Germline Mutations in Etv6 Result in Autosomal Dominant

Total Page:16

File Type:pdf, Size:1020Kb

Germline Mutations in Etv6 Result in Autosomal Dominant GERMLINE MUTATIONS IN ETV6 RESULT IN AUTOSOMAL DOMINANT THROMBOCYTOPENIA By LEILA J. NOETZLI B.S., University of California San Diego, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Human Medical Genetics and Genomics Program 2017 This thesis for the Doctor of Philosophy degree by Leila J. Noetzli has been approved for the Human Medical Genetics and Genomics Program by Robert Sclafani, Chair Jorge Di Paola, Advisor Jay Hesselberth Richard Spritz Rytis Prekeris Date: May 19, 2017 ii Noetzli, Leila J. (Ph.D., Human Medical Genetics and Genomics) Germline mutations in ETV6 result in autosomal dominant thrombocytopenia Thesis directed by Associate Professor Jorge Di Paola ABSTRACT Whole exome sequencing on a family with autosomal dominant thrombocytopenia and two occurrences of acute lymphoblastic leukemia (ALL) of unknown cause identified a heterozygous single nucleotide change in the gene ETV6, encoding a p.Pro214Leu amino acid substitution. We screened families with the same phenotype and found mutations in ETV6 in two additional families: one with the identical p.Pro214Leu mutation and one with a p.Arg418Gly substitution. ETV6 is a transcriptional repressor that functions through self-oligomerization and is essential for hematopoietic stem cell proliferation and platelet production in mice. Our report was among the first to describe pathogenic germline mutations in ETV6. Functional characterization of the corresponding ETV6 protein mutations showed aberrant cytoplasmic localization, impaired transcriptional repression, and delayed megakaryocyte maturation. Furthermore, we found that mutant ETV6 protein oligomerizes with WT ETV6 and sequesters it from the nucleus suggesting a dominant negative mechanism. Platelet transcriptome analysis of patients with the p.P214L mutation revealed significant differential expression of 189 transcripts between patients and controls. Downregulated transcripts in patients with the P214L mutation were significantly enriched in transcripts encoding extracellular matrix and cytoskeletal proteins. Interestingly, maintenance of the extracellular matrix is essential for megakaryocyte migration in the bone marrow and plays a role in cancer iii progression. Furthermore, microtubule and cytoskeletal organization are essential for platelet production. Mouse models of Etv6 disruption, including one expressing the human P214L mutation, exhibit thrombocytopenia and defects in megakaryocyte maturation, similar to humans. My thesis project describes germline mutations in ETV6 that are associated with megakaryocyte differentiation and platelet production as well as ALL predisposition. The form and content of this abstract are approved. I recommend its publication. Approved: Jorge Di Paola iv DEDICATION My dissertation is dedicated to my dog, Cali, who has been my constant companion throughout graduate school and who patiently watched me write this thesis. v ACKNOWLEDGEMENTS This work would not have been possible without the contributions from individuals at multiple institutions. These people include, but are not limited to, Walter Kahr and Richard Lo from The Hospital for Sick Kids in Toronto, Michael Callaghan and Madhvi Rajpurkar from Children’s Hospital Michigan, Ken Jones and Katherine Gowan from the University of Colorado Anschutz Medical Campus, Andrew Weyrich and Jesse Rowley from the University of Utah, and Anna Savoia from the University of Trieste. I would like to thank members of the Di Paola lab, my committee, and the students and faculty in the Human Medical Genetics and Genomics Program for their support and expertise. Finally, I sincerely acknowledge Dr. Jorge Di Paola, my PhD advisor, for his mentorship and guidance and for providing me with countless opportunities for intellectual and professional growth. vi TABLE OF CONTENTS CHAPTER I. HEMATOPOIESIS, MEGAKARYOPOIESIS, AND THROMBOPOIESIS ..... 1 Hematopoiesis and Megakaryopoiesis ................................................. 1 Megakaryocyte Maturation and Thrombopoiesis .................................. 7 ETS Transcription Factors .................................................................. 14 ETV6 .................................................................................................. 16 II. HETEROZYGOUS GERMLINE MUTATIONS IN ETV6 ARE ASSOCIATED WITH THROMBOCYTOPENIA, HIGH MEAN CORPUSCULAR VOLUME OF RED BLOOD CELLS, AND PREDISPOSITION TO ACUTE LYMPHOBLASTIC LEUKEMIA ..................................................................... 24 Introduction ......................................................................................... 24 Methods .............................................................................................. 26 Patient Tissue Acquisition ............................................................ 26 Exome Sequencing ...................................................................... 27 Bioinformatics of Exome Sequencing .......................................... 27 Plasmids and Mutagenesis .......................................................... 28 Luciferase Reporter Assays ......................................................... 29 Immuno Pull Down Assay ............................................................ 29 Lentivirus CD34+ Cell Transduction ............................................. 30 vii Immunofluorescence and Confocal Microscopy ........................... 30 Transmission Electron Microscopy and Immunoblots .................. 31 RNA Sequencing (Bone Marrow) ................................................. 32 Bioinformatics of RNA Sequencing .............................................. 32 Results ............................................................................................... 33 Phenotypic Characterization of the Families ................................ 33 Whole Exome Sequencing and Identification of ETV6 Mutations 37 Germline Mutations in ETV6 Impair Transcriptional Repression .. 42 Germline Mutations in ETV6 do not Alter Oligomerization in vitro 44 Germline Mutations in ETV6 Alter Cellular Localization in vitro ... 46 Germline Mutations in ETV6 Affect Megakaryocyte Maturation in vitro .............................................................................................. 52 Leukemia Sample Shows Second Hit Translocations Associated with Leukemia .............................................................................. 56 Discussion .......................................................................................... 58 Function of the P214L and R418G Mutations .............................. 59 Analysis of Leukemia Mutations ................................................... 61 Analysis of Germline Mutations in ETV6 ...................................... 62 III. TRANSCRIPTIONAL CHANGES IN PATIENTS WITH ETV6-P214L MUTATION ................................................................................................... 71 viii Introduction ......................................................................................... 71 Methods .............................................................................................. 73 DAVID, Gene Ontology, and Gene Set Enrichment Analysis ....... 74 Hierarchical Clustering ................................................................. 74 Comparison of Chip Data to our Transcriptome Data .................. 75 Expression of ETV6 in K562 Cells ............................................... 75 Flow Cytometry of K562 Cells ...................................................... 76 Results ............................................................................................... 76 Hierarchical Clustering Shows Distinct Clusters between Patients and Controls ................................................................................. 76 Analysis of Significantly Different Transcripts .............................. 78 ETV6 Predicted Targets ............................................................... 81 Comparison of P214L Modulated Transcripts with ChIP Seq Data ..................................................................................................... 84 Interesting Differentially Expressed Genes .................................. 89 Expression of ETV6 in K562 Cells ............................................... 90 Discussion .......................................................................................... 93 Hierarchical Clustering ................................................................. 93 Extracellular Matrix and Cell Adhesion Transcripts ...................... 94 Microtubule and Cytoskeleton Transcripts ................................... 95 ix Platelet and Erythrocyte Transcripts ............................................ 97 Combinatorial Action with Other Transcription Factors ................ 99 Interesting Differentially Expressed Genes ................................ 100 IV. MOUSE MODELS OF ETV6 DISRUPTION ........................................... 104 Introduction ....................................................................................... 104 Methods ............................................................................................ 107 Generation of Mouse Models ..................................................... 107 Genotyping of Mouse Models .................................................... 107 Complete Blood Counts and Flow Cytometry of Peripheral Blood ..................................................................................................
Recommended publications
  • The Role of PU.1 and GATA-1 Transcription Factors During Normal and Leukemogenic Hematopoiesis
    Leukemia (2010) 24, 1249–1257 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 www.nature.com/leu REVIEW The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis P Burda1, P Laslo2 and T Stopka1,3 1Department of Pathophysiology and Center of Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czech Republic; 2Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leads, St James’s University Hospital, Leeds, UK and 31st Department of Medicine-Hematology, General University Hospital, Prague, Czech Republic Hematopoiesis is coordinated by a complex regulatory network Additional domains include an N-terminal acidic domain and a of transcription factors and among them PU.1 (Spi1, Sfpi1) glutamine-rich domain, both involved in transcriptional activa- represents a key molecule. This review summarizes the tion, as well as a PEST domain involved in protein–protein indispensable requirement of PU.1 during hematopoietic cell fate decisions and how the function of PU.1 can be modulated interactions. PU.1 protein can be modified post-translationally by protein–protein interactions with additional factors. The by phosporylation at serines 41 (N-terminal acidic domain) and mutual negative regulation between PU.1 and GATA-1 is 142 and 148 (PEST domain), which results in augmented detailed within the context of normal and leukemogenic activity. hematopoiesis and the concept of ‘differentiation therapy’ to The PU.1 protein can physically interact with a variety of restore normal cellular differentiation of leukemic cells is regulatory factors including (i) general transcription factors discussed. Leukemia (2010) 24, 1249–1257; doi:10.1038/leu.2010.104; (TFIID, TBP), (ii) early hematopoietic transcription factors published online 3 June 2010 (GATA-2 and Runx-1), (iii) erythroid factor (GATA-1) and (iv) Keywords: PU.1; leukemia differentiation; GATA-1; chromatin; non-erythroid factors (C/EBPa, C/EBPb, IRF4/8 and c-Jun).
    [Show full text]
  • 2017.08.28 Anne Barry-Reidy Thesis Final.Pdf
    REGULATION OF BOVINE β-DEFENSIN EXPRESSION THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF DUBLIN FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 2017 ANNE BARRY-REIDY SCHOOL OF BIOCHEMISTRY & IMMUNOLOGY TRINITY COLLEGE DUBLIN SUPERVISORS: PROF. CLIONA O’FARRELLY & DR. KIERAN MEADE TABLE OF CONTENTS DECLARATION ................................................................................................................................. vii ACKNOWLEDGEMENTS ................................................................................................................... viii ABBREVIATIONS ................................................................................................................................ix LIST OF FIGURES............................................................................................................................. xiii LIST OF TABLES .............................................................................................................................. xvii ABSTRACT ........................................................................................................................................xix Chapter 1 Introduction ........................................................................................................ 1 1.1 Antimicrobial/Host-defence peptides ..................................................................... 1 1.2 Defensins................................................................................................................. 1 1.3 β-defensins .............................................................................................................
    [Show full text]
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • Human Periprostatic Adipose Tissue: Secretome from Patients With
    CANCER GENOMICS & PROTEOMICS 16 : 29-58 (2019) doi:10.21873/cgp.20110 Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia PAULA ALEJANDRA SACCA 1, OSVALDO NÉSTOR MAZZA 2, CARLOS SCORTICATI 2, GONZALO VITAGLIANO 3, GABRIEL CASAS 4 and JUAN CARLOS CALVO 1,5 1Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; 2Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital “José de San Martín”, Buenos Aires, Argentina; 3Department of Urology, Deutsches Hospital, Buenos Aires, Argentina; 4Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina; 5Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina Abstract. Background/Aim: Periprostatic adipose tissue Prostate cancer (PCa) is the second most common cancer in (PPAT) directs tumour behaviour. Microenvironment secretome men worldwide. While most men have indolent disease, provides information related to its biology. This study was which can be treated properly, the problem consists in performed to identify secreted proteins by PPAT, from both reliably distinguishing between indolent and aggressive prostate cancer and benign prostate hyperplasia (BPH) disease. Evidence shows that the microenvironment affects patients. Patients and Methods: Liquid chromatography-mass tumour behavior. spectrometry-based proteomic analysis was performed in Adipose tissue microenvironment is now known to direct PPAT-conditioned media (CM) from patients with prostate tumour growth, invasion and metastases (1, 2). Adipose cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or tissue is adjacent to the prostate gland and the site of benign disease (CM-BPH). Results: The highest number and invasion of PCa.
    [Show full text]
  • 5045.Full.Pdf
    IFN Consensus Sequence Binding Protein (Icsbp) Is Critical for Eosinophil Development This information is current as Maja Milanovic, Grzegorz Terszowski, Daniela Struck, of September 28, 2021. Oliver Liesenfeld and Dirk Carstanjen J Immunol 2008; 181:5045-5053; ; doi: 10.4049/jimmunol.181.7.5045 http://www.jimmunol.org/content/181/7/5045 Downloaded from References This article cites 47 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/181/7/5045.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IFN Consensus Sequence Binding Protein (Icsbp) Is Critical for Eosinophil Development1 Maja Milanovic,2* Grzegorz Terszowski,2† Daniela Struck,2‡ Oliver Liesenfeld,‡ and Dirk Carstanjen3* IFN consensus sequence binding protein (Icsbp) (IFN response factor-8) is a hematopoietic transcription factor with dual functions in myelopoiesis and immunity.
    [Show full text]
  • Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
    International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes.
    [Show full text]
  • Transcriptome Analysis of Gravitational Effects on Mouse Skeletal Muscles Under Microgravity and Artificial 1 G Onboard Environm
    www.nature.com/scientificreports OPEN Transcriptome analysis of gravitational efects on mouse skeletal muscles under microgravity and artifcial 1 g onboard environment Risa Okada1,2, Shin‑ichiro Fujita3,4, Riku Suzuki5,6, Takuto Hayashi3,5, Hirona Tsubouchi5, Chihiro Kato5,7, Shunya Sadaki5, Maho Kanai5,6, Sayaka Fuseya3,5, Yuri Inoue3,5, Hyojung Jeon5, Michito Hamada5, Akihiro Kuno5,6, Akiko Ishii8, Akira Tamaoka8, Jun Tanihata9, Naoki Ito10, Dai Shiba1,2, Masaki Shirakawa1,2, Masafumi Muratani1,4, Takashi Kudo1,5* & Satoru Takahashi1,5* Spacefight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artifcial earth‑gravity (artifcial 1 g; AG) and microgravity (μg; MG), to investigate whether artifcial 1 g exposure prevents muscle atrophy at the molecular level. Our main fndings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fber type composition but also in the alteration of gene expression profles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy‑related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms. Gravity is the most constant factor afecting the entire process of evolution of organisms on Earth. As adapting to a changing environment is key for any organism’s survival, the constant mechanical stimulus of gravitational force has been shared by all organisms on Earth through evolution 1.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Hsa-Mir-125B-2 Is Highly Expressed in Childhood ETV6&Sol;RUNX1
    Leukemia (2010) 24, 89–96 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53 N Gefen1,2,8, V Binder1,3,8, M Zaliova4, Y Linka3, M Morrow6, A Novosel3, L Edry5, L Hertzberg1,2,7, N Shomron5, O Williams6, J Trka4, A Borkhardt3 and S Izraeli1,2 1Section of Functional Genomics and Leukemia Research, Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel-Hashomer, Israel; 2Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 3Department of Pediatric Hematology, Oncology and Immunology, Heinrich Heine University, Duesseldorf, Germany; 4Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Childhood Leukemia Investigation Prague, Prague, Czech Republic; 5Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 6Institute of Child Health, University College London, London, UK and 7Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel MicroRNAs (miRNAs) regulate the expression of multiple characterized by an intrachromosomal amplification of a small proteins in a dose-dependent manner. We hypothesized that region within the long arm of chr 21 (iAMP21) around the increased expression of miRNAs encoded on chromosome 21 4 (chr 21) contribute to the leukemogenic function of trisomy 21. RUNX1 locus. In contrast to ETV6/RUNX1 and HHD ALL, it is The levels of chr 21 miRNAs were quantified by qRT–PCR in associated with poor prognosis.
    [Show full text]
  • Expression of Wilms Tumor 1 Gene Distinguishes Vascular Malformations from Proliferative Endothelial Lesions
    OBSERVATION Expression of Wilms Tumor 1 Gene Distinguishes Vascular Malformations From Proliferative Endothelial Lesions Leslie P. Lawley, MD; Francesca Cerimele, MD, PhD; Sharon W. Weiss, MD; Paula North, MD; Cynthia Cohen, MD; Harry P. W. Kozakewich, MD; John B. Mulliken, MD; Jack L. Arbiser, MD, PhD Background: Vascular malformations and hemangio- Observations: The biochemical differences between mas, which are endothelial lesions of childhood, may re- hemangiomas, which involute, and vascular malforma- sult in considerable morbidity because they can cause dis- tions, which do not involute, are not well understood. comfort and functional impairment and have a negative We found that the transcription factor encoded by the affect on the patient’s appearance. Although vascular mal- Wilms tumor 1 (WT1) gene is expressed in the endothe- formations may initially appear very similar to heman- lium of hemangiomas but not in vascular malforma- giomas, they have distinct clinical courses. Infantile hem- tions. angiomas progress through 3 stages: proliferative, involuting, and involuted. The proliferative phase is char- Conclusions: Defects in WT1 signaling may underlie the acterized by clinical growth. Once hemangiomas reach inability of malformation endothelial cells to undergo their maximum size, they begin to regress or involute. physiologic apoptosis and remodeling. The availability Histologically, this stage is characterized by endothelial of WT1 staining in hospital laboratories may allow the apoptosis. Finally, the involuted stage of the heman- clinician to distinguish hemangiomas from vascular mal- gioma occurs when the original lesion is replaced by a formations and thus to give appropriate therapy to the connective tissue remnant. In contrast to hemangio- patient. mas, vascular malformations do not involute but con- tinue to enlarge as the patient grows.
    [Show full text]
  • Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer
    cancers Review Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer Nayden G. Naydenov 1, Susana Lechuga 1, Emina H. Huang 2 and Andrei I. Ivanov 1,* 1 Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; [email protected] (N.G.N.); [email protected] (S.L.) 2 Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-445-5620 Simple Summary: Colorectal cancer (CRC) is a deadly disease that may go undiagnosed until it presents at an advanced metastatic stage for which few interventions are available. The develop- ment and metastatic spread of CRC is driven by remodeling of the actin cytoskeleton in cancer cells. Myosins represent a large family of actin motor proteins that play key roles in regulating actin cytoskeleton architecture and dynamics. Different myosins can move and cross-link actin filaments, attach them to the membrane organelles and translocate vesicles along the actin filaments. These diverse activities determine the key roles of myosins in regulating cell proliferation, differ- entiation and motility. Either mutations or the altered expression of different myosins have been well-documented in CRC; however, the roles of these actin motors in colon cancer development remain poorly understood. The present review aims at summarizing the evidence that implicate myosin motors in regulating CRC growth and metastasis and discusses the mechanisms underlying the oncogenic and tumor-suppressing activities of myosins. Abstract: Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide.
    [Show full text]
  • Insights from Conventional and Unconventional Myosins A
    Structure-Function Analysis of Motor Proteins: Insights from Conventional and Unconventional Myosins A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Karl J. Petersen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Margaret A. Titus, Advisor David D. Thomas, Co-Advisor December 2016 © Karl J. Petersen 2016 Acknowledgements This thesis would not exist without the patient support of my advisors, Meg Titus and Dave Thomas. Any shortcomings are my own. Collaborators Holly Goodson, Anne Houdusse, and Gant Luxton also provided invaluable training and support. I am also grateful for essential services provided by departmental staff: Sarah Blakely Anderson, Octavian Cornea, Sarah Dittrich, Karen Hawkinson, Michelle Lewis, Mary Muwahid, Laurie O’Neill, Darlene Toedter, with apologies to others not listed. Thanks to friends and colleagues at the University of Minnesota: Ashley Arthur, Kelly Bower, Brett Colson, Sinziana Cornea, Chi Meng Fong, Greg Gillispie, Piyali Guhathakurta, Tejas Gupte, Tom Hays, Norma Jiménez Ramírez, Dawn Lowe, Allison MacLean, Santiago Martínez Cifuentes, Jared Matzke, Megan McCarthy, Joachim Mueller, Joe Muretta, Kurt Peterson, Mary Porter, Ewa Prochniewicz, Mike Ritt, Cosmo Saunders, Shiv Sivaramakrishnan, Ruth Sommese, Doug Tritschler, Brian Woolums. i Abstract Myosin motor proteins play fundamental roles in a multitude of cellular processes. Myosin generates force on cytoskeletal actin filaments to control cell shape, most dramatically during cytokinesis, and has a conserved role in defining cell polarity. Myosin contracts the actin cytoskeleton, ensuring prompt turnover of cellular adhesion sites, retracting the cell body during migration and development, and contracting muscle among diverse other functions. How myosins work, and why force generation is essential for their function, is in many cases an open question.
    [Show full text]