Resolving Cryptic Species of Bossiella (Corallinales, Rhodophyta) Using Contemporary and Historical DNA 1

Total Page:16

File Type:pdf, Size:1020Kb

Resolving Cryptic Species of Bossiella (Corallinales, Rhodophyta) Using Contemporary and Historical DNA 1 RESEARCH ARTICLE AMERICAN JOURNAL OF BOTANY Resolving cryptic species of Bossiella (Corallinales, Rhodophyta) using contemporary and historical DNA 1 Katharine R. Hind 2,3,6 , Kathy Ann Miller4 , Madeline Young2 , Cassandra Jensen2 , Paul W. Gabrielson 5 , and Patrick T. Martone 2,3 PREMISE OF THE STUDY: Phenotypic plasticity and convergent evolution have long complicated traditional morphological taxonomy. Fortunately, DNA sequences provide an additional basis for comparison, independent of morphology. Most importantly, by obtaining DNA sequences from historical type specimens, we are now able to unequivocally match species names to genetic groups, often with surprising results. METHODS : We used an integrative taxonomic approach to identify and describe Northeast Pacif c pinnately branched species in the red algal coralline genus Bossiella , for which traditional taxonomy recognized only one species, the generitype, Bossiella plumosa. We analyzed DNA sequences from histori- cal type specimens and modern topotype specimens to assign species names and to identify genetic groups that were dif erent and that required new names. Our molecular taxonomic assessment was followed by a detailed morphometric analysis of each species. KEY RESULTS: Our study of B. plumosa revealed seven pinnately branched Bossiella species. Three species, B. frondescens , B. frondifera , and B. plumosa , were assigned names based on sequences from type specimens. The remaining four species, B. hakaiensis , B. manzae , B. reptans , and B. montereyensis , were described as new to science. In most cases, there was signif cant overlap of morphological characteristics among species. CONCLUSIONS: This study underscores the pitfalls of relying upon morpho-anatomy alone to distinguish species and highlights our likely underestimation of species worldwide. Our integrative taxonomic approach can serve as a model for resolving the taxonomy of other plant and algal genera. K E Y W O R D S Bossiella ; COI-5P; coralline algae; Corallina frondescens ; cryptic species; psbA ; rbcL ; integrative taxonomy T e process of species identif cation and description has changed variants of a single species (e.g., Gabrielson et al., 2011 ; Hind et al., dramatically over the last 50 years. Traditionally, taxonomists re- 2014a ), and genetically distinct species sometimes exhibit nearly lied solely on morpho-anatomical criteria to delineate species. identical morphologies (e.g., van der Merwe et al., 2015 ). More re- However, we now know that this approach can be problematic due cently, the incorporation of molecular sequence data, particularly to high levels of intraspecif c variation in morphological characters DNA barcodes (standardized regions of DNA), into taxonomic re- resulting from phenotypic plasticity ( Stewart, 2006 ; Koehl et al., search has achieved more accurate estimates of species diversity 2008 ; Monro and Poore, 2009 ) and convergent morphologies be- and at less cost than traditional morphological methods ( Hebert tween distantly related species due to analogous environmental et al., 2003 , 2004 ; T ompson and Newmaster, 2014 ). A growing pressures ( Johansen, 1981 ; Steneck, 1986 ). For example, morpho- trend in diversity studies is to use integrative approaches ( Padial logically distinct specimens have turned out to ref ect morphological et al., 2010 ), such as molecular-assisted alpha taxonomy (MAAT) ( Saunders, 2005 , 2008 ; Cianciola et al., 2010 ), that combine molec- ular and classic morpho-anatomical data to identify and describe 1 Manuscript received 30 June 2015; revision accepted 29 September 2015. organisms. 2 Department of Botany and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada, V6T 1Z4; Af er species have been delineated, taxonomists are challenged 3 Hakai Institute, Pruth Harbour, Calvert Island, British Columbia, Canada V0P 1H0; with applying names to these species. Naming botanical species is 4 University Herbarium, Silva Center for Phycological Documentation, 1001 Valley Life governed by the International Code of Nomenclature for Algae, Sciences Building #2465, University of California, Berkeley, California 94720 USA; and Fungi and Plants ( McNeill et al., 2012 ) and is based on a “type” 5 Department of Biology and Herbarium, 3280 Coker Hall, University of North Carolina, Chapel Hill, North Carolina 27599 USA system of nomenclature. T is task involves an analysis of the type 6 Author for correspondence (e-mail: [email protected]) specimen, the specimen to which the name is permanently attached doi:10.3732/ajb.1500308 ( McNeill et al., 2012 , Article 7.2), and an exploration of all available AMERICAN JOURNAL OF BOTANY 102 ( 11 ): 1 – 19 , 2015 ; http://www.amjbot.org/ © 2015 Botanical Society of America • 1 2 • A M E R I C A N J O U R N A L O F B O T A N Y species names that might be applied to a genetic group or clade. specimen of Corallina frondescens Postels & Ruprecht showed that Sometimes type specimens are inaccessible, missing, or unavailable this species also belongs in Bossiella. for anatomical investigation and/or DNA extraction. Consequently, Previously, Hind et al. (2014b) reassessed those Bossiella s p e c i e s in place of the type specimen, topotype material (contemporary with dichotomous branching passing under the names B. califor- specimens from the collection site of the type specimen) is of en nica (Decaisne) P.C.Silva and B. orbigniana (Decaisne) P.C.Silva. used as a surrogate, even though type locality information can be Future studies will assess those species with irregular branching, vague and environmental conditions may have changed dramati- falling under the name B. chiloensis (Decaisne) H.W.Johansen. cally since the original collection was made. For example, anthro- pogenic changes in the environment such as f sh-farming or coastal development may increase algal abundance ( Sanderson et al., 2012 ) MATERIALS AND METHODS or decrease algal diversity ( Bates et al., 2009 ). In addition, herbar- ium records from the last 70 years documented signif cant pole- Sample collection — T is work represents a collaborative ef ort ward shif s of seaweed species in Australia ( Wernberg et al., 2011 ). among many laboratories whose goal was to conduct f oristic sur- T us, returning to the original type locality to collect specimens veys of algae along the Northeast (NE) Pacif c coast from Alaska, does not guarantee the presence of the target species. United States through Baja California, Mexico using an integrative Another technique to apply species names to contemporary col- taxonomic approach. Together, we analyzed morphological and se- lections is the use of historical DNA sequencing. Historical DNA quence data for 331 Bossiella specimens, including both contempo- approaches have been used extensively across many taxa including rary and historic collections. Specific collection localities, GPS woolly mammoths ( Hagelberg et al., 1994 ) and algal fossils ( Hughey coordinates, and collector information are listed in Appendix S1 et al., 2008 ). Adoption of these techniques has come with some ap- (see Supplemental Data with the online version of this article). prehension as to the reliability of these data due to contamination Efforts were made to obtain topotype material from type locali- and proper experimental controls ( Saunders and McDevit, 2012 ). ties (Appendix S1). Multiple specimens of each currently recog- However, these issues have been addressed ( Hughey and Gabrielson, nized Bossiella species in the NE Pacific ( Gabrielson et al., 2012 ; 2012 ), and sequences from type specimens have been essential to H i n d e t al., 2014b ), i.e., B. californica, B. chiloensis, B. dichotoma apply names to contemporary collections of morphologically vari- (Manza) P.C.Silva, B. heteroforma K.R.Hind, P.W.Gabrielson & able genera ( Hughey et al., 2001 ; Gabrielson, 2008 ; Lindstrom et al., G.W.Saunders, B. orbigniana , B. plumosa (Manza) P.C.Silva, and 2011 , 2015 ; Hind et al., 2014b ). B. schmittii (Manza) H.W.Johansen were made at each collection In this paper, we used both topotype collections and historical locality. Specimens were collected from the high, mid, and low in- DNA approaches to apply names to contemporary specimens in a tertidal zones and subtidally to depths of 20 m (Appendix S1). A group of red algae with known taxonomic uncertainties. T e Coral- portion (3 × 3 cm) of each collection was silica dried for DNA anal- linales is a large order (over 700 species) of calcif ed red algae that yses, and the remaining material was dried as a voucher and acces- are notoriously dif cult to identify due to convergent and simple sioned at UBC, UNB, NCU or UC (Appendix S1; see T iers (2015 ) morphologies ( Hind et al., 2014a ; Pardo et al., 2014 ). T ey are im- for herbarium acronyms). portant components of marine ecosystems, acting as ecosystem en- Type collections were observed and photographed, and tissue gineers ( Asnaghi et al., 2015 ), providing structural support to reefs samples (intergenicula) were excised for genetic analyses (Appen- ( Nelson, 2009 ) and emitting chemical settlement cues to marine dix S1). Specimens from the following herbaria were examined: invertebrate species ( Whalan et al., 2012 ), yet we know little about TRH, S, UBC, and UC. their specif c identities. T e order comprises species with upright, usually jointed fronds (geniculate species) and prostrate crusts DNA extraction and PCR — All contemporary samples were
Recommended publications
  • 2015 Clathromorphum.Pdf
    J. Phycol. 51, 189–203 (2015) © 2014 Phycological Society of America DOI: 10.1111/jpy.12266 DNA SEQUENCING, ANATOMY, AND CALCIFICATION PATTERNS SUPPORT A MONOPHYLETIC, SUBARCTIC, CARBONATE REEF-FORMING CLATHROMORPHUM (HAPALIDIACEAE, CORALLINALES, RHODOPHYTA) Walter H. Adey,2 Jazmin J. Hernandez-Kantun Botany Department, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA Gabriel Johnson Laboratory of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, North Carolina, USA For the first time, morpho-anatomical characters under each currently recognized species of that were congruent with DNA sequence data were Clathromorphum and Neopolyporolithon. used to characterize several genera in Hapalidiaceae Key index words: anatomy; Callilithophytum; ecology; — the major eco-engineers of Subarctic carbonate evolution; Leptophytum; Melobesioideae; Neopolypor- ecosystems. DNA sequencing of three genes (SSU, olithon; psbA; rbcL; SSU rbcL, ribulose-1, 5-bisphosphate carboxylase/ oxygenase large subunit gene and psbA, photosystem Abbreviations: BI, Bayesian inference; BP, bootstrap II D1 protein gene), along with patterns of cell value; GTR, general time reversible; MCMC, Mar- division, cell elongation, and calcification supported kov Chain Monte Carlo; ML, maximum likelihood; a monophyletic Clathromorphum. Two characters psbA, Photosystem II D1 protein gene; rbcL, ribu- were diagnostic for this genus: (i) cell division, lose-15-bisphosphate carboxylase/oxygenase large elongation, and primary calcification occurred only subunit gene in intercalary meristematic cells and in a narrow vertical band (1–2 lm wide) resulting in a “meristem split” and (ii) a secondary calcification of interfilament crystals was also produced.
    [Show full text]
  • Seaweed and Seagrasses Inventory of Laguna De San Ignacio, BCS
    UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE BIOLOGÍA MARINA PROGRAMA DE INVESTIGACIÓN EN BOTÁNICA MARINA Seaweed and seagrasses inventory of Laguna de San Ignacio, BCS. Dr. Rafael Riosmena-Rodríguez y Dr. Juan Manuel López Vivas Programa de Investigación en Botánica Marina, Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Apartado postal 19-B, km. 5.5 carretera al Sur, La Paz B.C.S. 23080 México. Tel. 52-612-1238800 ext. 4140; Fax. 52-612-12800880; Email: [email protected]. Participants: Dr. Jorge Manuel López-Calderón, Dr. Carlos Sánchez Ortiz, Dr. Gerardo González Barba, Dr. Sung Min Boo, Dra. Kyung Min Lee, Hidrobiol. Carmen Mendez Trejo, M. en C. Nestor Manuel Ruíz Robinson, Pas Biol. Mar. Tania Cota. Periodo de reporte: Marzo del 2013 a Junio del 2014. Abstract: The present report presents the surveys of marine flora 2013 – 2014 in the San Ignacio Lagoon of the, representing the 50% of planned visits and in where we were able to identifying 19 species of macroalgae to the area plus 2 Seagrass traditionally cited. The analysis of the number of species / distribution of macroalgae and seagrass is in progress using an intense review of literature who will be concluded using the last field trip information in May-June 2014. During the last two years we have not been able to find large abundances of species of microalgae as were described since 2006 and the floristic lists developed in the 90's. This added with the presence to increase both coverage and biomass of invasive species which makes a real threat to consider.
    [Show full text]
  • Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • Phylogenetic Implications of Tetrasporangial Ultrastructure in Coralline Red Algae with Reference to Bossiella Orbigniana (Corallinales, Rhodophyta)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1933 Phylogenetic Implications of Tetrasporangial Ultrastructure in Coralline Red Algae with Reference to Bossiella orbigniana (Corallinales, Rhodophyta) Christina Wilson College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Biology Commons Recommended Citation Wilson, Christina, "Phylogenetic Implications of Tetrasporangial Ultrastructure in Coralline Red Algae with Reference to Bossiella orbigniana (Corallinales, Rhodophyta)" (1933). Dissertations, Theses, and Masters Projects. Paper 1539624407. https://dx.doi.org/doi:10.21220/s2-pbyj-r021 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. PHYLOGENETIC IMPLICATIONS OF TETRASPORANGIAL ULTRASTRUCTURE IN CORALLINE RED ALGAE WITH REFERENCE TO BOSSIELLA ORBIGNIANA (CORALLINALES, RHODOPHYTA) A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of Requirements for the Degree of Master of Arts by Christina Wilson 1993 APPROVAL SHEET This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Approved, July 1993 ph l / . Scott Sharon T . Broadwater
    [Show full text]
  • The Marine Macroalgae of Cabo Verde Archipelago: an Updated Checklist
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 The marine macroalgae of Cabo Verde archipelago: an updated checklist DANIELA GABRIEL AND SUZANNE FREDERICQ Gabriel, D. and S. Fredericq 2019. The marine macroalgae of Cabo Verde archipelago: an updated checklist. Arquipelago. Life and Marine Sciences 36: 39 - 60. An updated list of the names of the marine macroalgae of Cabo Verde, an archipelago of ten volcanic islands in the central Atlantic Ocean, is presented based on existing reports, and includes the addition of 36 species. The checklist comprises a total of 372 species names, of which 68 are brown algae (Ochrophyta), 238 are red algae (Rhodophyta) and 66 green algae (Chlorophyta). New distribution records reveal the existence of 10 putative endemic species for Cabo Verde islands, nine species that are geographically restricted to the Macaronesia, five species that are restricted to Cabo Verde islands and the nearby Tropical Western African coast, and five species known to occur only in the Maraconesian Islands and Tropical West Africa. Two species, previously considered invalid names, are here validly published as Colaconema naumannii comb. nov. and Sebdenia canariensis sp. nov. Key words: Cabo Verde islands, Macaronesia, Marine flora, Seaweeds, Tropical West Africa. Daniela Gabriel1 (e-mail: [email protected]) and S. Fredericq2, 1CIBIO - Research Centre in Biodiversity and Genetic Resources, 1InBIO - Research Network in Biodiversity and Evolutionary Biology, University of the Azores, Biology Department, 9501-801 Ponta Delgada, Azores, Portugal. 2Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-3602, USA. INTRODUCTION Schmitt 1995), with the most recent checklist for the archipelago published in 2005 by The Republic of Cabo Verde is an archipelago Prud’homme van Reine et al.
    [Show full text]
  • WSN Long Program 2014 FINAL
    Western Society of Naturalists Meeting Program Tacoma, WA Nov. 13-16, 2014 1 Western Society of Naturalists Treasurer President ~ 2014 ~ Andrew Brooks Steven Morgan Dept of Ecology, Evolution Bodega Marine Laboratory, Website and Marine Biology UC Davis www.wsn-online.org UC Santa Barbara P.O. Box 247 Santa Barbara, CA 93106 Bodega, CA 94923 Secretariat [email protected] [email protected] Michael Graham Scott Hamilton Member-at-Large Diana Steller President-Elect Phil Levin Moss Landing Marine Laboratories Northwest Fisheries Science Gretchen Hofmann 8272 Moss Landing Rd Center Dept. Ecology, Evolution, & Moss Landing, CA 95039 Conservation Biology Division Marine Biology Seattle, WA 98112 Corey Garza UC Santa Barbara [email protected] CSU Monterey Bay Santa Barbara, CA 93106 [email protected] Seaside, CA 93955 [email protected] 95TH ANNUAL MEETING NOVEMBER 13-16, 2014 IN TACOMA, WASHINGTON Registration and Information Welcome! The registration desk will be open Thurs 1600-2000, Fri-Sat 0730-1800, and Sun 0800-1000. Registration packets will be available at the registration table for those members who have pre-registered. Those who have not pre-registered but wish to attend the meeting can pay for membership and registration (with a $20 late fee) at the registration table. Unfortunately, banquet tickets cannot be sold at the meeting because the hotel requires final counts of attendees well in advance. The Attitude Adjustment Hour (AAH) is included in the registration price, so you will only need to show your badge for admittance. WSN t-shirts and other merchandise can be purchased or picked up at the WSN Student Committee table.
    [Show full text]
  • Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 19, 169–175, January 27, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.12.031 Report Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture Patrick T. Martone,1,2,7,8,* Jose´ M. Estevez,3,7,9 walls and lignin in red algae raises many questions about the Fachuang Lu,4,5,7 Katia Ruel,6 Mark W. Denny,1,2 convergent or deeply conserved evolutionary history of Chris Somerville,2,3,10 and John Ralph4,5 these traits, given that red algae and vascular plants prob- 1Hopkins Marine Station of Stanford University ably diverged more than 1 billion years ago. 120 Ocean View Boulevard Pacific Grove, CA 93950 Results and Discussion USA 2Department of Biological Sciences The goal of this study was to explore the ultrastructure and Stanford University chemical composition of cell walls in the coralline alga Calliar- Stanford, CA 94305 thron cheilosporioides (Corallinales, Rhodophyta), which USA thrives in wave-exposed rocky intertidal habitats along the 3Carnegie Institution California coast. Unlike fleshy seaweeds, Calliarthron fronds Stanford University calcify, encasing cells in CaCO3 [10], but have decalcified Stanford, CA 94305 joints, called genicula, that allow calcified fronds to bend USA and avoid breakage when struck by incoming waves (Figure 1) 4Department of Biochemistry [10, 11]. Early studies of genicula noted that as they decalcify University of Wisconsin–Madison and mature, genicular cells elongate up to 10-fold and their Madison, WI 53706 cell walls expand slightly [10, 12].
    [Show full text]
  • Corallinales, Rhodophyta) Based on Molecular and Morphological Data: a Reappraisal of Jania1
    J. Phycol. 43, 1310–1319 (2007) Ó 2007 Phycological Society of America DOI: 10.1111/j.1529-8817.2007.00410.x PHYLOGENETIC RELATIONSHIPS WITHIN THE TRIBE JANIEAE (CORALLINALES, RHODOPHYTA) BASED ON MOLECULAR AND MORPHOLOGICAL DATA: A REAPPRAISAL OF JANIA1 Ji Hee Kim Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Incheon 408-840, Korea Michael D. Guiry Martin Ryan Institute, The National University of Ireland, Galway, Ireland Jung Hyun Oak Department of Biology, Gyeongsang National University, Jinju 660-701, Korea Do-Sung Choi Department of Science Education, Gwangju National University of Education, Gwangju 500-703, Korea Sung-Ho Kang, Hosung Chung Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Incheon 408-840, Korea and Han-Gu Choi2 Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Incheon 408-840, Korea Institute of Basic Sciences, Kongju National University, Kongju 314-701, Korea Generic boundaries among the genera Cheilosporum, Key index words: Corallinales; Jania; Janieae; Haliptilon,andJania—currently referred to the tribe morphology; nuclear SSU rDNA; phylogeny; Janieae (Corallinaceae, Corallinales, Rhodophyta)— Rhodophyta; systematics were reassessed. Phylogenetic relationships among Abbreviations: bp, base pair; GTR, general time 42 corallinoidean taxa were determined based on 26 reversible; TBR, tree bisection reconnection anatomical characters and nuclear SSU rDNA sequence data for 11 species (with two duplicate plants) referred to the tribe Corallineae and 15 species referred to the tribe Janieae (two species All members of the subfamily Corallinoideae of Cheilosporum, seven of Haliptilon, and six of (Aresch.) Foslie are constructed of uncalcified geni- Jania, with five duplicate plants). Results from our cula and calcified intergenicula and form branched approach were consistent with the hypothesis that fronds.
    [Show full text]
  • Molecular-Assisted Alpha Taxonomy Reveals Pseudocryptic Diversity Among Species of Bossiella (Corallinales, Rhodophyta) in the Eastern Pacific Ocean
    Phycologia Volume 53 (5), 443–456 Published 24 September 2014 Molecular-assisted alpha taxonomy reveals pseudocryptic diversity among species of Bossiella (Corallinales, Rhodophyta) in the eastern Pacific Ocean 1,2* 3 1 KATHARINE R. HIND ,PAUL W. GABRIELSON AND GARY W. SAUNDERS 1Centre for Environmental and Molecular Algal Research, Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada 2Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 3Herbarium, Coker Hall CB 3280, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA ABSTRACT: A floristic survey of the red algal genus Bossiella was conducted using molecular-assisted alpha taxonomy (MAAT). The MAAT approach used DNA sequence data as a first pass to assess species diversity followed by additional study including detailed morphological observations to delimit species. In addition, type specimen sequencing was conducted to apply existing species names to genetic groups. Four Bossiella species were recognised in the eastern Pacific Ocean based on morphology, but a genetic screen using a DNA barcode marker, mitochondrial cytochrome c oxidase subunit 1 (COI-5P), showed 17 genetic species groups. Due to the large number of species requiring taxonomic assessment, we focused this study on species with predominantly dichotomous branching, that is, the recognised morphospecies B. californica and B. orbigniana. DNA sequences from three loci, psbA, rbcL and COI-5P, resolved five species: B. californica, B. dichotoma, B. schmittii, Bossiella heteroforma sp. nov. and B. orbigniana (the only species with a type locality not in the northeast Pacific). Morphology alone was an inadequate discriminator of these species, but incorporating distribution and habitat data facilitated identification of some species without DNA sequencing.
    [Show full text]
  • Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture
    Current Biology 19, 169–175, January 27, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.12.031 Report Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture Patrick T. Martone,1,2,7,8,* Jose´ M. Estevez,3,7,9 walls and lignin in red algae raises many questions about the Fachuang Lu,4,5,7 Katia Ruel,6 Mark W. Denny,1,2 convergent or deeply conserved evolutionary history of Chris Somerville,2,3,10 and John Ralph4,5 these traits, given that red algae and vascular plants prob- 1Hopkins Marine Station of Stanford University ably diverged more than 1 billion years ago. 120 Ocean View Boulevard Pacific Grove, CA 93950 Results and Discussion USA 2Department of Biological Sciences The goal of this study was to explore the ultrastructure and Stanford University chemical composition of cell walls in the coralline alga Calliar- Stanford, CA 94305 thron cheilosporioides (Corallinales, Rhodophyta), which USA thrives in wave-exposed rocky intertidal habitats along the 3Carnegie Institution California coast. Unlike fleshy seaweeds, Calliarthron fronds Stanford University calcify, encasing cells in CaCO3 [10], but have decalcified Stanford, CA 94305 joints, called genicula, that allow calcified fronds to bend USA and avoid breakage when struck by incoming waves (Figure 1) 4Department of Biochemistry [10, 11]. Early studies of genicula noted that as they decalcify University of Wisconsin–Madison and mature, genicular cells elongate up to 10-fold and their Madison, WI 53706 cell walls expand slightly [10, 12]. A recent histological analysis USA found that after elongation ceases, genicular cell walls 5U.S.
    [Show full text]
  • Cellulose-Rich Secondary Walls in Wave-Swept Red Macroalgae Fortify
    Planta (2019) 250:1867–1879 https://doi.org/10.1007/s00425-019-03269-1 ORIGINAL ARTICLE Cellulose‑rich secondary walls in wave‑swept red macroalgae fortify fexible tissues Patrick T. Martone1,2 · Kyra Janot1,2 · Miki Fujita2 · Geofrey Wasteneys2 · Katia Ruel3 · Jean‑Paul Joseleau3 · José M. Estevez4,5 Received: 4 March 2019 / Accepted: 27 August 2019 / Published online: 3 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Main conclusion Cellulosic secondary walls evolved convergently in coralline red macroalgae, reinforcing tissues against wave-induced breakage, despite diferences in cellulose abundance, microfbril orientation, and wall structure. Abstract Cellulose-enriched secondary cell walls are the hallmark of woody vascular plants, which develop thickened walls to support upright growth and resist toppling in terrestrial environments. Here we investigate the striking presence and convergent evolution of cellulosic secondary walls in coralline red algae, which reinforce thalli against forces applied by crashing waves. Despite ostensible similarities to secondary wall synthesis in land plants, we note several structural and mechanical diferences. In coralline red algae, secondary walls contain three-times more cellulose (~ 22% w/w) than primary walls (~ 8% w/w), and their presence nearly doubles the total thickness of cell walls (~ 1.2 µm thick). Field emission scanning electron microscopy revealed that cellulose bundles are cylindrical and lack any predominant orientation in both primary and secondary walls. His-tagged recombinant carbohydrate-binding module diferentiated crystalline and amorphous cellulose in planta, noting elevated levels of crystalline cellulose in secondary walls. With the addition of secondary cell walls, Cal- liarthron genicular tissues become signifcantly stronger and tougher, yet remain remarkably extensible, more than doubling in length before breaking under tension.
    [Show full text]