Information Security Systems Performance Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Information Security Systems Performance Assessment Information Security Systems Performance assessment Sumit Chhuttani B.tech 2 nd year Department of Computer Science and Engineering Indian Institute of Technology (IIT), Hyderabad - [email protected] Project guide: Dr. B.M. Mehtre Associate professor Institute of Development and Research in Banking Technology (IDRBT) Road No. 1, Castle Hills, Masab Tank, Hyderabad – 500 057 http://www.idrbt.ac.in/ June 2, 2012 1 CONTENTS Certificate Declaration Acknowledgement Abstract 1. Introduction . 7 2. Process and methodology. 8 2.1 Planning and Preparation . 8 2.2 Information Gathering and Analysis . 8 2.3 Enumeration and Fingerprinting . 8 2.4 Vulnerability detection . 9 2.5 Penetration Attempt . 9 2.6 Analysis and Reporting . 9 2.7 Cleaning up . .10 3. Security Assessment Tool-Kit . 10 3.1 Categories of scanning tools . 11 4. My Handy Tool-Kit . 12 4.1 Nmap . 12 (i) Results . 13 4.2 Wireshark . .. 16 (i) What Wireshark is not? . .16 (ii) Capturing features . 17 (iii) Filters . 17 (iv) Application. 18 (v) Wireshark as a traffic analysis . 18 4.3 Tor . 18 (i) Functionality . 19 (ii) Features . 20 (iii) Disadvantages . 20 (iv) Application. 20 4.4 Nessus . 21 2 (i) Results . 21 (ii) Major vulnerabilities . 23 4.5 w3af . 27 (i) Plugins . 27 (ii) Test results . 27 (iii) Vulnerabilities in IDRBT website . 28 5. Conclusion . 32 6. Reference . 33 3 CERTIFICATE This is to certify that project report titled “Information Security Systems: Performance Assessment” submitted by Sumit Chhuttani of B.tech. 2 nd year, dept. of Computer Science and Engineering, IIT Hyderabad is record of a bonafide work carried out by him under my guidance during the period 4 th may 2012 to 4 th July 2012 at Institute of Development and Research in Banking Technology, Hyderabad. The project work is a research study, which has been successfully completed as per the set objectives. Dr. B.M. Mehtre Associate Professor IDRBT,Hyderabad 4 DECLARATION I declare that the summer internship project report titled “Information Security Systems: Performance Assessment” is my own work conducted under the supervision of Prof. B.M. Mehtre at the Institute of Development and Research in Banking Technology, Hyderabad. I have put in 61 days of my attendance with my supervisor at IDRBT and have been awarded project fellowship. I further declare that to the best of my knowledge, the report does not contain any part of any work which has been submitted for the award of any degree either in this institute or any other institute without proper citation. Sumit Chhuttani B.tech 2nd year Dept. of Computer Science and Engineering IIT Hyderabad 5 Information Security Systems Performance assessment Abstract This report is about preparing a professional security consultant’s toolkit for performing tasks such as reconnaissance, network scanning, and exploiting the vulnerabilities. Literally thousands of tools—both commercial and open source—are available to professionals who need to assess their network's security. The trick is having the right tool for the job when you need it and being able to trust it. Nowadays everyone is moving towards e-banking and all the information is flowing through the network.The account number, expiration date and possibly the cardholder's name are sent from the point of payment to a processor, which is then sent to the card issuer — often a bank — which ultimately authorizes the transaction. The actual transfer of money occurs later. Processing companies, which perform millions of authorizations each day, are supposed to encrypt card information. But a breach could occur if someone gains access to the system and identifies a gap in the encryption. So, to stop these kinds of breaches, it is necessary for an enterprise to ensure end-to-end security. Many people mistakenly think that network security means installing a firewall and forgetting about it. But security is an on-going, everyday practice of perseverance and diligence. Sure, you need a firewall, but you also need to develop good habits, which include routine checks and analysis. This practice requires some specialized tools to get the job done quickly and easily, and I can recommend a few basic tools that you need in your toolkit and explain how to use them.This document explores the usage of some vulnerability tools, namely Nmap, Wireshark, Nessus, w3af etc. To explore the usage of the given tools, various tests were made with them to penetrate the given system and the results are presented in this report. 6 1. Introduction Recently as a consequence of growing hacker's activity, periodically occurring technical faults and compliance issues, information security have become tasks of the highest concern for most of organizations. Security systems aim for control of access to a computer system's resources, specially its data and operating system files. The three pillars of security are: Confidentiality, Integrity and Availability (CIA). Security in its most basic meaning is the protection of asset from or absence of danger. The motive behind using security system performance assessment model is to ensure that necessary security controls are integrated into the design and implementation of system. Vulnerabilities and exposures in most environments are due to poor system management, patches not installed in a timely fashion, weak password policy, poor access control, etc. Therefore, the principal reason and objective behind penetration testing should be to identify and correct the underlying systems management process failures that produced the vulnerability detected by the test. Our Aim is to evaluate the security of the information system or network set up by an organisation by simulating the attack from a malicious hacker. • It involves gathering the information about the system, such as its IP Address, Operating System, status of the ports etc. • It also involves identification of the vulnerabilities present in the system due to the various reasons Security assessment consists of four fundamental phases: Reconnaissance , Enumeration , Assessment and Exploitation. The reconnaissance phase involves discovery of the network devices through alive scanning via Internet Control Message Protocol (ICMP) or TCP.During the enumeration and assessment phases, the security assessor determines whether a service or application is running on a particular host and assesses it for potential vulnerabilities. In the exploitation phase, the assessor leverages one or more vulnerabilities to gain some level of privileged access to the host and uses this access to further exploit the host or to escalate privilege on that host or throughout the network or domain. Process and Methodology for Security assessment is explained in Section 2 in detail. 7 2. Process and Methodology 2.1 Planning and Preparation For carrying out a penetration test for an organisation, lots of preparation is needed. Before starting, ideally there should be a meeting between the officials and the penetration testers. In this meeting, they should decide the scope, extent and the aim of the penetration test. Generally, the aim of the Penetration Test is to demonstrate the presence of weakness in the network infrastructure which might compromise it.The scoping of the penetration test is done by identifying the machines, systems and network, operational requirements and the staff involved. Also, agreement must be there on the form of the output result. Another important aspect on which planning is required is the duration and the timing of the test. The test should be carried out in such a way that it has a minimal effect on the normal work and everyday processes. A tester may have to decide on some particular interval during the day in which he wants to carry out the test. Testing during the intervals of heavy and critical use should be avoided. There is a possibility that the test might crash the system due to the unusual network traffic created by it. So, possible measures should be taken to deal with any future system failure and if such a risk cannot be tolerated, then such system should be excluded from the test 2.2 Information Gathering and Analysis After the planning and preparation, the next step is to gather as much information as we can about the target system. For this purpose, there are plenty of tools available online which allow you to do network survey. A network survey is an introduction to the system. It allows us to find the reachable hosts in the system. Through a network survey, we get information about the following fields: • Domain names • Server names • Internet Service Provider • IP addresses of hosts • Network map After completing a network survey, the next task to be done is a port scan. There are basically about 65,000 possible TCP and UDP ports. The basic results obtained from a port scan are a list of open ports on a particular IP addresses. At this point system information like the operating system should also be associated with the IP address. 2.3 Enumeration and Fingerprinting Target network enumeration and host fingerprinting are crucial parts of both legitimate penetration testing and a hacking attack. You cannot go on the offensive without detailed terrain mapping and target reconnaissance. A great deal of enumeration and fingerprinting tools such as ping, trace route, whois, dig, host, and various port scanners (especially Fyodor's Nmap) are already available on internet and elsewhere. Specific targets are determined in this phase. Various services and open ports are determined. Operating system enumeration is also done. The methods used for the same can be: • Banner grabbing 8 • Responses to various protocol (ICMP &TCP) commands • Port / Service Scans – TCP Connect, TCP SYN, TCP FIN, etc . 2.4 Vulnerability Detection The next step after gathering of relevant information is to determine the vulnerability that exists in each of the systems in the network. The Tester needs to have a collection of exploits and vulnerabilities for this purpose.
Recommended publications
  • Automatic Sandboxing of Unsafe Software Components in High Level Languages
    Master Thesis Automatic Sandboxing of Unsafe Software Components in High Level Languages Benjamin Lamowski Technische Universität Dresden Fakultät Informatik Institut für Systemarchitektur Professur Betriebssysteme Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Härtig Betreuender Mitarbeiter: Dr. Carsten Weinhold 3. Mai 2017 Aufgabenstellung Neue “sichere“ Programmiersprachen wie Go, Swift oder Rust wurden nicht nur für die normale Anwendungsentwicklung entworfen, sondern sie zielen auch auf eine hochper- formante Ausführung und Programmierung vergleichsweise systemnaher Funktionalität ab. Eine attraktive Eigenschaft beispielsweise von Rust ist das gegenüber C und C++ deutlich strengere Speicherverwaltungsmodell, bei dem bereits zur Kompilierzeit der Lebenszyklus und die Erreichbarkeit von Objekten sowie die Zuständigkeit für deren Allokation und Deallokation wohldefiniert sind. Ganze Klassen von Programmfehlern wie etwa Buffer Overflows oder Dereferenzierung ungültige Zeiger werden dadurch eliminiert und die Programme mithin sicherer und robuster. Aus diversen Gründen müssen Programme, die in sicheren Sprachen geschriebenen wurden, aber oftmals auf “unsicheren“ Legacy-Code zurückgreifen. So bietet etwa Rust über das “unsafe“-Sprachelement die Möglichkeit, Funktionen innerhalb von Bibliotheken aufzurufen, die in fehleranfälligem C geschrieben sind. Leider werden die vom Com- piler durchgesetzten Garantien der sicheren Sprache hinfällig, sobald im Code einer C-Bibliothek ein Speicherfehler auftritt. Ein Schreibzugriff etwa durch
    [Show full text]
  • A Microkernel API for Fine-Grained Decomposition
    A Microkernel API for Fine-Grained Decomposition Sebastian Reichelt Jan Stoess Frank Bellosa System Architecture Group, University of Karlsruhe, Germany freichelt,stoess,[email protected] ABSTRACT from the microkernel APIs in existence. The need, for in- Microkernel-based operating systems typically require spe- stance, to explicitly pass messages between servers, or the cial attention to issues that otherwise arise only in dis- need to set up threads and address spaces in every server for tributed systems. The resulting extra code degrades per- parallelism or protection require OS developers to adopt the formance and increases development effort, severely limiting mindset of a distributed-system programmer rather than to decomposition granularity. take advantage of their knowledge on traditional OS design. We present a new microkernel design that enables OS devel- Distributed-system paradigms, though well-understood and opers to decompose systems into very fine-grained servers. suited for physically (and, thus, coarsely) partitioned sys- We avoid the typical obstacles by defining servers as light- tems, present obstacles to the fine-grained decomposition weight, passive objects. We replace complex IPC mecha- required to exploit the benefits of microkernels: First, a nisms by a simple function-call approach, and our passive, lot of development effort must be spent into matching the module-like server model obviates the need to create threads OS structure to the architecture of the selected microkernel, in every server. Server code is compiled into small self- which also hinders porting existing code from monolithic sys- contained files, which can be loaded into the same address tems. Second, the more servers exist | a desired property space (for speed) or different address spaces (for safety).
    [Show full text]
  • A Practical UNIX Capability System
    A Practical UNIX Capability System Adam Langley <[email protected]> 22nd June 2005 ii Abstract This report seeks to document the development of a capability security system based on a Linux kernel and to follow through the implications of such a system. After defining terms, several other capability systems are discussed and found to be excellent, but to have too high a barrier to entry. This motivates the development of the above system. The capability system decomposes traditionally monolithic applications into a number of communicating actors, each of which is a separate process. Actors may only communicate using the capabilities given to them and so the impact of a vulnerability in a given actor can be reasoned about. This design pattern is demonstrated to be advantageous in terms of security, comprehensibility and mod- ularity and with an acceptable performance penality. From this, following through a few of the further avenues which present themselves is the two hours traffic of our stage. Acknowledgments I would like to thank my supervisor, Dr Kelly, for all the time he has put into cajoling and persuading me that the rest of the world might have a trick or two worth learning. Also, I’d like to thank Bryce Wilcox-O’Hearn for introducing me to capabilities many years ago. Contents 1 Introduction 1 2 Terms 3 2.1 POSIX ‘Capabilities’ . 3 2.2 Password Capabilities . 4 3 Motivations 7 3.1 Ambient Authority . 7 3.2 Confused Deputy . 8 3.3 Pervasive Testing . 8 3.4 Clear Auditing of Vulnerabilities . 9 3.5 Easy Configurability .
    [Show full text]
  • On the Construction of Reliable Device Drivers Leonid Ryzhyk
    On the Construction of Reliable Device Drivers Leonid Ryzhyk Ph.D. 2009 ii iii ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously pub- lished or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this the- sis is the product of my own work, except to the extent that as- sistance from others in the project’s design and conception or in style, presentation, and linguistic expression is acknowledged.’ Signed .................................. Date .................................. iv Abstract This dissertation is dedicated to the problem of device driver reliability. Software defects in device drivers constitute the biggest source of failure in operating systems, causing sig- nificant damage through downtime and data loss. Previous research on driver reliability has concentrated on detecting and mitigating defects in existing drivers using static analysis or runtime isolation. In contrast, this dissertation presents an approach to reducing the number of defects through an improved device driver architecture and development process. In analysing factors that contribute to driver complexity and induce errors, I show that a large proportion of errors are due to two key shortcomings in the device-driver architecture enforced by current operating systems: poorly-defined communication protocols between drivers and the operating system, which confuse developers and lead to protocol violations, and a multithreaded model of computation, which leads to numerous race conditions and deadlocks.
    [Show full text]
  • Executive Summary
    Mobile Commerce Security: Legal & Technological Perspectives Michael Triguboff Table of Contents EXECUTIVE SUMMARY 4 INTRODUCTION 7 The Need for Security 11 PART I TECHNOLOGY 12 Client-Side Vulnerabilities 12 Browser Software 13 Java Applets 14 ActiveX controls 16 JavaScript 18 Plug-Ins and Graphic Files 18 Push technology 18 Web Server Security 19 Front-end 20 Firewalls 22 Back-end Database vulnerabilities 23 Server- Side Middleware 24 Operating System Problems 25 Hardened versions of Operating Systems 36 Distributed systems 37 Software Testing 38 Mobile Commerce Issues 43 Device Properties 43 Wireless Communication 45 Wireless Communication Protocols 47 Ad Hoc Networks 49 Ad Hoc Networks and Key Management 51 Network Protection in Ad Hoc Networks 54 Location Dependent Information and Mobile Computing 55 Mobile Agents 56 Protecting the Host from the Mobile Agent 59 Safe Code Interpretation 61 Digital Signatures 63 Proof Carrying Code 63 Path Histories 64 Software-Based Fault Isolation [“Sandboxing”] 64 Protecting the Agent From the Host and Other Agents 64 Secure Control of Remote Agents 65 Read-Only/Append-Only 65 Partial Results Encapsulation 66 Code Obfuscation 67 Computing with Encrypted Functions 67 Environmental Key Generation 68 Execution Tracing 68 Itinerary Recording 69 Security Through Shared Secrets and Interlocking 69 Other Approaches 69 Attacks Based on Device Limitations 71 2 Prevention, Detection and Reaction 71 Intrusion Detection 72 Intrusion Detection and Mobile Agents 75 Part I Conclusion 76 PART 11 THE LEGAL PERSPECTIVE 80 The Debate: A Confluence of Two Streams 81 Uniform Electronic Transactions Act 85 Article 2B of the Uniform Commercial Code 85 The Electronic Signatures in Global and National Commerce Act [“E-Sign Act”] 88 Jurisdiction Selection 90 Reaction- Criminal Law 96 Convention on Cyber-Crime 97 Evidentiary or Procedural Law 99 Practical Considerations 100 Part II Conclusion 101 APPENDIX 103 Digital Millennium Copyright Act 103 BIBLIOGRAPHY 107 3 EXECUTIVE SUMMARY The objectives of this project are twofold.
    [Show full text]
  • Open Ongtang-Phd-Dissertation.Pdf
    The Pennsylvania State University The Graduate School SECURING MOBILE PHONES IN THE EVOLVING MOBILE ECOSYSTEM A Dissertation in Computer Science and Engineering by Machigar Ongtang © 2010 Machigar Ongtang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 The dissertation of Machigar Ongtang was reviewed and approved∗ by the following: Patrick D. McDaniel Associate Professor of Computer Science and Engineering Dissertation Advisor, Chair of Committee Thomas F. La Porta Distinguished Professor of Computer Science and Engineering Trent Jaeger Associate Professor of Computer Science and Engineering Ling Rothrock Associate Professor of Industrial and Manufacturing Engineering Raj Acharya Professor of Computer Science and Engineering Department Head ∗Signatures are on file in the Graduate School. Abstract The revolution of mobile phone industry has been altering our life and business practices over the past few decades. Driven by user demands and technological advancement, we now experience rich mobile phone applications and sophisticated cellular services ranging from mobile payment, stock trading, to social networking, vehicle tracking to in-car control. As more players joining the community, this mobile phone environment has transformed into a complex network of interacting companies, known as mobile ecosystem. Unfortunately, this opening and converging mobile ecosystem has brought in more opportunities for more attacks on mobile phones, a key element of the system. This dissertation aims to achieve mobile phone security. We reveal two main chal- lenges that we need to overcome, namely developing a clear definition of secure phones, and building security infrastructure that imposes such definition on the phones. We also identify three key elements that contribute to the fidelity of mobile phones, namely, mobile phone platforms, mobile phone applications, and mobile content.
    [Show full text]
  • Capability Myths Demolished
    Capability Myths Demolished Mark S. Miller Ka-Ping Yee Jonathan Shapiro Combex, Inc. University of California, Berkeley Johns Hopkins University [email protected] [email protected] [email protected] ABSTRACT The second and third myths state false limitations on We address three common misconceptions about what capability systems can do, and have been capability-based systems: the Equivalence Myth (access propagated by a series of research publications over the control list systems and capability systems are formally past 20 years (including [2, 3, 7, 24]). They have been equivalent), the Confinement Myth (capability systems cited as reasons to avoid adopting capability models cannot enforce confinement), and the Irrevocability and have even motivated some researchers to augment Myth (capability-based access cannot be revoked). The capability systems with extra access checks [7, 13] in Equivalence Myth obscures the benefits of capabilities attempts to fix problems that do not exist. The myths as compared to access control lists, while the Confine- about what capability systems cannot do continue to ment Myth and the Irrevocability Myth lead people to spread, despite formal results [22] and practical see problems with capabilities that do not actually exist. systems [1, 9, 18, 21] demonstrating that they can do these supposedly impossible things. The prevalence of these myths is due to differing inter- pretations of the capability security model. To clear up We believe these severe misunderstandings are rooted the confusion, we examine three different models that in the fact that the term capability has come to be have been used to describe capabilities, and define a set portrayed in terms of several very different security of seven security properties that capture the distinctions models.
    [Show full text]
  • Plugging Into High-Volume Consumer Products
    ISSUE 53, SECOND QUARTER 2005ISSUE 53, SECOND QUARTER XCELL JOURNAL XILINX, INC. Issue 53 Second Quarter 2005 XcellXcelljournaljournal THETHE AUTHORITATIVEAUTHORITATIVE JOURNALJOURNAL FORFOR PROGRAMMABLEPROGRAMMABLE LOGICLOGIC USERSUSERS PluggingPlugging intointo High-VolumeHigh-Volume ConsumerConsumer ProductsProducts HIGH VOLUME Spartan-3E: A New Era Multimedia for Automotive DSP Algorithms DESIGN TOOLS New ISE 7.1i Software Control Your Designs SERIAL I/O Extend Your Reach SUBSCRIBE NOW R SEE PAGE 3 Xilinx is the only FPGA supplier in the world to have achieved high-volume 90nm production, resulting in the lowest-cost FPGAs in the industry. Our leadership in 90nm products gives you all the performance and features you need, at the lowest price points ever. Both our SpartanTM and VirtexTM product lines__ the world's most widely adopted FPGAs__ are shipping on our optimized 90nm process now. Contact your Xilinx rep today and let's ramp up for success together. The Programmable Logic CompanySM www.xilinx.com/spartan3 Pb-free devices available now ©2004 Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Europe +44-870-7350-600; Japan +81-3-5321-7711; Asia Pacific +852-2-424-5200; Xilinx is a registered trademark, Spartan and Virtex are trademarks, and The Programmable Logic Company is a service mark of Xilinx, Inc. LETTER FROM THE EDITOR What’s Both High and Low, and Used Everywhere...? This issue of the Xcell Journal focuses on high-volume, low-cost consumer applications and the design tools used to implement them. Business Viewpoints Our Business Viewpoints column offers an independent business perspective by Rich Wawrzyniak, Senior Analyst, ASICs Services for Semico Research Corporation.
    [Show full text]
  • Scalability of Microkernel-Based Systems
    Scalability of Microkernel-Based Systems Zur Erlangung des akademischen Grades eines DOKTORS DER INGENIERWISSENSCHAFTEN von der Fakultat¨ fur¨ Informatik der Universitat¨ Fridericiana zu Karlsruhe (TH) genehmigte DISSERTATION von Volkmar Uhlig aus Dresden Tag der mundlichen¨ Prufung:¨ 30.05.2005 Hauptreferent: Prof. Dr. rer. nat. Gerhard Goos Universitat¨ Fridericiana zu Karlsruhe (TH) Korreferent: Prof. Dr. sc. tech. (ETH) Gernot Heiser University of New South Wales, Sydney, Australia Karlsruhe: 15.06.2005 i Abstract Microkernel-based systems divide the operating system functionality into individ- ual and isolated components. The system components are subject to application- class protection and isolation. This structuring method has a number of benefits, such as fault isolation between system components, safe extensibility, co-existence of different policies, and isolation between mutually distrusting components. How- ever, such strict isolation limits the information flow between subsystems including information that is essential for performance and scalability in multiprocessor sys- tems. Semantically richer kernel abstractions scale at the cost of generality and mini- mality–two desired properties of a microkernel. I propose an architecture that al- lows for dynamic adjustment of scalability-relevant parameters in a general, flex- ible, and safe manner. I introduce isolation boundaries for microkernel resources and the system processors. The boundaries are controlled at user-level. Operating system components and applications can transform their semantic information into three basic parameters relevant for scalability: the involved processors (depending on their relation and interconnect), degree of concurrency, and groups of resources. I developed a set of mechanisms that allow a kernel to: 1. efficiently track processors on a per-resource basis with support for very large number of processors, 2.
    [Show full text]
  • What Have We Learnt in 20 Years of L4 Microkernels?
    Lecture 6 From L3 to seL4: What Have We Learnt in 20 Years of L4 Microkernels? Kevin Elphinstone and Gernot Heiser Operating Systems Practical 12 November, 2014 OSP Lecture 6, L4 Microkernels 1/42 Contents Introduction and design principles Brief history of microkernels L4: Basic abstractions L4: Design and implementation choices Keywords Questions OSP Lecture 6, L4 Microkernels 2/42 Outline Introduction and design principles Brief history of microkernels L4: Basic abstractions L4: Design and implementation choices Keywords Questions OSP Lecture 6, L4 Microkernels 3/42 Context and terminology I Operating system I Kernel I Monolithic kernel I Microkernel OSP Lecture 6, L4 Microkernels 4/42 Operating system I abbrv. OS I Software (collection) to interface hardware with user I Components: I Kernel: Linux, FreeBSD, Windows NT, XNU, L4, ::: I Services/daemons: sysvinit, CUPS print server, udev, ::: I Utilities: ls, Windows Commander, top I Other applications OSP Lecture 6, L4 Microkernels 5/42 Kernel I Components directly interfacing with hardware I Examples? I \Core" of OS I No general definition of \core" OSP Lecture 6, L4 Microkernels 6/42 Monolithic vs. Micro-kernel Application Syscall User VFS "ode Uni File Server Device Server IPC, file system Application Driver Scheduler, virtual memory !ernel "ode Device drivers, dispatcher IPC, virtual memory IPC Hardware Hardware Source: http://www.cse.unsw.edu.au/ OSP Lecture 6, L4 Microkernels 7/42 Monolithic vs. Micro-kernel Monolithic kernel Microkernel I IPC, scheduling, I IPC, scheduling, memory management memory management I File systems I API closer to the I Drivers hardware I Higher-level API OSP Lecture 6, L4 Microkernels 8/42 Microkernel principles: minimality I If it's not critical, leave it out of the kernel I Pros: I Small code base I Easy to debug I Trusted Computing Base, feasible for formal verification I Cons: I Harder to find the \right" API design I Harder to optimize for high-performance OSP Lecture 6, L4 Microkernels 9/42 Microkernel principles: user-level services I Drivers, file systems, etc.
    [Show full text]
  • Marijuana Business Licenses Approved
    OREGON LIQUOR & CANNABIS COMMISSION Marijuana Business Licenses Approved as of 9/9/2021 Retail Medical LICENSE NUMBER LICENSEE NAME BUSINESS NAME LICENSE TYPE ACTIVE COUNTY Delivery Grade Hemp 050 100037147CC Hotbox Farms LLC Hotbox Farms Recreational Retailer Yes Baker Yes 050 10011127277 Scott, Inc 420VILLE Recreational Retailer Yes Baker 020 10017768FC7 Burnt River Farms, LLC Burnt River Farms LLC. Recreational Producer Yes Baker 030 10031846B25 Burnt River Farms, LLC Burnt River Farms LLC. Recreational Processor Yes Baker 060 1003692E356 Burnt River Farms, LLC Burnt River Farms LLC. Recreational Wholesaler Yes Baker 050 1003713A8A4 The Coughie Pot, LLC The Coughie Pot Recreational Retailer Yes Baker 050 10047883377 Sumpter Nugget, LLC Sumpter Nugget Recreational Retailer Yes Baker Yes 030 10071310CDB Nugget Candy Co, LLC Nugget Candy Co, LLC/Bad Rabbit Recreational Processor Yes Baker Yes Solventless 060 10079080A50 420BUNKERVILLE LLC 420 Bunkerville Recreational Wholesaler Yes Baker Yes 020 1007910A67C 420BUNKERVILLE LLC 420 Bunkerville Recreational Producer Yes Baker 020 1008998100D Burnt River Farms, LLC Burnt River Farms LLC Recreational Producer Yes Baker 060 1010135EC04 Hotbox Farms LLC Hotbox Farms Recreational Wholesaler Yes Baker 020 10104590FEE Bad Rabbit Farms LLC Bad Rabbit Farms LLC Recreational Producer Yes Baker 020 10001223B25 Fire Creek Farms LLC. Fire Creek Farms Recreational Producer Yes Benton 020 1000140D286 Bosmere Farms, Inc. Bosmere Farms, Inc. Recreational Producer Yes Benton 020 10004312ECD Grasshopper Farm,
    [Show full text]
  • Minotaur Automotive Tuning Software™ User's Guide
    Minotaur Automotive Tuning Software™ User's Guide 192 Picklesimon Rd. Winder, GA 30680 Phone: (678) 890-1110 gopowerhungry.com Compiled and Written by William Cohron This book is dedicated to my wonderful family. Without your strength, your encouragement, and your understanding of my obsession with the world of automotive high performance, this book, along with so many other things that I’ve accomplished, would not have been possible. I would also like to dedicate this book to our son, Wil. It is so unfortunate to have lost you at such a young age. Your love for cars, tuning, racing, and engineering was quite exceptional for a person of your age, and it was fascinating to watch you growing into the enthusiast that I was at your age. You are missed daily by those who love you and knew you, and I hope that we all make you proud. All contents © 2021, Power Hungry Performance, Inc. This document is protected by US and International Copyright Laws. No part of this manual may be reproduced, either in whole or in part, without the express written consent of Power Hungry Performance, Inc. Violators will be prosecuted to the fullest extent of the law. Version 20210216a (Online) The Minotaur Automotive Tuning Software™ is an extremely powerful and flexible application and in order to provide this degree of flexibility it does not restrict or limit any of the values being modified. This software is recommended for experienced users only. It is very easy to make an adjustment to a calibration that could cause the engine to not start, run poorly, cause erratic shifting or result in other drivability concerns or loss of control while driving.
    [Show full text]