School of Tropical Biology at James Cook University Frontispiece Platydemus manokwari Beauchamp, 1962 (Rhynchodemidae: Rhynchodeminae), 40 mm long, urban habitat, Townsville, north Queensland dry tropics, Australia. A molluscivorous species originally from Papua New Guinea which has been introduced to several countries in the Pacific region. Common. (photo L. Winsor). Bipalium kewense Moseley,1878 (Bipaliidae), 140mm long, Lissner Park, Charters Towers, north Queensland dry tropics, Australia. A cosmopolitan vermivorous species originally from Vietnam. Common. (photo L. Winsor). Fletchamia quinquelineata (Fletcher & Hamilton, 1888) (Geoplanidae: Caenoplaninae), 60 mm long, dry Ironbark forest, Maryborough, Victoria. Common. (photo L. Winsor). Tasmanoplana tasmaniana (Darwin, 1844) (Geoplanidae: Caenoplaninae), 35 mm long, tall open sclerophyll forest, Kamona, north eastern Tasmania, Australia. -
Division of Invertebrate Zoology (DIZ): 2003 Fall Newsletter
Division of Invertebrate Zoology (DIZ): 2003 Fall Newsletter In this newsletter: • Message from the Chair • Message from the Program Officer • Message from the Secretary • Libbie H. Hyman Memorial Scholarship • Message from the Graduate Student−Postdoctoral Affairs Committee Representative • Message from the Student Awards Committee Chair • DIZ Auction Message from the Chair Thomas Wolcott I hope that all of you had a summer that was productive, or pleasant, or both, and that you're looking forward to exciting meetings in New Orleans after the turn of the year. I recognize that travel may be more difficult in these times of floundering economies (Isabel came as quite a blow to ours), but hope that you too feel the SICB meetings are worth the investment. Given all the recent news of flooding in eastern NC, some of you may be concerned that we'll be meeting below sea level in New Orleans. Let me reassure you: the clout of the DIZ Chair's office is such that I've been able to extract a firm commitment from the meteorologists: "No hurricane landfalls during the SICB meetings." Division of Invertebrate Zoology (DIZ): 2003 Fall Newsletter 1 Relieved of the hurricane threat, we'll be able to turn our attention to the panoply of contributed paper and poster sessions, as well as the traditional smorgasbord of cutting−edge symposia. In that context, I'm delighted to report that DIZ Program Officer Penny Barnes has been peppered with proposals for future symposia. Let me emphasize that these are not dregs extracted by inverting the barrel and beating on the bottom; these are really interesting topics volunteered by the membership.