Evaluation of Phylogenetic Relationships of Antilopini And

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Phylogenetic Relationships of Antilopini And Journal of Wildlife and Biodiversity 1(1): 1-11 (2017) by Arak University, Iran (http://jwb.araku.ac.ir/) Research Article DOI: 10.22120/jwb.2017.26903 Evaluation of phylogenetic relationships of Antilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mitochondrial genomes using these genomes, we can meticulously Taghi Ghassemi-Khademi reconstruct and modify the animal classification. Iranian academic center for education, culture Keywords: Antilopinae, phylogeny, mtDNA, and research (ACECR), Ardabil, Iran. e-mail: biosystematics, taxonomy. [email protected] Received: 2 July 2017 / Revised: 5 August 2017 / Accepted: 13 August 2017 / Published online: 17 August 2017. Ministry of Introduction Sciences, Research and Technology, Arak University, Iran. Taxonomically, Antilopes belongs to Kingdom: Animalia (metazoan), Phylum: Chordata, Abstract Subphylum: Vertebrata, Class: Mammalia, Sub- class: Theria, Super- order: Eutheria (Placenta), In this research, phylogenetic relationships of 24 Order: Artiodactyla, Suborder: Ruminantia, species from the subfamily Antilopinae were Family: Bovidae, Sub-family: Antilopinae, and evaluated using complete mitochondrial tribe: Antilopini (Wilson and Reeder 2005). genomes. The average base composition of mtDNA sequences was 27.8% T, 25.2% C, Based on the traditional and previous 33.7% A, and 13.3% G, showing a strong AT classifications, the subfamily of Antilopinae is bias (61.5%). The phylogenetic trees were comprised of three different tribe and sixteen investigated using the NJ, ME and UPGMA live genera: the tribe Antilopini has eight genera methods and found that they have very identical including Genus Gazella, Genus Antilope, topologies. Overall, consistent with findings of Genus Ammodorcas, Genus Antidorcas, Genus previous studies, the results revealed that the Litocranius, Genus Eudorcas, Genus Nanger, Antilopini tribe has been correctly demarcated. and Genus Procapra. The tribe Saigini has two Also, it was found that the Oreotragini tribe, genera including Genus Saiga and Genus which is represented by a single species Pantholops. This genus sometimes is classified (Oreotragus oreotragus), is completely in Caprinae Subfamily. separated from the Antilopini tribe and thus its The tribe Neotragini also has six genera taxonomic position must be reviewed again. In including Dorcatragus, Madoqua, Neotragus, general, the results of this study indicated that Oreotragus, Ourebia, and Raphicerus (Malcolm the complete mitochondrial genomes are very et al. 1997, Wilson and Reeder 2005). The sister useful, powerful, and accurate tools for taxon of Antilopinae subfamily is Bovinae and evaluating the phylogenetic relationships of both groups comprise the artiodactyla family animals and biosystematics studies. Besides, Bovidae (Bärmann et al. 2013). 2 | Journal of Wildlife and Biodiversity 1(1): 1-11 (2017) Nowadays, Antilopinae subfamily includes nine antilopes relatives but the new classification tribes, which are very distinct from each other: calls all of them as true Antilopes. The body of Hippotragini, Alcelaphini, Reduncini, true antilopes is not very large. Anatomically, Cephalophini, Neotragini, Oreotragini, they are significantly different from the rams, Aepycerotini, Antilopini, and Caprini (Castelló ewes, wild goats, and goats. They have narrow 2016). Antilopini tribe often referred to as true body and legs with a flat back or slightly raised antelopes and consists true Gazelles (genera bump. In some species, only the males have Eudorcas, Gazella, and Nanger), Procapra antlers while in some others the females also (which appear to be as different from the have very short and fine antlers. The antilopes Gazelles as they are from the dwarf antelopes), are limited in semi-arid and arid regions, Saiga, and dwarf antelopes (Dorcatragus, herbaceous steppes, or areas with trees and Madoqua, Ourebia, and Raphicerus). Also, the shrubs. Their food includes forage, trees leaves Oreotragini tribe, represented by one living and shrubs, buds and young seedlings. Many genus, the klipspringer (Oreotragus differences are seen in antilopes regarding oreotragus), are small, stocky antelopes, with appearance as well as the habitat selection females weighing more than and being slightly (Ghassemi-Khademi 2014). longer than males (Castelló 2016). In total, the gazelles, blackbucks, springboks, Recently Hassanin et al. (2012) have introduced gerenuks, dibatags, and Central Asian gazelles new names for four subtribes for Antilopini are often referred to as ‘true Antilopes’, and are (gazelles and their allies) tribe: Antilopina, usually classified as the only representatives of based on the genus Antilope, consists of Antilope the Antilopinae. True antelopes occur in much cervicapra, Gazella spp., Nanger spp., of Asia and Africa, with the highest Eudorcas spp., Antidorcas marsupialis, concentration of species occurring in East Africa Ammodorcas clarkei, Litocranius walleri, and in Sudan, Eritrea, Ethiopia, Somalia, Kenya, and Saiga tatarica; Procaprina, based on the genus Tanzania (Wilson and Reeder 2005). Procapra, includes the three living Procapra Gazelles are medium-sized ungulates with a fine species; Ourebina, based on the genus Ourebia, body that mostly live in the deserts. They have is monotypic and includes only O. ourebi; and big eyes and their snouts are hairy up to their Raphicerina, based on the genus Raphicerus, nostrils. In the animal face, there is a middle includes Raphicerus spp., Dorcatragus dark band from the snout to the forehead and a megalotis, and Madoqua spp. (Bärmann et al. smaller dark bar extends in each side of the face 2013). Therefore, based on new classifications, from the snout to the eyes front. The body color the Antilopinae subfamily has several tribes that in the back is generally brownish-gray or one of them is Antilopini tribe with four reddish and white in the ventral part (Ghassemi- subtribes and Oreotragini is a separate tribe in Khademi 2013). Regarding apparent shape, the this subfamily (Bärmann et al. 2013). The tribe antilopes are divided into four groups: Neotraginiis is presently known to be polyphyletic, as Neotragus and Oreotragus are 1. Gazelle-like antilopes: Most of the antilopes not closely related to Antelopes (Bärmann et al. species are in this group, and the studied species 2013). in this paper are considered as members of this group. In the hunting and itineraries literature, antilopes have been listed as two different animals; in the 2. Bovid-like antilopes: They are similar to old classifications, the gazelles are considered as bovine in appearance, and mostly live in Africa. 3 | Journal of Wildlife and Biodiversity 1(1): 1-11 (2017) 3. Horse-like antilopes: They are like a horse in provide most accurate outcomes) between the appearance, all living in arid and desert areas of genera belonging to this subfamily can be an Africa. effective step in planning for the conservation and enhancement of multiplication of these 4. Goat-like antilopes: The group members are animals in the world. Particularly, most animal like goats and ibexes in appearance, and live in species belonging to this subfamily today are in relatively rocky areas (Sheikhjabbari 2003). serious danger of extinction and declining of the Mitochondrial DNA (mtDNA) is a circular population all over the world (Ghassemi- DNA of 15000-20000 bp and is conserved in Khademi 2014). vertebrate animals. This genome is highly variable in structure, content, organization, and quality of genes expression in the different of Material and methods animals (Zhang and Zhang 2013). The All complete mitochondrial genome sequences mitochondrial genome is popular for belonged to Antilopinae subfamily were evolutionary and phylogenetic studies because downloaded (n=24) from NCBI (Table 1). of the relative simplicity of extraction and Sequences were aligned with Mega.6 (Tamura simple sequence organization, maternal et al. 2013) using the Clustral W alignment inheritance, free of recombination in most cases method. Also, the corresponding gene and rapid rate of sequence divergence sequences of Tragelaphus strepsiceros were (Katouzian and Rajabi-Maham 2013). used as an outgroup in this analysis. Several mitochondrial genomes are used for The evolutionary history was inferred using the estimating the phylogenetic relationships among Neighbor-Joining method (Saitou and Nei animal taxa and molecular phylogenetic 1987). The optimal tree was identified with the evolution analysis. Overall, using several sum of branch length = 1.16304401. The genomes of mtDNA is better than using the percentage of replicate trees, in which the single gene for phylogenetic analysis of animals, associated taxa are clustered together in the because multiple sequences (especially bootstrap test (1000 replicates), are shown next complete genome of mtDNA) provide sufficient to the branches (Felsenstein 1985). The information about evolution and of evolutionary evolutionary distances, which were computed process reconstruction (Zhang and Zhang 2013). using the Kimura 2-parameter method (Kimura Although several researchers (Hassanin and 1980). The rate variation among sites was Douzery 1999, Rebholz and Harley 1999, modeled with a gamma distribution (shape Wronski et al. 2010, Manuel et al. 2005, Gatesy parameter = 1). et al. 1997, Groves 2000, Kuznetsova and Evolutionary analyses were conducted in Kholodova 2003, Lei et al. 2003, Marcot 2007, MEGA6 (Tamura et al. 2013). The evolutionary Bärmann et al. 2013), have studied
Recommended publications
  • Chromosomal Evolution in Raphicerus Antelope Suggests Divergent X
    www.nature.com/scientificreports OPEN Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane’s rule Terence J. Robinson1*, Halina Cernohorska2, Svatava Kubickova2, Miluse Vozdova2, Petra Musilova2 & Aurora Ruiz‑Herrera3,4 Chromosome structural change has long been considered important in the evolution of post‑zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene fow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplifcation and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post‑ zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane’s rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network’s surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility. Te chromosomal speciation theory 1,2 also referred to as the “Hybrid dysfunction model”3, has been one of the most intriguing questions in biology for decades.
    [Show full text]
  • An Attack by a Warthog, Phacochoerus Africanus, on a Newborn Thomson's Gazelle, Gazella Thomsonii
    An attack by a warthog, Phacochoerus africanus, on a newborn Thomson’s gazelle, Gazella thomsonii Blair A. Roberts Department of Ecology and Evolutionary Biology, Princeton University Princeton, NJ 08540, USA Accepted 27 April, 2012 Introduction PM. Twenty-four minutes later, while the fawn was standing unsteadily after suckling and This note reports a previously undescribed after the mother had consumed all visible birth behaviour of an attack by a warthog (Phacochoe- materials from the neonate and the birth site, rus africanus) on a newborn Thomson’s gazelle an adult male warthog approached the pair. (Gazella thomsonii). Most instances of interspe- When it came within several metres of the cific aggression in wild animals occur in the gazelles, the mother turned to face it, leaving contexts of predation (Polis, Myers & Holt, the fawn between her and the warthog. The 1989; Kamler et al., 2007) or competition warthog rushed at the fawn, hooked it with its (e.g. Moore, 1978; Berger, 1985; Loveridge & tusk and tossed it approximately 3 m in the air. Macdonald, 2002; Schradin, 2005). However, The warthog then turned to the mother, who warthogs are omnivores that are not known to first lowered her horns but quickly retreated. prey on gazelle and only rarely include animal The warthog approached the fawn, which protein in their diets (Cumming, 1975). Also, had not moved since landing on the ground. the two species typically associate closely with- It sniffed the fawn, nudging it with its snout. out overt signs of aggression and exhibit subtle It then grasped the fawn’s hindquarters in its differences in diet, which minimize competition mouth (Fig.
    [Show full text]
  • Effectiveness of African Protected Areas for the Conservation of Large Mammals
    Carlo Rondinini Effectiveness of African protected areas for the conservation of large mammals Remote Sensing and Conservation, Zological Society of London, 22-23 May 2014 Increase of large mammal extinction risk 1975-2008 Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. Change in large mammal extinction risk 1975-2008 From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Ader's duiker (Cephalophus adersi) NT (1975) → CR (2008) Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Ader's duiker (Cephalophus adersi) Dama gazelle (Nanger dama) NT (1975) → CR (2008) VU (1975) → CR (2008) Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Cons. Biol. doi 10.1111/cobi.12249. African large mammals moving towards extinction Ader's duiker (Cephalophus adersi) Dama gazelle (Nanger dama) NT (1975) → CR (2008) VU (1975) → CR (2008) Caracal (Caracal caracal) LC (1975) → NT (2008) Hirola (Beatragus hunteri) LC (1975) → CR (2008) From Di Marco et al.
    [Show full text]
  • Current Taxonomy and Iversity of Crown Ruminants Above the Species
    Zitteliana B 32 (2014) 5 Current taxonomy and diversity of crown ruminants above the species level Colin Groves School of Archaeology & Anthropology, Australian National University Zitteliana B 32, 5 – 14 Canberra, ACT 0200 Australia München, 31.12.2014 E-mail: [email protected] Manuscript received 17.01.2014; revision accepted 20.10.2014 ISSN 1612 - 4138 Abstract Linnaeus gave us the idea of systematics, with each taxon of lower rank nested inside one of higher rank; Darwin showed that these taxa are the result of evolution; Hennig demonstrated that, if they are to mean anything, all taxa must represent monophyla. He also pro- posed that, to bring objectivity into the system, each taxonomic rank should be characterised by a particular time depth, but this is not easy to bring about: genera such as Drosophila and Eucalyptus have a time-depth comparable to whole orders among mammals! Within restricted groups of organisms, however, time-depths do tend to vary within limits: we will not do too much violence to current usage if we insist that a modern mammal (including ruminant) genus must have a time-depth of about 5 million years, i.e. going back at least to the Miocene-Pliocene boundary, and a modern family must have a time-depth of about 25 million years, i.e. going back to the Oligocene- Miocene boundary. Molecular studies show that living ruminants present examples where the „traditional“ classification (in the main laid down in the mid- 20th-century, and all too often still accepted as standard even today) violates Hennigian principles.
    [Show full text]
  • Scf Pan Sahara Wildlife Survey
    SCF PAN SAHARA WILDLIFE SURVEY PSWS Technical Report 12 SUMMARY OF RESULTS AND ACHIEVEMENTS OF THE PILOT PHASE OF THE PAN SAHARA WILDLIFE SURVEY 2009-2012 November 2012 Dr Tim Wacher & Mr John Newby REPORT TITLE Wacher, T. & Newby, J. 2012. Summary of results and achievements of the Pilot Phase of the Pan Sahara Wildlife Survey 2009-2012. SCF PSWS Technical Report 12. Sahara Conservation Fund. ii + 26 pp. + Annexes. AUTHORS Dr Tim Wacher (SCF/Pan Sahara Wildlife Survey & Zoological Society of London) Mr John Newby (Sahara Conservation Fund) COVER PICTURE New-born dorcas gazelle in the Ouadi Rimé-Ouadi Achim Game Reserve, Chad. Photo credit: Tim Wacher/ZSL. SPONSORS AND PARTNERS Funding and support for the work described in this report was provided by: • His Highness Sheikh Mohammed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi • Emirates Center for Wildlife Propagation (ECWP) • International Fund for Houbara Conservation (IFHC) • Sahara Conservation Fund (SCF) • Zoological Society of London (ZSL) • Ministère de l’Environnement et de la Lutte Contre la Désertification (Niger) • Ministère de l’Environnement et des Ressources Halieutiques (Chad) • Direction de la Chasse, Faune et Aires Protégées (Niger) • Direction des Parcs Nationaux, Réserves de Faune et de la Chasse (Chad) • Direction Générale des Forêts (Tunis) • Projet Antilopes Sahélo-Sahariennes (Niger) ACKNOWLEDGEMENTS The Sahara Conservation Fund sincerely thanks HH Sheikh Mohamed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi, for his interest and generosity in funding the Pan Sahara Wildlife Survey through the Emirates Centre for Wildlife Propagation (ECWP) and the International Fund for Houbara Conservation (IFHC). This project is carried out in association with the Zoological Society of London (ZSL).
    [Show full text]
  • For Review Only 440 IUCN SSC Antelope Specialist Group
    Manuscripts submitted to Journal of Mammalogy A Pliocene hybridisation event reconciles incongruent mitochondrial and nuclear gene trees among spiral-horned antelopes Journal:For Journal Review of Mammalogy Only Manuscript ID Draft Manuscript Type: Feature Article Date Submitted by the Author: n/a Complete List of Authors: Rakotoarivelo, Andrinajoro; University of Venda, Department of Zoology O'Donoghue, Paul; Specialist Wildlife Services, Specialist Wildlife Services Bruford, Michael; Cardiff University, Cardiff School of Biosciences Moodley, Yoshan; University of Venda, Department of Zoology adaptive radiation, interspecific hybridisation, paleoclimate, Sub-Saharan Keywords: Africa, Tragelaphus https://mc.manuscriptcentral.com/jmamm Page 1 of 34 Manuscripts submitted to Journal of Mammalogy 1 Yoshan Moodley, Department of Zoology, University of Venda, 2 [email protected] 3 Interspecific hybridization in Tragelaphus 4 A Pliocene hybridisation event reconciles incongruent mitochondrial and nuclear gene 5 trees among spiral-horned antelopes 6 ANDRINAJORO R. RAKATOARIVELO, PAUL O’DONOGHUE, MICHAEL W. BRUFORD, AND * 7 YOSHAN MOODLEY 8 Department of Zoology, University of Venda, University Road, Thohoyandou 0950, Republic 9 of South Africa (ARR, ForYM) Review Only 10 Specialist Wildlife Services, 102 Bowen Court, St Asaph, LL17 0JE, United Kingdom (PO) 11 Cardiff School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum 12 Avenue, Cardiff, CF10 3AX, United Kingdom (MWB) 13 Natiora Ahy Madagasikara, Lot IIU57K Bis, Ampahibe, Antananarivo 101, Madagascar 14 (ARR) 15 16 1 https://mc.manuscriptcentral.com/jmamm Manuscripts submitted to Journal of Mammalogy Page 2 of 34 17 ABSTRACT 18 The spiral-horned antelopes (Genus Tragelaphus) are among the most phenotypically diverse 19 of all large mammals, and evolved in Africa during an adaptive radiation that began in the late 20 Miocene, around 6 million years ago.
    [Show full text]
  • Slender-Horned Gazelle Gazella Leptoceros Conservation Strategy 2020-2029
    Slender-horned Gazelle Gazella leptoceros Conservation Strategy 2020-2029 Slender-horned Gazelle (Gazella leptoceros) Slender-horned Gazelle (:Conservation Strategy 2020-2029 Gazella leptoceros ) :Conservation Strategy 2020-2029 Conservation Strategy for the Slender-horned Gazelle Conservation Strategy for the Slender-horned Conservation Strategy for the Slender-horned The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of any participating organisation concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organisations. Compiled and edited by David Mallon, Violeta Barrios and Helen Senn Contributors Teresa Abaígar, Abdelkader Benkheira, Roseline Beudels-Jamar, Koen De Smet, Husam Elalqamy, Adam Eyres, Amina Fellous-Djardini, Héla Guidara-Salman, Sander Hofman, Abdelkader Jebali, Ilham Kabouya-Loucif, Maher Mahjoub, Renata Molcanova, Catherine Numa, Marie Petretto, Brigid Randle, Tim Wacher Published by IUCN SSC Antelope Specialist Group and Royal Zoological Society of Scotland, Edinburgh, United Kingdom Copyright ©2020 IUCN SSC Antelope Specialist Group Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Recommended citation IUCN SSC ASG and RZSS. 2020. Slender-horned Gazelle (Gazella leptoceros): Conservation strategy 2020-2029. IUCN SSC Antelope Specialist Group and Royal Zoological Society of Scotland.
    [Show full text]
  • Implications for the Conservation of Key Species in the Udzungwa Mountains, Tanzania
    Genetic Patterns in Forest Antelope Populations: Implications for the Conservation of Key Species in the Udzungwa Mountains, Tanzania Submitted by Andrew Edward Bowkett, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences In September 2012 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. ABSTRACT The field of conservation genetics, in combination with non-invasive sampling, provides a powerful set of tools for investigating the conservation status and natural history of rare species that are otherwise difficult to study. A systematic literature review demonstrated that this is certainly the case for many forest- associated antelope species, which are poorly studied and yet constitute some of the most heavily hunted wildlife in Africa. The aim of the present study was to use non-invasive sampling to investigate genetic patterns in forest antelope populations in the high-biodiversity Udzungwa Mountains, Tanzania, within the context of the conservation of these species and the wider ecosystem. Genetic information was derived from faecal samples collected across the Udzungwa landscape and assigned to five antelope species (N = 618, collected 2006-09). Faecal pellet length was measured for a subset of samples but statistical assignment to species by this method proved unreliable.
    [Show full text]
  • Gazella Leptoceros
    Gazella leptoceros Tassili N’Ajjer : Erg Tihodaïne. Algeria. © François Lecouat Pierre Devillers, Roseline C. Beudels-Jamar, , René-Marie Lafontaine and Jean Devillers-Terschuren Institut royal des Sciences naturelles de Belgique 71 Diagram of horns of Rhime (a) and Admi (b). Pease, 1896. The Antelopes of Eastern Algeria. Zoological Society. 72 Gazella leptoceros 1. TAXONOMY AND NOMENCLATURE 1.1. Taxonomy. Gazella leptoceros belongs to the tribe Antilopini, sub-family Antilopinae, family Bovidae, which comprises about twenty species in genera Gazella , Antilope , Procapra , Antidorcas , Litocranius , and Ammodorcas (O’Reagan, 1984; Corbet and Hill, 1986; Groves, 1988). Genus Gazella comprises one extinct species, and from 10 to 15 surviving species, usually divided into three sub-genera, Nanger , Gazella, and Trachelocele (Corbet, 1978; O’Reagan, 1984; Corbet and Hill, 1986; Groves, 1988). Gazella leptoceros is either included in the sub-genus Gazella (Groves, 1969; O’Reagan, 1984), or considered as forming, along with the Asian gazelle Gazella subgutturosa , the sub-genus Trachelocele (Groves, 1988). The Gazella leptoceros. Sidi Toui National Parks. Tunisia. species comprises two sub-species, Gazella leptoceros leptoceros of © Renata Molcanova the Western Desert of Lower Egypt and northeastern Libya, and Gazella leptoceros loderi of the western and middle Sahara. These two forms seem geographically isolated from each other and ecologically distinct, so that they must, from a conservation biology point of view, be treated separately. 1.2. Nomenclature. 1.2.1. Scientific name. Gazella leptoceros (Cuvier, 1842) Gazella leptoceros leptoceros (Cuvier, 1842) Gazella leptoceros loderi (Thomas, 1894) 1.2.2. Synonyms. Antilope leptoceros, Leptoceros abuharab, Leptoceros cuvieri, Gazella loderi, Gazella subgutturosa loderi, Gazella dorcas, var.
    [Show full text]
  • Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
    Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer
    [Show full text]
  • Gazella Dorcas) Using Distance Sampling in Southern Sinai, EGYPT
    DEVELOPING AND ASSESSING A POPULATION MONITORING PROGRAM FOR DORCAS GAZELLE (GAZELLA DORCAS) USING DISTANCE SAMPLING IN SOUTHERN SINAI, EGYPT Husam E. M. El Alqamy A Thesis Submitted for the Degree of MPhil at the University of St Andrews 2003 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/5912 This item is protected by original copyright Developing and Assessing a Population Monitoring Program for Dorcas Gazelle (Gazella dorcas) Using Distance Sampling in Southern Sinai, EGYPT Husam E. M. El Alqamy Thesis submitted for the degree of MASTER OF PHILOSOPHY In the School of Biology Division of Environmental & Evolutionary Biology UNIVERSITY OF ST. ANDREWS August 2002 i Abstract ...................................................................................................... i Chapter 1 ................................................................................................... 1 Introduction .............................................................................................. 1 1.1 Conservation Legislation in Egypt: A Background..................... 1 1.2 General Ecology of St. Katherine Protectorate ........................... 1 1.3 Aims of Present Work .................................................................... 2 1.4 Identification and Description of Dorcas Gazelle ........................ 3 1.5 Taxonomic Status of Gazelles in Sinai .........................................
    [Show full text]
  • The Effect of Livestock on Wild Herbivores in a Savanna Rangeland (Maasai Mara, Kenya) Summary
    Louise Vang Sørensen Supervisors: Jens-Christian Svenning and Robert Buitenwerf The Effect of Livestock on Wild Herbivores in a Savanna Rangeland (Maasai Mara, Kenya) Summary Background Savannas cover around ~25% of the land surface of the world, though found most extensively on the African continent. Today savanna ecosystems are under great pressure due to climate change, land degradation, and increasing human and livestock populations. Wildlife populations have decreased on average by 68% from 1977 to 2016, whereas the livestock population have increased across Kenya. As livestock population are increasing, so are the potential for wildlife-livestock interactions. The nature of the interaction between wildlife herbivores and domestic herbivores is still of debate, but it is essential to understand the interactions, to be able to conserve both wildlife and the pastoral lifestyle. Domestic and wild herbivores often utilize the same resources, which can lead to either a negative (competition) or a positive interaction (facilitation). Competition can have great negative consequences for tourism, as tourism in Kenya is largely based on wildlife viewing. Finding a way for livestock and wildlife to co-exist is essential to conserve both the pastoral lifestyle, tourism and wildlife. Louise Vang Sørensen Supervisors: Jens-Christian Svenning and Robert Buitenwerf Aim of the study To investigate how rotational grazing of livestock affect wildlife herbivores grazing patterns in Mara North Conservancy. The study looks at the following four hypotheses: 1. Wild herbivores have greater densities in areas without livestock grazing. 2. Grazers avoid areas with livestock grazing more than browsers and mixed feeders. 3. Species that prefer short grass decrease in density according to increase in time since livestock grazing.
    [Show full text]