Capability Myths Demolished
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatic Sandboxing of Unsafe Software Components in High Level Languages
Master Thesis Automatic Sandboxing of Unsafe Software Components in High Level Languages Benjamin Lamowski Technische Universität Dresden Fakultät Informatik Institut für Systemarchitektur Professur Betriebssysteme Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Härtig Betreuender Mitarbeiter: Dr. Carsten Weinhold 3. Mai 2017 Aufgabenstellung Neue “sichere“ Programmiersprachen wie Go, Swift oder Rust wurden nicht nur für die normale Anwendungsentwicklung entworfen, sondern sie zielen auch auf eine hochper- formante Ausführung und Programmierung vergleichsweise systemnaher Funktionalität ab. Eine attraktive Eigenschaft beispielsweise von Rust ist das gegenüber C und C++ deutlich strengere Speicherverwaltungsmodell, bei dem bereits zur Kompilierzeit der Lebenszyklus und die Erreichbarkeit von Objekten sowie die Zuständigkeit für deren Allokation und Deallokation wohldefiniert sind. Ganze Klassen von Programmfehlern wie etwa Buffer Overflows oder Dereferenzierung ungültige Zeiger werden dadurch eliminiert und die Programme mithin sicherer und robuster. Aus diversen Gründen müssen Programme, die in sicheren Sprachen geschriebenen wurden, aber oftmals auf “unsicheren“ Legacy-Code zurückgreifen. So bietet etwa Rust über das “unsafe“-Sprachelement die Möglichkeit, Funktionen innerhalb von Bibliotheken aufzurufen, die in fehleranfälligem C geschrieben sind. Leider werden die vom Com- piler durchgesetzten Garantien der sicheren Sprache hinfällig, sobald im Code einer C-Bibliothek ein Speicherfehler auftritt. Ein Schreibzugriff etwa durch -
Unix Protection
View access control as a matrix Protection Ali Mashtizadeh Stanford University Subjects (processes/users) access objects (e.g., files) • Each cell of matrix has allowed permissions • 1 / 39 2 / 39 Specifying policy Two ways to slice the matrix Manually filling out matrix would be tedious • Use tools such as groups or role-based access control: • Along columns: • - Kernel stores list of who can access object along with object - Most systems you’ve used probably do this dir 1 - Examples: Unix file permissions, Access Control Lists (ACLs) Along rows: • dir 2 - Capability systems do this - More on these later. dir 3 3 / 39 4 / 39 Outline Example: Unix protection Each process has a User ID & one or more group IDs • System stores with each file: • 1 Unix protection - User who owns the file and group file is in - Permissions for user, any one in file group, and other Shown by output of ls -l command: 2 Unix security holes • user group other owner group - rw- rw- r-- dm cs140 ... index.html 3 Capability-based protection - Eachz}|{ groupz}|{ z}|{ of threez}|{ lettersz }| { specifies a subset of read, write, and execute permissions - User permissions apply to processes with same user ID - Else, group permissions apply to processes in same group - Else, other permissions apply 5 / 39 6 / 39 Unix continued Non-file permissions in Unix Directories have permission bits, too • Many devices show up in file system • - Need write permission on a directory to create or delete a file - E.g., /dev/tty1 permissions just like for files Special user root (UID 0) has all -
A Microkernel API for Fine-Grained Decomposition
A Microkernel API for Fine-Grained Decomposition Sebastian Reichelt Jan Stoess Frank Bellosa System Architecture Group, University of Karlsruhe, Germany freichelt,stoess,[email protected] ABSTRACT from the microkernel APIs in existence. The need, for in- Microkernel-based operating systems typically require spe- stance, to explicitly pass messages between servers, or the cial attention to issues that otherwise arise only in dis- need to set up threads and address spaces in every server for tributed systems. The resulting extra code degrades per- parallelism or protection require OS developers to adopt the formance and increases development effort, severely limiting mindset of a distributed-system programmer rather than to decomposition granularity. take advantage of their knowledge on traditional OS design. We present a new microkernel design that enables OS devel- Distributed-system paradigms, though well-understood and opers to decompose systems into very fine-grained servers. suited for physically (and, thus, coarsely) partitioned sys- We avoid the typical obstacles by defining servers as light- tems, present obstacles to the fine-grained decomposition weight, passive objects. We replace complex IPC mecha- required to exploit the benefits of microkernels: First, a nisms by a simple function-call approach, and our passive, lot of development effort must be spent into matching the module-like server model obviates the need to create threads OS structure to the architecture of the selected microkernel, in every server. Server code is compiled into small self- which also hinders porting existing code from monolithic sys- contained files, which can be loaded into the same address tems. Second, the more servers exist | a desired property space (for speed) or different address spaces (for safety). -
A Practical UNIX Capability System
A Practical UNIX Capability System Adam Langley <[email protected]> 22nd June 2005 ii Abstract This report seeks to document the development of a capability security system based on a Linux kernel and to follow through the implications of such a system. After defining terms, several other capability systems are discussed and found to be excellent, but to have too high a barrier to entry. This motivates the development of the above system. The capability system decomposes traditionally monolithic applications into a number of communicating actors, each of which is a separate process. Actors may only communicate using the capabilities given to them and so the impact of a vulnerability in a given actor can be reasoned about. This design pattern is demonstrated to be advantageous in terms of security, comprehensibility and mod- ularity and with an acceptable performance penality. From this, following through a few of the further avenues which present themselves is the two hours traffic of our stage. Acknowledgments I would like to thank my supervisor, Dr Kelly, for all the time he has put into cajoling and persuading me that the rest of the world might have a trick or two worth learning. Also, I’d like to thank Bryce Wilcox-O’Hearn for introducing me to capabilities many years ago. Contents 1 Introduction 1 2 Terms 3 2.1 POSIX ‘Capabilities’ . 3 2.2 Password Capabilities . 4 3 Motivations 7 3.1 Ambient Authority . 7 3.2 Confused Deputy . 8 3.3 Pervasive Testing . 8 3.4 Clear Auditing of Vulnerabilities . 9 3.5 Easy Configurability . -
System Calls System Calls
System calls We will investigate several issues related to system calls. Read chapter 12 of the book Linux system call categories file management process management error handling note that these categories are loosely defined and much is behind included, e.g. communication. Why? 1 System calls File management system call hierarchy you may not see some topics as part of “file management”, e.g., sockets 2 System calls Process management system call hierarchy 3 System calls Error handling hierarchy 4 Error Handling Anything can fail! System calls are no exception Try to read a file that does not exist! Error number: errno every process contains a global variable errno errno is set to 0 when process is created when error occurs errno is set to a specific code associated with the error cause trying to open file that does not exist sets errno to 2 5 Error Handling error constants are defined in errno.h here are the first few of errno.h on OS X 10.6.4 #define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #define ESRCH 3 /* No such process */ #define EINTR 4 /* Interrupted system call */ #define EIO 5 /* Input/output error */ #define ENXIO 6 /* Device not configured */ #define E2BIG 7 /* Argument list too long */ #define ENOEXEC 8 /* Exec format error */ #define EBADF 9 /* Bad file descriptor */ #define ECHILD 10 /* No child processes */ #define EDEADLK 11 /* Resource deadlock avoided */ 6 Error Handling common mistake for displaying errno from Linux errno man page: 7 Error Handling Description of the perror () system call. -
On the Construction of Reliable Device Drivers Leonid Ryzhyk
On the Construction of Reliable Device Drivers Leonid Ryzhyk Ph.D. 2009 ii iii ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously pub- lished or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this the- sis is the product of my own work, except to the extent that as- sistance from others in the project’s design and conception or in style, presentation, and linguistic expression is acknowledged.’ Signed .................................. Date .................................. iv Abstract This dissertation is dedicated to the problem of device driver reliability. Software defects in device drivers constitute the biggest source of failure in operating systems, causing sig- nificant damage through downtime and data loss. Previous research on driver reliability has concentrated on detecting and mitigating defects in existing drivers using static analysis or runtime isolation. In contrast, this dissertation presents an approach to reducing the number of defects through an improved device driver architecture and development process. In analysing factors that contribute to driver complexity and induce errors, I show that a large proportion of errors are due to two key shortcomings in the device-driver architecture enforced by current operating systems: poorly-defined communication protocols between drivers and the operating system, which confuse developers and lead to protocol violations, and a multithreaded model of computation, which leads to numerous race conditions and deadlocks. -
Advanced Components on Top of a Microkernel
Faculty of Computer Science Institute for System Architecture, Operating Systems Group Advanced Components on Top of A Microkernel Björn Döbel What we talked about so far • Microkernels are cool! • Fiasco.OC provides fundamental mechanisms: – Tasks (address spaces) • Container of resources – Threads • Units of execution – Inter-Process Communication • Exchange Data • Timeouts • Mapping of resources TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 2 / 54 Lecture Outline • Building a real system on top of Fiasco.OC • Reusing legacy libraries – POSIX C library • Device Drivers in user space – Accessing hardware resources – Reusing Linux device drivers • OS virtualization on top of L4Re TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 3 / 54 Reusing Existing Software • Often used term: legacy software • Why? – Convenience: • Users get their “favorite” application on the new OS – Effort: • Rewriting everything from scratch takes a lot of time • But: maintaining ported software and adaptions also does not come for free TU Dresden, 2012-07-24 L4Re: Advanced Components Slide 4 / 54 Reusing Existing Software • How? – Porting: • Adapt existing software to use L4Re/Fiasco.OC features instead of Linux • Efficient execution, large maintenance effort – Library-level interception • Port convenience libraries to L4Re and link legacy applications without modification – POSIX C libraries, libstdc++ – OS-level interception • Wine: implement Windows OS interface on top of new OS – Hardware-level: • Virtual Machines TU Dresden, 2012-07-24 L4Re: -
CHERI Instruction-Set Architecture
UCAM-CL-TR-876 Technical Report ISSN 1476-2986 Number 876 Computer Laboratory Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan Anderson, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W. Moore, Steven J. Murdoch, Robert Norton, Stacey Son September 2015 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2015 Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan Anderson, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W. Moore, Steven J. Murdoch, Robert Norton, Stacey Son, SRI International Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and FA8750-11-C-0249 (“MRC2”) as part of the DARPA CRASH and DARPA MRC research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or the U.S. Government. Additional support was received from St John’s College Cambridge, the SOAAP Google Focused Research Award, the RCUK’s Horizon Digital Economy Research Hub Grant (EP/G065802/1), the EPSRC REMS Programme Grant (EP/K008528/1), the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), and Thales E-Security. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Abstract This technical report describes CHERI ISAv4, the fourth version of the Capability Hardware Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA)1 being developed by SRI International and the University of Cambridge. -
Lecture Notes in Assembly Language
Lecture Notes in Assembly Language Short introduction to low-level programming Piotr Fulmański Łódź, 12 czerwca 2015 Spis treści Spis treści iii 1 Before we begin1 1.1 Simple assembler.................................... 1 1.1.1 Excercise 1 ................................... 2 1.1.2 Excercise 2 ................................... 3 1.1.3 Excercise 3 ................................... 3 1.1.4 Excercise 4 ................................... 5 1.1.5 Excercise 5 ................................... 6 1.2 Improvements, part I: addressing........................... 8 1.2.1 Excercise 6 ................................... 11 1.3 Improvements, part II: indirect addressing...................... 11 1.4 Improvements, part III: labels............................. 18 1.4.1 Excercise 7: find substring in a string .................... 19 1.4.2 Excercise 8: improved polynomial....................... 21 1.5 Improvements, part IV: flag register ......................... 23 1.6 Improvements, part V: the stack ........................... 24 1.6.1 Excercise 12................................... 26 1.7 Improvements, part VI – function stack frame.................... 29 1.8 Finall excercises..................................... 34 1.8.1 Excercise 13................................... 34 1.8.2 Excercise 14................................... 34 1.8.3 Excercise 15................................... 34 1.8.4 Excercise 16................................... 34 iii iv SPIS TREŚCI 1.8.5 Excercise 17................................... 34 2 First program 37 2.1 Compiling, -
The Flask Security Architecture: System Support for Diverse Security Policies
The Flask Security Architecture: System Support for Diverse Security Policies Ray Spencer Secure Computing Corporation Stephen Smalley, Peter Loscocco National Security Agency Mike Hibler, David Andersen, Jay Lepreau University of Utah http://www.cs.utah.edu/flux/flask/ Abstract and even many types of policies [1, 43, 48]. To be gen- erally acceptable, any computer security solution must Operating systems must be flexible in their support be flexible enough to support this wide range of security for security policies, providing sufficient mechanisms for policies. Even in the distributed environments of today, supporting the wide variety of real-world security poli- this policy flexibility must be supported by the security cies. Such flexibility requires controlling the propaga- mechanisms of the operating system [32]. tion of access rights, enforcing fine-grained access rights and supporting the revocation of previously granted ac- Supporting policy flexibility in the operating system is cess rights. Previous systems are lacking in at least one a hard problem that goes beyond just supporting multi- of these areas. In this paper we present an operating ple policies. The system must be capable of supporting system security architecture that solves these problems. fine-grained access controls on low-level objects used to Control over propagation is provided by ensuring that perform higher-level functions controlled by the secu- the security policy is consulted for every security deci- rity policy. Additionally, the system must ensure that sion. This control is achieved without significant perfor- the propagation of access rights is in accordance with mance degradation through the use of a security decision the security policy. -
FIDO Technical Glossary
Client to Authenticator Protocol (CTAP) Implementation Draft, February 27, 2018 This version: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id- 20180227.html Previous Versions: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/ Issue Tracking: GitHub Editors: Christiaan Brand (Google) Alexei Czeskis (Google) Jakob Ehrensvärd (Yubico) Michael B. Jones (Microsoft) Akshay Kumar (Microsoft) Rolf Lindemann (Nok Nok Labs) Adam Powers (FIDO Alliance) Johan Verrept (VASCO Data Security) Former Editors: Matthieu Antoine (Gemalto) Vijay Bharadwaj (Microsoft) Mirko J. Ploch (SurePassID) Contributors: Jeff Hodges (PayPal) Copyright © 2018 FIDO Alliance. All Rights Reserved. Abstract This specification describes an application layer protocol for communication between a roaming authenticator and another client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the details of how such transport layer connections should be set up, in a manner that meets the requirements of the application layer protocol. Table of Contents 1 Introduction 1.1 Relationship to Other Specifications 2 Conformance 3 Protocol Structure 4 Protocol Overview 5 Authenticator API 5.1 authenticatorMakeCredential (0x01) 5.2 authenticatorGetAssertion (0x02) 5.3 authenticatorGetNextAssertion (0x08) 5.3.1 Client Logic 5.4 authenticatorGetInfo (0x04) -
Microkernels Meet Recursive Virtual Machines
Microkernels Meet Recursive Virtual Machines Bryan Ford Mike Hibler Jay Lepreau Patrick Tullmann Godmar Back Stephen Clawson Department of Computer Science, University of Utah Salt Lake City, UT 84112 [email protected] http://www.cs.utah.edu/projects/flux/ Abstract ªverticallyº by implementing OS functionalityin stackable virtual machine monitors, each of which exports a virtual Thispaper describes a novel approach to providingmod- machine interface compatible with the machine interface ular and extensible operating system functionality and en- on which it runs. Traditionally,virtual machines have been capsulated environments based on a synthesis of micro- implemented on and export existing hardware architectures kernel and virtual machine concepts. We have developed so they can support ªnaiveº operating systems (see Fig- a software-based virtualizable architecture called Fluke ure 1). For example, the most well-known virtual machine that allows recursive virtual machines (virtual machines system, VM/370 [28, 29], provides virtual memory and se- running on other virtual machines) to be implemented ef- curity between multiple concurrent virtual machines, all ®ciently by a microkernel running on generic hardware. exporting the IBM S/370 hardware architecture. Further- A complete virtual machine interface is provided at each more, special virtualizable hardware architectures [22, 35] level; ef®ciency derives from needing to implement only have been proposed, whose design goal is to allow virtual new functionality at each level. This infrastructure allows machines to be stacked much more ef®ciently. common OS functionality, such as process management, demand paging, fault tolerance, and debugging support, to This paper presents a new approach to OS extensibil- be provided by cleanly modularized, independent, stack- ity which combines both microkernel and virtual machine able virtual machine monitors, implemented as user pro- concepts in one system.