5045.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

5045.Full.Pdf IFN Consensus Sequence Binding Protein (Icsbp) Is Critical for Eosinophil Development This information is current as Maja Milanovic, Grzegorz Terszowski, Daniela Struck, of September 28, 2021. Oliver Liesenfeld and Dirk Carstanjen J Immunol 2008; 181:5045-5053; ; doi: 10.4049/jimmunol.181.7.5045 http://www.jimmunol.org/content/181/7/5045 Downloaded from References This article cites 47 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/181/7/5045.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IFN Consensus Sequence Binding Protein (Icsbp) Is Critical for Eosinophil Development1 Maja Milanovic,2* Grzegorz Terszowski,2† Daniela Struck,2‡ Oliver Liesenfeld,‡ and Dirk Carstanjen3* IFN consensus sequence binding protein (Icsbp) (IFN response factor-8) is a hematopoietic transcription factor with dual functions in myelopoiesis and immunity. In this study, we report a novel role of Icsbp in regulating the development of eosinophils. Loss of Icsbp in mice leads to a reduction of eosinophils in different tissues. During parasite infection with the nematode Nippostrongylus brasiliensis, Icsbp-deficient mice fail to mount eosinophilia despite a vigorous IL-5 response. Numbers of phenotypically defined eosinophil progenitors are decreased and those progenitors have, on a per-cell basis, reduced eosinophil differentiation potential. The transcription factor Gata1, crucial for eosinophil development, is reduced expressed in committed eosinophil progenitors in wells as mature eosinophils. These findings identify Icsbp as a novel transcription factor critical for the development of the Downloaded from eosinophil lineage. The Journal of Immunology, 2008, 181: 5045–5053. osinophils, synonymous to eosinophil granulocytes, ac- Icsbp and Irf4 interact with Pu.1, another important hematopoietic count only for a minute fraction of leukocytes (around transcription factor for the development of eosinophils on a spe- E 1–3% in humans and mice) in the peripheral blood. Eo- cific DNA (EICE) sequence (15, 16). sinophils are involved in the immunity against parasite infections Targeted deletion of Icsbp in mice results in an increased sus- http://www.jimmunol.org/ and play a major role in the pathology of diverse allergic diseases ceptibility toward certain viruses (17), intracellular bacteria (18), (1–4). The most common cause of eosinophilia in humans world- and parasites (19). Moreover, loss of Icsbp in mice leads to a wide is helminthic infection. Contrasting the knowledge about eo- myeloproliferative syndrome characterized by accumulation and sinophils in different diseases, little is known about the ontogeny expansion of mature neutrophil granulocytes and myeloid progen- of eosinophils, their precursors and maturation steps and the mo- itor cells at the expense of monocytes and macrophages. This de- lecular control of eosinophil lineage commitment. The recent de- fect has been localized to the committed granulocyte-monocyte- scription of an eosinophil lineage-committed progenitor helps to progenitor (GMP) (20), but the molecular mechanisms underlying further elucidate eosinophil development (5). At the molecular the aberrant myeloid development are not understood today. by guest on September 28, 2021 level, several studies have implicated Gata1 (6, 7), and the C/EBP We noted a reduction of eosinophils in the peripheral blood and family, notably ␣ (8), ␤ (9), and ␧ (10, 11) as critical transcrip- bone marrow in Icsbp-deficient mice. In this study, we provide tional regulators of transcripts encoding typical proteins of the eo- sinophil as well as the formation of mature eosinophils. insight into the cellular and molecular basis for this defect in eo- Icsbp, IFN consensus sequence binding protein,4 synonymous to sinophil numbers. To this end, we have examined the development Irf8 (IFN response factor-8) is an IFN-␥-induced transcription fac- of eosinophils in Icsbp-deficient mice under normal and parasite- tor that regulates IFN responsive genes (12–14). In contrast to infected conditions. We observed that Icsbp is a critical transcrip- most other members of the Irf-family, Icsbp is preferentially ex- tion factor for the regulation of the development of eosinophils pressed in the hematopoietic system. Proteins of the Irf-family under physiological but especially under pathological conditions. bind to the IFN-stimulated response element and control genes Challenged with the parasite Nippostrongylus brasiliensis, Icsbp- harboring this element within their promoters (14). Furthermore, deficient mice fail to develop eosinophilia. This is due to an ab- normal developmental potential of the eosinophil progenitor (EoP) in the absence of Icsbp. *Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie, Berlin, Germany; †De- partment for Immunology, University of Ulm, Ulm, Germany; and ‡Institute for Mi- crobiology and Hygiene, Charite´, Benjamin Franklin University Hospital, Berlin, Germany Materials and Methods Received for publication September 27, 2007. Accepted for publication July 30, 2008. Animals and parasites The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance Icsbp-deficient mice and wild-type littermates (background C57BL/6 and with 18 U.S.C. Section 1734 solely to indicate this fact. C57BL/6 ϫ 129Sv) have been previously described (17). Mice were bred 1 This work was supported by the Deutsche Forschungsgemeinschaft to D.C. (CA and maintained under specific pathogen-free conditions in the Forschung- 306/1–1) and to G.T. (SFB 497). seinrichtung fu¨r Experimentelle Medizin der Charite´, Universitaetsmedizin 2 M.M., G.T., and D.S. have contributed equally to this work. Berlin, Campus Benjamin Franklin. Sex- and age-matched mice were 8 to 3 16 wk of age when used. Each experiment was repeated at least three times Address correspondence and reprint requests to Dr. Dirk Carstanjen, Leibniz-For- unless otherwise indicated. A mouse-adapted strain of N. brasiliensis was schungsinstitut fuer Molekulare Pharmakologie, Krahmer Strasse 6, D-12207 Berlin, Germany. E-mail address: [email protected] maintained and passed in Lewis rats at the Zentrum fu¨r Infektionsfors- chung, Universita¨t Wuerzburg, Wuerzburg, Germany (Dr. Klaus Erb). Fe- 4 Abbreviations used in this paper: Icsbp, IFN consensus sequence binding protein; Irf8, IFN response factor-8; GMP, granulocyte-monocyte-progenitor; EoP, eosinophil ces were collected from stock rats and served as a source of L3 after ␤ ␤ incubation of the fecal slurry. In brief 750 L3 larvae were injected s.c. to progenitor; EP, erythroid progenitor; c, common -chain. establish infection. All animal experiments were approved by the local Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/$2.00 authorities according to the German Federal Animal Protection Act. www.jimmunol.org 5046 Icsbp AND EOSINOPHIL DEVELOPMENT FIGURE 1. Reduced numbers of eosino- phils among bone marrow and peritoneal ex- udate cells in Icsbp-deficient mice. Percent- ages of eosinophils in the bone marrow (A) and eosinophil and neutrophil granulocytes in peritoneal exudates (B) were determined by morphological criteria following May- Gruenwald-Giemsa staining of freshly iso- lated bone marrow or peritoneal exudate cells. Total of 500 cells were analyzed per mouse. Statistical significance of differences between Icsbp ϩ/ϩ (Ⅺ) and Ϫ/Ϫ (f) mice are indicated above the bars (n ϭ 4 untreated and n ϭ 7 thioglycollate). Downloaded from http://www.jimmunol.org/ Histopathology spins were prepared, stained with May-Gruenwald-Giemsa, and differen- tially counted. Lavage cells were harvested, plastic adherent cells were Mice were anesthetized with isofluorane inhalation and bled by cardiac depleted, and remaining cells were stained with FITC-labeled F4/80 (Se- puncture at 13 days after infection. Their small intestines were fixed in a rotec), PE-labeled CCR3 (R&D Systems), and allophycocyanin-labeled solution containing 10% formalin, 70% ethanol, and 5% acetic acid. Sec- CD11b (clone M1/70, BD Biosciences) conjugated Abs. Cells were sorted tions of small intestines were stained with H&E. Numbers of goblet cells on a MoFlow Cytometer (Cytomation) and eosinophils were isolated. Sample in the small intestine were determined microscopically in two randomly cytospins of sorted cells were prepared and stained with May-Gruenwald- chosen areas of two villi in at least three mice per experimental group. Giemsa. For induction of apoptosis, purified eosinophils were plated in IMDM (PAA) supplemented with 10% FCS (Biochrom),
Recommended publications
  • The Role of PU.1 and GATA-1 Transcription Factors During Normal and Leukemogenic Hematopoiesis
    Leukemia (2010) 24, 1249–1257 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 www.nature.com/leu REVIEW The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis P Burda1, P Laslo2 and T Stopka1,3 1Department of Pathophysiology and Center of Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic; 2Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leads, St James’s University Hospital, Leeds, UK and 31st Department of Medicine-Hematology, General University Hospital, Prague, Czech Republic Hematopoiesis is coordinated by a complex regulatory network Additional domains include an N-terminal acidic domain and a of transcription factors and among them PU.1 (Spi1, Sfpi1) glutamine-rich domain, both involved in transcriptional activa- represents a key molecule. This review summarizes the tion, as well as a PEST domain involved in protein–protein indispensable requirement of PU.1 during hematopoietic cell fate decisions and how the function of PU.1 can be modulated interactions. PU.1 protein can be modified post-translationally by protein–protein interactions with additional factors. The by phosporylation at serines 41 (N-terminal acidic domain) and mutual negative regulation between PU.1 and GATA-1 is 142 and 148 (PEST domain), which results in augmented detailed within the context of normal and leukemogenic activity. hematopoiesis and the concept of ‘differentiation therapy’ to The PU.1 protein can physically interact with a variety of restore normal cellular differentiation of leukemic cells is regulatory factors including (i) general transcription factors discussed. Leukemia (2010) 24, 1249–1257; doi:10.1038/leu.2010.104; (TFIID, TBP), (ii) early hematopoietic transcription factors published online 3 June 2010 (GATA-2 and Runx-1), (iii) erythroid factor (GATA-1) and (iv) Keywords: PU.1; leukemia differentiation; GATA-1; chromatin; non-erythroid factors (C/EBPa, C/EBPb, IRF4/8 and c-Jun).
    [Show full text]
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic
    [Show full text]
  • Transcriptome Analysis of Gravitational Effects on Mouse Skeletal Muscles Under Microgravity and Artificial 1 G Onboard Environm
    www.nature.com/scientificreports OPEN Transcriptome analysis of gravitational efects on mouse skeletal muscles under microgravity and artifcial 1 g onboard environment Risa Okada1,2, Shin‑ichiro Fujita3,4, Riku Suzuki5,6, Takuto Hayashi3,5, Hirona Tsubouchi5, Chihiro Kato5,7, Shunya Sadaki5, Maho Kanai5,6, Sayaka Fuseya3,5, Yuri Inoue3,5, Hyojung Jeon5, Michito Hamada5, Akihiro Kuno5,6, Akiko Ishii8, Akira Tamaoka8, Jun Tanihata9, Naoki Ito10, Dai Shiba1,2, Masaki Shirakawa1,2, Masafumi Muratani1,4, Takashi Kudo1,5* & Satoru Takahashi1,5* Spacefight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artifcial earth‑gravity (artifcial 1 g; AG) and microgravity (μg; MG), to investigate whether artifcial 1 g exposure prevents muscle atrophy at the molecular level. Our main fndings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fber type composition but also in the alteration of gene expression profles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy‑related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms. Gravity is the most constant factor afecting the entire process of evolution of organisms on Earth. As adapting to a changing environment is key for any organism’s survival, the constant mechanical stimulus of gravitational force has been shared by all organisms on Earth through evolution 1.
    [Show full text]
  • GATA2 Regulates the Erythropoietin Receptor in T(12;21) ALL
    GATA2 regulates the erythropoietin receptor in t(12;21) ALL Gaine, M. E., Sharpe, D. J., Smith, J. S., Colyer, H., Hodges, V. M., Lappin, T. R., & Mills, K. I. (2017). GATA2 regulates the erythropoietin receptor in t(12;21) ALL. Oncotarget, 8(39), 66061-66074. https://doi.org/10.18632/oncotarget.19792 Published in: Oncotarget Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 The Authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:04. Oct. 2021 www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 39), pp: 66061-66074 Research Paper GATA2 regulates the erythropoietin receptor in t(12;21) ALL Marie E.
    [Show full text]
  • Expression of Wilms Tumor 1 Gene Distinguishes Vascular Malformations from Proliferative Endothelial Lesions
    OBSERVATION Expression of Wilms Tumor 1 Gene Distinguishes Vascular Malformations From Proliferative Endothelial Lesions Leslie P. Lawley, MD; Francesca Cerimele, MD, PhD; Sharon W. Weiss, MD; Paula North, MD; Cynthia Cohen, MD; Harry P. W. Kozakewich, MD; John B. Mulliken, MD; Jack L. Arbiser, MD, PhD Background: Vascular malformations and hemangio- Observations: The biochemical differences between mas, which are endothelial lesions of childhood, may re- hemangiomas, which involute, and vascular malforma- sult in considerable morbidity because they can cause dis- tions, which do not involute, are not well understood. comfort and functional impairment and have a negative We found that the transcription factor encoded by the affect on the patient’s appearance. Although vascular mal- Wilms tumor 1 (WT1) gene is expressed in the endothe- formations may initially appear very similar to heman- lium of hemangiomas but not in vascular malforma- giomas, they have distinct clinical courses. Infantile hem- tions. angiomas progress through 3 stages: proliferative, involuting, and involuted. The proliferative phase is char- Conclusions: Defects in WT1 signaling may underlie the acterized by clinical growth. Once hemangiomas reach inability of malformation endothelial cells to undergo their maximum size, they begin to regress or involute. physiologic apoptosis and remodeling. The availability Histologically, this stage is characterized by endothelial of WT1 staining in hospital laboratories may allow the apoptosis. Finally, the involuted stage of the heman- clinician to distinguish hemangiomas from vascular mal- gioma occurs when the original lesion is replaced by a formations and thus to give appropriate therapy to the connective tissue remnant. In contrast to hemangio- patient. mas, vascular malformations do not involute but con- tinue to enlarge as the patient grows.
    [Show full text]
  • Letters to the Editor
    LETTERS TO THE EDITOR The significant upregulation of Gata1 and EpoR mRNA Mice over-expressing human erythropoietin expression in hEPO over-expressing tg6 mice was con - indicate that erythropoietin enhances expression firmed by analyzing the spleen as a major source of of its receptor via up-regulated Gata1 and Tal1 hematopoiesis (Figure 2A and B). To further dissect the complexity of changes in the transcriptional network, the analysis of Myb mRNA expression served as marker for The development of medullary hematopoiesis is char - adult definitive erythroblasts, 10 showing significantly acterized by a specific expression profile of hematopoiet - ic transcription factors, including GATA transcription fac - tors. At mid-gestation, when hematopoiesis is newly A GATA 1 2 established in the bone marrow of human fetuses, initial - wt ly high GATA2 expression becomes subsequently down- regulated, while GATA1 expression increases in parallel. 1 1.5 Both transcription factors bind to overlapping sets of tg6 hematopoietic downstream target genes, often at distinct 1 sites, to regulate the balance between proliferation and differentiation. Chromatin occupancy by GATA1 and 0.5 GATA2 can change in the course of hematopoietic differ - entiation, leading to the so-called GATA switch. 2 Thus, a 0 n d7 d21 d49 i spatio-temporal regulation of GATA1 or GATA2 activities t c is required within lineage-specific differentiation. During a - erythroid differentiation GATA1 expression peaks at the b B GATA 2 3 o level of colony-forming units (CFU-E), where erythro - t 2 e poietin (Epo) exerts most specifically its effects, but v i t blocks terminal maturation if constitutively over- a 1.5 l 4 e expressed.
    [Show full text]
  • Epigenetic Services Citations
    Active Motif Epigenetic Services Publications The papers below contain data generated by Active Motif’s Epigenetic Services team. To learn more about our services, please give us a call or visit us at www.activemotif.com/services. Technique Target Journal Year Reference Justin C. Boucher et al. CD28 Costimulatory Domain- ATAC-Seq, Cancer Immunol. Targeted Mutations Enhance Chimeric Antigen Receptor — 2021 RNA-Seq Res. T-cell Function. Cancer Immunol. Res. doi: 10.1158/2326- 6066.CIR-20-0253. Satvik Mareedu et al. Sarcolipin haploinsufficiency Am. J. Physiol. prevents dystrophic cardiomyopathy in mdx mice. RNA-Seq — Heart Circ. 2021 Am J Physiol Heart Circ Physiol. doi: 10.1152/ Physiol. ajpheart.00601.2020. Gabi Schutzius et al. BET bromodomain inhibitors regulate Nature Chemical ChIP-Seq BRD4 2021 keratinocyte plasticity. Nat. Chem. Biol. doi: 10.1038/ Biology s41589-020-00716-z. Siyun Wang et al. cMET promotes metastasis and ChIP-qPCR FOXO3 J. Cell Physiol. 2021 epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J. Cell Physiol. doi: 10.1002/jcp.30142. Sonia Iyer et al. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of ATAC-Seq — Cancer Discovery 2021 Combination Immunotherapy. Cancer Discov. doi: doi: 10.1158/2159-8290 Vinod Krishna et al. Integration of the Transcriptome and Genome-Wide Landscape of BRD2 and BRD4 Binding BRD2, BRD4, RNA Motifs Identifies Key Superenhancer Genes and Reveals ChIP-Seq J. Immunol. 2021 Pol II the Mechanism of Bet Inhibitor Action in Rheumatoid Arthritis Synovial Fibroblasts. J. Immunol. doi: doi: 10.4049/ jimmunol.2000286. Daniel Haag et al.
    [Show full text]
  • Enhancer of WT1 Gene Is Essential for Its Transcription in Acute Leukemia and Solid Tumor Cell Lines
    Leukemia (2009) 23, 1270–1277 & 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 $32.00 www.nature.com/leu ORIGINAL ARTICLE GATA-1 and GATA-2 binding to 30 enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines A Furuhata1, M Murakami1, H Ito1, S Gao1, K Yoshida1, S Sobue2, R Kikuchi3, T Iwasaki3, A Takagi1, T Kojima1, M Suzuki4, A Abe5, T Naoe5 and T Murate1 1Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan; 2Department of Pathology, College of Life and Health Sciences, Chubu University, Kasugai, Japan; 3Department of Laboratory Medicine, Nagoya University School of Medicine, Nagoya, Japan; 4Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan and 5Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan Although oncogenic functions and the clinical significance of WT1 have been well documented, its gene-expression mecha- Wilms tumor 1 (WT1) have been extensively studied in acute nism remains undetermined. leukemia, the regulatory mechanism of its transcription still 13 remains to be determined. We found a significant correlation In the promoter analysis of WT1 gene, Cohen et al. reported among the amounts of WT1, GATA-1 and GATA-2 mRNAs from the importance of Sp1 for mRNA expression, although the leukemia and solid tumor cell lines. Overexpression and small promoter region may not determine the tissue-specific manner interfering RNA (siRNA) transfection experiments of GATA-1 of WT1 expression.13,14 Regarding this point, the 30 enhancer and GATA-2 showed that these GATA transcription factors located 450 kb downstream of the promoter was identified as could induce WT1 expression.
    [Show full text]
  • The Role of Gata2 in Hematopoietic and Vascular Development By
    The Role of Gata2 in Hematopoietic and Vascular Development by William D Brandt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2009 Doctoral Committee: Professor James Douglas Engel, Chair Professor Eric R Fearon Professor Deborah L Gumucio Associate Professor Thomas M Glaser William D Brandt 2009 Dedication To my family, without whom this PhD would never have been possible. ii Acknowledgements The Engel lab and the University of Michigan will always have my deepest gratitude, particularly the lab’s proprietor and my thesis advisor Doug Engel, whose love of science and good nature has always been a source of inspiration. Doug has been instrumental in my growth as a nascent scientist and I will forever be indebted to him. My gratitude also goes to Kim-Chew Lim and Tomo Hosoya, whose wealth of knowledge and support were relied upon regularly. To Deb Gumucio, Tom Glaser, and Eric Fearon, whose advice and support facilitated my maturation from a naïve student to a proficient scientist – thank you. And to Lori Longeway and Kristin Hug, whose capabilities as department representatives I repeatedly put to the test; you came through for me every time. Thank you. Finally, no amount of words can express how truly grateful and indebted I am to my parents and sister – Cary, Kim, and Jenelle. I would not be in this position today without their unerring love and support. iii Table of Contents Dedication ii Acknowledgements iii List of Figures v List of Tables vi Abstract vii Chapter 1.
    [Show full text]
  • A Germline ERBB3 Variant Is a Candidate for Predisposition to Erythroid MDS/Erythroleukemia
    Letters to the Editor 2242 A germline ERBB3 variant is a candidate for predisposition to erythroid MDS/erythroleukemia Leukemia (2016) 30, 2242–2245; doi:10.1038/leu.2016.173 Supplementary Table S1). This indicates that the ERBB3 variant co- segregates with disease in this large multigenerational pedigree family, with one individual who is non-penetrant at this time. Myelodysplastic syndromes (MDS) and acute myeloid leukemia The ERBB3 gene is a member of the epidermal growth factor (AML) are usually sporadic diseases, however, rare familial cases have receptor tyrosine kinase family that also includes ERBB2/HER2,andis helped to identify human disease genes and provide crucial insight frequently somatically mutated in several types of solid tumor into hematopoiesis. Multiple predisposition genes have been malignancies.9 Ligand binding produces a conformational change identified, including RUNX1, CEBPA, GATA2, ETV6 and DDX41.1 These that results in homo- or heterodimerization with other members of syndromes are characterized by autosomal dominant inheritance the ERBB family, most commonly ERBB2.10 The C-terminal tyrosine- and heterozygous germline mutations. Latency periods preceding rich tail is responsible for recruitment and activation of down- the onset of MDS or other hematologic malignancies are widely stream binding partners.11 The ERBB3 p.A1337T variant is located variable, and appearance of the malignant phenotype is thought at the far C-terminal end of the protein and is conserved across to require additional somatic mutations. In addition to improving most vertebrate species (Figure 1b; Supplementary Figure S1B). The diagnosis and treatment of hematologic malignancies, identification closest known phosphorylation site is at Tyr1328, and the sequence of disease-predisposing mutations has broadened our understand- surrounding this tyrosine is conserved (Supplementary Figure S1C).
    [Show full text]
  • GATA1 Gene GATA Binding Protein 1
    GATA1 gene GATA binding protein 1 Normal Function The GATA1 gene provides instructions for making a protein that attaches (binds) to specific regions of DNA and helps control the activity of many other genes. On the basis of this action, the GATA1 protein is known as a transcription factor. The GATA1 protein is involved in the specialization (differentiation) of immature blood cells. To function properly, these immature cells must differentiate into specific types of mature blood cells. By binding to DNA and interacting with other proteins, the GATA1 protein regulates the growth and division (proliferation) of immature red blood cells and platelet-precursor cells (megakaryocytes) to facilitate their differentiation. Red blood cells help carry oxygen to various tissues throughout the body and platelets aid in blood clotting. The GATA1 protein is also important for the maturation of several types of white blood cells that help fight infection, including eosinophils, mast cells, and dendritic cells. Two versions of the GATA1 protein are produced from the GATA1 gene: a regular length protein and a shorter version called GATA1s. The GATA1s protein lacks a specific region called the transactivation domain. Although the specific function of this region is unclear, researchers believe that it interacts with other proteins to modify GATA1 protein function. Health Conditions Related to Genetic Changes Dyserythropoietic anemia and thrombocytopenia At least eight different mutations in the GATA1 gene have been found to cause dyserythropoietic anemia and thrombocytopenia. Most of these mutations change a single protein building block (amino acid) in the GATA1 protein. GATA1 gene mutations disrupt the protein's ability to bind with DNA or interact with other proteins.
    [Show full text]
  • Gene Expression Profiling of Nfatc1-Knockdown In
    cells Article Gene Expression Profiling of NFATc1-Knockdown in RAW 264.7 Cells: An Alternative Pathway for Macrophage Differentiation Roberta Russo , Selene Mallia, Francesca Zito and Nadia Lampiasi * Institute of Biomedicine and Molecular Immunology “Alberto Monroy”, National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy; [email protected] (R.R.); [email protected] (S.M.); [email protected] (F.Z.) * Correspondence: [email protected]; Tel.: +39-091-680-9513 Received: 13 December 2018; Accepted: 5 February 2019; Published: 7 February 2019 Abstract: NFATc1, which is ubiquitous in many cell types, is the master regulator of osteoclastogenesis. However, the molecular mechanisms by which NFATc1 drives its transcriptional program to produce osteoclasts from macrophages (M) remains poorly understood. We performed quantitative PCR (QPCR) arrays and bioinformatic analyses to discover new direct and indirect NFATc1 targets. The results revealed that NFATc1 significantly modified the expression of 55 genes in untransfected cells and 31 genes after NFATc1-knockdown (≥2). Among them, we focused on 19 common genes that showed changes in the PCR arrays between the two groups of cells. Gene Ontology (GO) demonstrated that genes related to cell differentiation and the development process were significantly (p > 0.05) affected by NFATc1-knockdown. Among all the genes analyzed, we focused on GATA2, which was up-regulated in NFATc1-knockdown cells, while its expression was reduced after NFATc1 rescue. Thus, we suggest GATA2 as a new target of NFATc1. Ingenuity Pathway Analysis (IPA) identified up-regulated GATA2 and the STAT family members as principal nodes involved in cell differentiation.
    [Show full text]