Moths of North Carolina - Early Draft 1

Total Page:16

File Type:pdf, Size:1020Kb

Moths of North Carolina - Early Draft 1 Erebidae Hypoprepia fucosa Painted Lichen Moth 80 70 n=26 • • • 60 • • • • High Mt. • • •• • 50 • • • N 40 • • •• u 30 • • • • • • m 20 • • • • • b 10 • • 0 • • • e • • • • • • r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 • 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 53 • • Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec • • o 80 • • • f 70 n=106 • = Sighting or Collection 60 • Low Mt. High counts of: • • in NC since 2001 F 50 • = Not seen since 2001 l 40 400 - Stokes - 1996-06-18 • 30 i 174 - Montgomery - 2010-06-11 g 20 10 Status Rank h 141 - Montgomery - 2010-06-10 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 80 80 t 70 n=11170 n=488 e 60 Pd 60 CP s 50 50 40 40 30 30 20 20 10 10 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Erebidae SUBFAMILY: Arctiinae TRIBE: Lithosiini TAXONOMIC_COMMENTS: One of four members of this genus in North America, two of which occur in North Carolina. Some populations of both fucosa and miniata show strong departures in size and coloration from the typical patterns and may represent undescribed species (Wagner, 2005). FIELD GUIDE DESCRIPTIONS: Covell (1984); Beadle and Leckie (2012) ONLINE PHOTOS: MPG, Bugguide, BAMONA TECHNICAL DESCRIPTION, ADULTS: Forbes (1960) TECHNICAL DESCRIPTION, IMMATURE STAGES: Forbes (1960); Wagner (2005) ID COMMENTS: Tricolored, with bands of red, yellow, and slate gray bands on the forewings; the head is also usually yellowish, the thorax red with a central spot of gray, and the abdomen mostly gray; hindwings are usually pale pink with an outward border of gray. Smaller but similar in pattern to H. miniata, which is usually more strongly bicolored with scarlet and gray. Sizes and coloration of both species can vary, however, with some specimens having the tricolored pattern of fucosa as large as typical miniata. Fucosa usually has a narrower gray margin on the hindwings and miniata usually lacks the dark central spot on the thorax; the abdomen of miniata is also usually red (Forbes, 1960). DISTRIBUTION: Occurs statewide FLIGHT COMMENT: Has two distinct flights in the Piedmont and Coastal Plain but only a single, mid-season flight in the Mountains, situated between the two flights in the eastern part of the state HABITAT: Has one of the broadest range of habitats of any moth in the state. It is common to abundant in maritime forests and scrub, Coastal Fringe Sandhills, Longleaf Pine savannas and flatwoods, peatlands, riparian forests, mesic- and dry-to-xeric upland hardwoods. FOOD: Like most Lithosiines, probably feeds on lichens, bark algae, and Cyanobacteria. OBSERVATION_METHODS: Comes abundantly to blacklights but none of our records come from bait NATURAL HERITAGE PROGRAM RANKS: G5 [S5] STATE PROTECTION: Has no legal protection, although permits are required to collect it on state parks and other public lands COMMENTS: This is one of our most abundant and ubiquitous species, occurring in most forested and wooded habitats across the state. It appears to be quite secure. March 2021 The Moths of North Carolina - Early Draft 1.
Recommended publications
  • Volume 12 - Number 1 March 2005
    Utah Lepidopterist Bulletin of the Utah Lepidopterists' Society Volume 12 - Number 1 March 2005 Extreme Southwest Utah Could See Iridescent Greenish-blue Flashes A Little Bit More Frequently by Col. Clyde F. Gillette Battus philenor (blue pipevine swallowtail) flies in the southern two- thirds of Arizona; in the Grand Canyon (especially at such places as Phantom Ranch 8/25 and Indian Gardens 12/38) and at its rims [(N) 23/75 and (S) 21/69]; in the low valleys of Clark Co., Nevada; and infrequently along the Meadow Valley Wash 7/23 which parallels the Utah/Nevada border in Lincoln Co., Nevada. Since this beautiful butterfly occasionally flies to the west, southwest, and south of Utah's southwest corner, one might expect it to turn up now and then in Utah's Mojave Desert physiographic subsection of the Basin and Range province on the lower southwest slopes of the Beaver Dam Mountains, Battus philenor Blue Pipevine Swallowtail Photo courtesy of Randy L. Emmitt www.rlephoto.com or sporadically fly up the "Dixie Corridor" along the lower Virgin River Valley. Even though both of these Lower Sonoran life zone areas reasons why philenor is not a habitual pipevine species.) Arizona's of Utah offer potentially suitable, resident of Utah's Dixie. But I think interesting plant is Aristolochia "nearby" living conditions for Bat. there is basically only one, and that is watsonii (indianroot pipevine), which phi. philenor, such movements have a complete lack of its larval has alternate leaves shaped like a not often taken place. Or, more foodplants in the region.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Volume 7 - Number 1 February 1997
    Utah Lepidopterist Bulletin of the Utah Lepidopterists' Society Volume 7 - Number 1 February 1997 UTAH LEPIDOPTERISTS' SOCIETY HOSTS 43rd MEETING OF THE LEPIDOPTERISTS' SOCIETY PACIFIC SLOPE SECTION Initiated by President John Richards during the January, 1995 U.L.S. Meeting and then orchestrated by member Joel Johnson, the Utah Lepidopterists' Society hosted the 43rd Annual Meeting of the Pacific Slope Section of The Lepidopterists' Society. The successful gathering was held between 19 and 21 July, 1996 at the Great Basin Environmental Education Center in Ephraim Canyon, Sanpete County, Utah. Nestled at an elevation of 8600' in the Manti-La Sal National Forest, the Great Basin Environmental Education Center was originally built as a Forest Service Experimental Station. Today, it is managed by Snow College, which currently oversees the many workshops and seminars held there during the summer months. The forested scenery of the camp for the three-day meeting was breathtaking. Those who attended the meeting had plenty of opportunities to collect both at GBEEC as well as along Skyline Drive-- the popular north-south road traversing the Wasatch Plateau. Some of the species of lepidoptera encountered in the area were C. cephalica, C. barnesi, G. williamsi, G. vermiculata, L. weidemeyeri, S. atlantis, E. anicia, N. menapia, as well as others. Although the preparation for the meeting was handled by Joel, a number of other U.L.S. members participated as well. Tom Spalding and John Richards headed up the welcoming committee and handled registration for the meeting at Snow College on Friday afternoon. Friday night activities included a Turkey barbeque and a "bring-your-own" slide presentation.
    [Show full text]
  • Characteristics of Mixed-Oak Forest Ecosystems in Southern Ohio Prior to the Reintroduction of Fire
    United States Department of Characteristics of Mixed-Oak Agriculture Forest Service Forest Ecosystems in Northeastern Research Station Southern Ohio Prior to the General Technical Reintroduction of Fire Report NE-299 Abstract Mixed-oak forests occupied much of the Unglaciated Allegheny Plateau region of southern Ohio at the onset of Euro-American settlement (ca. 1800). Historically, Native Americans used fire to manage the landscape and fire was frequent throughout the 19th and early 20th centuries during extensive forest harvesting and then re-growth. Today, though mixed-oak forests remain dominant across much of the region, oak regeneration is often poor as other tree species (e.g., maples) are becoming much more abundant. This shift has occurred concurrently with fire suppression policies that began in 1923. A multidisciplinary experiment was initiated in southern Ohio to explore the use of prescribed fire as a tool to improve the sustainability of mixed-oak forests. This report describes the experimental design and study areas, and provides baseline data on ecosystem characteristics prior to prescribed fire treatments. Chapters describe forest history, an integrated moisture index, geology and soils, understory light environments, understory vegetation, tree regeneration, overstory vegetation, foliar nutrient status, arthropods, and breeding birds. The use of trade, firm or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by
    [Show full text]
  • Effects of Bacillus Thuringiensis
    Long Term Evaluation of the Effects of Bacillus thuringiensis kurstaki, Gypsy Moth Nucleopolyhedrosis Virus Product Gypchek®, and Entomophaga maimaiga on Nontarget Organisms in Mixed Broadleaf-Pine Forests in the Central Appalachians John S. Strazanac and Linda Butler Editors Division of Plant and Soil Sciences West Virginia University Morgantown, West Virginia Authors Linda Butler Sandra Raimondo Division of Plant and Soil Sciences United States Environmental West Virginia University Protection Agency Morgantown, WV Gulf Breeze, FL Sandra B. Cederbaum Kenneth E. Rastall Daniel B. Warnell School of Forest Resources Department of Biology University of Georgia Wheeling Jesuit University Athens, GA Wheeling, WV Robert J. Cooper George E. Seidel Daniel B. Warnell School of Forest Resources Davis College of Agriculture, University of Georgia Animal Sciences and Consumer Sciences Athens, GA West Virginia University Morgantown, WV Jennifer A. DeCecco School of Forest Resources John S. Strazanac Pennsylvania State University Division of Plant and Soil Sciences University Park, PA West Virginia University Morgantown, WV George A. Gale The School of Bioresources and Technology William V. Sutton King MongKut's University of Technology Department of Biological Sciences Thonburi, Bangkok, Thailand Marshall University Huntington, WV Ann E. Hajek Department of Entomology Mark B. Watson Cornell University Natural Science and Ithaca, NY Mathematics Department University of Charleston Vicki Kondo Charleston, WV Division of Plant and Soil Sciences West Virginia University Michael M. Wheeler Morgantown, WV Department of Entomology Cornell University Matthew R. Marshall Ithaca, NY School of Forest Resources Pennsylvania State University Alan B. Williams University Park, PA Department of Fisheries and Wildlife Sciences Thomas K. Pauley Virginia Tech Department of Biological Sciences Blacksburg, VA Marshall University Huntington, WV 2 Additional Contributors Terry R.
    [Show full text]
  • RESEARCH ARTICLE Sonar Jamming in the Field: Effectiveness and Behavior of a Unique Prey Defense
    4278 The Journal of Experimental Biology 215, 4278-4287 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.076943 RESEARCH ARTICLE Sonar jamming in the field: effectiveness and behavior of a unique prey defense Aaron J. Corcoran* and William E. Conner Wake Forest University, Department of Biology, Winston-Salem, NC 27106, USA *Author for correspondence ([email protected]) SUMMARY Bats and insects provide a model system for integrating our understanding of predator–prey ecology, animal behavior and neurophysiology. Previous field studies of bat–insect interactions have been limited by the technological challenges involved with studying nocturnal, volant animals that use ultrasound and engage in battles that frequently last a fraction of a second. We overcame these challenges using a robust field methodology that included multiple infrared cameras calibrated for three- dimensional reconstruction of bat and moth flight trajectories and four ultrasonic microphones that provided a spatial component to audio recordings. Our objectives were to document bat–moth interactions in a natural setting and to test the effectiveness of a unique prey defense – sonar jamming. We tested the effect of sonar jamming by comparing the results of interactions between bats and Groteʼs tiger moth, Bertholdia trigona, with their sound-producing organs either intact or ablated. Jamming was highly effective, with bats capturing more than 10 times as many silenced moths as clicking moths. Moths frequently combined their acoustic defense with two separate evasive maneuvers: flying away from the bat and diving. Diving decreased bat capture success for both clicking and silenced moths, while flying away did not. The diving showed a strong directional component, a first for insect defensive maneuvers.
    [Show full text]
  • Common Butterflies and Moths (Order Lepidoptera) in the Wichita Mountains and Surrounding Areas
    Common Butterflies and Moths (Order Lepidoptera) in the Wichita Mountains and Surrounding Areas Angel Chiri Less than 2% of known species in the U.S. have Entomologist approved common names. Relying on only common names for individual species may lead Introduction to confusion, since more than one common name may exist for the same species, or the With over 11,000 species described in the U.S. same name may be used for more than one and Canada, butterflies and moths are among the species. Using the scientific name, which is the most common and familiar insects. With few same in any language or region, eliminates this exceptions, the adults have two pairs of wings problem. Furthermore, only scientific names are covered with minute and easily dislodgeable used in the scientific literature. Common names scales. The mouthparts consist of a long, are not capitalized. flexible, and coiled proboscis that is used to absorb nectar. Butterflies and skippers are All photos in this guide were taken by the author diurnal, while most moths are nocturnal. using a Canon PowerShot SX110 IS camera. The Lepidoptera undergo a full metamorphosis. Family Pieridae (sulfurs and whites) The larva has a well developed head, with opposable mandibles designed for chewing and Pierids are common, mostly medium-sized, six simple eyes arranged in a semicircle, on each yellowish or white butterflies. The cloudless side of the head. The first three segments (the sulphur, Phoebis sennae has greenish-yellow or thorax) each bears a pair of segmented legs that lemon yellow wings with a spot resembling a end in a single claw.
    [Show full text]
  • ARCTIIDAE: LITHOSIINAE) Additional Key Words: Trentepohlia , Cladonia Polycar(Loides, Physcia Millegrana, Algal Partners, Algivory
    Jou rnal of the Lepidopterists' Society 56( 4), 2002, 289--290 NOTES ON THE LARVAL DIET OF THE PAINTED LICHEN MOTH IlYPOPREPIA FUCOSA HUBNER (ARCTIIDAE: LITHOSIINAE) Additional key words: Trentepohlia , Cladonia polycar(loides, Physcia millegrana, algal partners, algivory, It is well known that the caterpillars of the subfam­ the trunks of a red maple (Acer rubrum L ) and a red ily Lithosiinae (Arctiidae), or lichen moths, feed on oak from a suburban yard in East Brunswick, Mid­ lichens, They are suspected of being primarily algi­ dlesex County, New Jersey The caterpillar readily ac­ vores, feeding on algae, either free-living, or as a cepted these food sources and fed on both intermit­ lichen symbiont (T McCabe pers, com" Rawlins tently for the next three days before succumbing to a 1984 and pers, com, ), For most species, even the braconid wasp parasite (D, Wagner pers , com,) , No most basic information on the larval diet is lacking or preference for either lichen was apparent The lichen is poorly documented (N, Jacobson pers, com" P. collected on the red maple was Cladonia polycar­ Opler pers, com" J- Rawlins 1984 and pers, com,), poides N yL and the lichen from the red oak was Reports of food sources for this subfamily consist pri­ Physcia millegrana DegeL Algal partners of C. poly­ marily of generalizations such as "lichens," "algae," carpoides are from the Trebouxia irregularis (Hil­ "mosses," or the plants that the larvae were observed dreth et Ahmadjian) group (T irregularis, T glomer­ on (Tietz 1952, 1972, Forbes 1954, Covell 1984, ata, T pyriformiS, T excentrica, T magna), and for P Rawlins 1984, McCabe 1991, Wagner et al.
    [Show full text]
  • MOTHS of OHIO Field Guide DIVISION of WILDLIFE INTRODUCTION HOW to USE THIS GUIDE Text By: David J
    MOTHS OF OHIO field guide DIVISION OF WILDLIFE INTRODUCTION HOW TO USE THIS GUIDE Text by: David J. Horn Ph.D Scientific Name Common Name Moths are one of the most diverse and plentiful Group and Family Description: Featured Species groups of insects in Ohio, and the world. An esti- Secondary images 1 Primary Image mated 160,000 species have thus far been catalogued Secondary images 2 Occurrence worldwide, and about 13,000 species have been Size: when at rest found in North America north of Mexico. We do not Visual Index Ohio Distribution yet have a clear picture of the total number of moth Current Page species in Ohio, as new species are still added annu- Description: Habitat & Host Plant Credit & Copyright ally, but the number of species is certainly over 3,000. Although not as popular as butterflies, moths are far Compared to many groups of animals, our knowledge of moth distribution is very more numerous than their better known kin. There is incomplete. Many areas of the state have not been thoroughly surveyed and in some at least twenty times the number of species of moths counties hardly any species have been documented. Accordingly, the distribution maps in Ohio as there are butterflies. in this booklet have three levels of shading: 1. heavily-shaded means a species record documented by specimen or photograph and confirmed by the Ohio Lepidop- The world of moths is one of extraordinary terists. 2. Intermediate shading indicates that the moth is almost certainly present beauty, fantastic behavior, and outrageous diversity. and could be found at the right season.
    [Show full text]
  • Volume 2, Chapter 12-15: Terrestrial Insects: Holometabola
    Glime, J. M. 2017. Terrestrial Insects: Holometabola – Lepidoptera: Geometroidea – Noctuoidea. Chapt. 12-15. In: Glime, J. M. 12-15-1 Bryophyte Ecology. Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-15 TERRESTRIAL INSECTS: HOLOMETABOLA – LEPIDOPTERA: GEOMETROIDEA – NOCTUOIDEA TABLE OF CONTENTS GEOMETROIDEA ........................................................................................................................................ 12-15-2 Geometridae – Geometrid Moths (Inch Worms) .................................................................................... 12-15-2 LASIOCAMPOIDEA .................................................................................................................................. 12-15-12 Lasiocampidae – Snout Moths .............................................................................................................. 12-15-12 NOCTUOIDEA............................................................................................................................................ 12-15-12 Arctiidae – Tiger Moths, etc. ................................................................................................................ 12-15-12 Erebidae ................................................................................................................................................ 12-15-13
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    SYSTEMATICS OF THE LICHEN MOTH TRIBE LITHOSIINI (LEPIDOPTERA: EREBIDAE: ARCTIINAE) INCLUDING A REVIEW OF THE GENUS LYCOMORPHA HARRIS By CLARE HILARY SCOTT A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Clare H. Scott 2 To my family whose support throughout this long journey has been invaluable 3 ACKNOWLEDGMENTS This research would not have been possible without the support of numerous people and institutions. I would like to acknowledge the support and advice of my major advisor and committee chair, Dr. Marc Branham, and the other members of my graduate committee, Drs. Rebecca Simmons, Jackie Miller, David Reed, and Christine Miller. I would like to thank Drs. Susan Weller and Jennifer Zaspel for giving me the opportunity to participate in their molecular phylogeny of Arctiinae. Furthermore, I wish to acknowledge the National Science Foundation Award DEB#0919185 for the partial financial support of this research. Without the funding Drs. Weller and Zaspel received, the molecular phylogeny of Lithosiini would not have been completed. In addition, the work of Pablo Chialvo, Taylor Wardwell, and Elizabeth Phillippi on this study was invaluable. Pablo helped to amplify the COI and 28S gene fragments and willingly came into the lab on the weekend and holidays to help with this project. Taylor and Elizabeth helped to amplify the CytB and RpS5 gene fragments. In addition, Taylor dealt with submitting all fragments for sequencing. I would like to acknowledge all of the collections listed in Chapters 2-5 for the material that they provided.
    [Show full text]
  • Moths and Butterflies of the Prairies Ecozone in Canada
    169 Chapter 5 Moths and Butterflies of the Prairies Ecozone in Canada Gregory R. Pohl Natural Resources Canada, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada, T6H 3S5 B. Christian Schmidt Canadian Food Inspection Agency, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, Canada, K1A 0C6 J. Donald Lafontaine and Jean-François Landry Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, Canada, K1A 0C6 Gary G. Anweiler University of Alberta, E.H. Strickland Entomological Museum, Department of Biological Sciences, Edmonton, Alberta, Canada, T6G 2E3 Charles D. Bird P.O. Box 22, Erskine, Alberta, Canada, T0C 1G0 Abstract. The Prairies Ecozone of southern Manitoba, Saskatchewan, and Alberta supports a diverse fauna, with 2,232 species of butterflies and moths (order Lepidoptera) recorded to date in 61 families. By far the best known Lepidoptera are the butterflies, with 177 species known to occur in the ecozone. The species known to occur in the Prairies Ecozone are listed by province. The Lepidoptera fauna of this ecozone is reviewed in terms of diversity, state of knowledge of the major groups, postglacial and relict patterns, recent changes in distribution, and endangered and threatened species. Résumé. L’écozone des prairies du sud du Manitoba, de la Saskatchewan et de l’Alberta abrite une faune diversifiée qui compte 2 232 espèces de papillons diurnes et de nuit (Ordre Lepidoptera) répertoriées à ce jour, représentant 61 familles. L’écozone comprend 177 espèces de papillons diurnes, qui sont beaucoup mieux connus que les papillons de nuit.
    [Show full text]