Fossil and Recent Calcareous Algae from Guam

Total Page:16

File Type:pdf, Size:1020Kb

Fossil and Recent Calcareous Algae from Guam Fossil and Recent Calcareous Algae From Guam GEOLOGICAL SURVEY PROFESSIONAL PAPER 403-G Fossil and Recent Calcareous Alo:ae From Guam By J. HARLAN JOHNSON GEOLOGY AND HYDROLOGY OF GUAM, MARIANA ISLANDS GEOLOGICAL SURVEY PROFESSIONAL PAPER 403-G Of the 82 species-groups listed or described, 2O are new; discussion includes stratigraphic distribution and correlation with Saipan floras UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Systematic descriptions Continued Abstract.__________________________________________ Gl Phyllum Rhodophyta Continued Introduction _______________________________________ 1 Family Corallinaceae Continued Acknowledgments_ _ _ __--_---____-_-_______________ 1 Subfamily Melobesioideae Continued Classification of calcareous algae._____________________ 1 Genus Goniolithon Foslie, 1900______ G24 Stratigraphic distribution of Guam algae_____________ 1 Genus Aethesolithon Johnson, n. gen___ 27 Eocene and Oligocene, Tertiary &_________________ 2 Genus Lithoporella Foslie, 1909_______ 28 Lower Miocene, Tertiary e_______________________ 3 Genus Dermatolithon Foslie, 1899_____ 29 Lower Miocene, Tertiary/_______________________ 4 Genus Melobesia Lamouroux, 1812____ 30 Upper Miocene and Pliocene, Tertiary g_ __________ 4 Subfamily Corallinoideae (articulate coral­ Pliocene and Pleistocene.__-_--__--_-___-______-_ 4 line algae) ___________________________ 30 Correlation ________________________________________ 5 Genus Calliarthron Manza, 1937------ 31 Localities __________________________________________ 6 Genus Amphiroa Lamouroux, 1812____ 31 Systematic descriptions._____________________________ 9 Genus Corallina Linnaeus, 1758_______ 34 Phyllum Rhodophyta (red algae)_________________ 9 Genus Arthrocardia Decaisne, 1842, Family Corallinaceae (coralline algae)_________ 9 emend. Areschoug, 1850_ __________ 36 Subfamily Melobesioideae (crustose coral­ Genus Jania Lamouroux, 1812_______ 36 line algae) ________________________ __. _ 9 Chlorophyta (green algae)______________---_--__- 36 Genus Archaeolithothamnium Rothpletz, Family Dasycladaceae______________---____-- 36 1891____________________________ 9 Genus Cymopolia Lamouroux, 1816___ 36 Genus Lithothamnium Philippi, 1837-__ 10 Family Codiaceae________________----__----- 37 Genus Mesophyllum Lemoine, 1928____ 14 Genus Halimeda Lamouroux _________ 37 Genus Lithophyllum Philippi, 1837____ 16 References cited._______________________---_-___---- 37 Genus Porolithon Foslie, 1909________ 23 Index ____________-______--_---_-___--_-_---_------ 39 ILLUSTRATIONS [Plates follow Index] PLATE 1. Miocene Lithothamnium. PLATE 11. Miocene Amphiroa and Corallina. 2. Miocene Lithothamnium and Mesophyllum. 12. Eocene Cymopolia; Miocene Jania, Halimeda, Corallina, and Lithophyllum; Pliocene and Pleis­ 3. Miocene Mesophyllum and Lithophyllum. tocene Halimeda; and Pleistocene Amphiroa. 4-7. Miocene Lithophyllum. 13. Recent Lithophyllum and Goniolithon. 8. Miocene Goniolithon. 14. Recent Lithophyllum. 9. Miocene Aethesolithon n. gen. 15. Recent Goniolithon and Lithophyllum. 10. Miocene Dermatolithon, Lithoporella, Melobesia, Page Archaeolithothamnium, and Aethesolithon; and FIGURE 1. Map of Guam showing sample-collecting Pliocene and Pleistocene Dermatolithon. localities of calcareous algae ___________ G7 TABLES Page Page TABLE 1. Genera of calcareous algae found in the TABLES 7-10. Measurements, in microns, and distribu­ Cenozoic deposits of Guam ___________ G2 tion of species of 2-4. Stratigraphic distribution of 7. Archaeolithothamnium from Guam___ G10 2. Fossil algae of Guam ______________ 2 8. Lithothamnium from Guam_________ 11 3. Eocene algae on Guam and Saipan-_ 5 9. Lithophyllum from Guam_ _________ 16 4. Miocene algae on Guam and Saipan. _ 5 5. Algae of the Mariana Limestone on Guam 10. Goniolithon from Guam.___________ 24 and Saipan _________________________ 11. Detailed measurements, in microns, 6. Field and permanent catalog numbers for of species of Aethesolithon from fossil algae from Guam_______________ Guam_ ___________-___-----_ 27 GEOLOGY AND HYDROLOGY OF GUAM, MARIANA ISLANDS FOSSIL AND RECENT CALCAREOUS ALGAE FROM GUAM By J. HAELAN JOHNSON ABSTRACT Species illustrated in the recent U.S. Geological Eighty-two species of calcareous algae belonging to 16 genera Survey Professional Papers on Bikini CProf. Paper 260) are described and 68 are named specifically. Of these, 1 genus and Saipan (Prof. Paper 280) are not illustrated in this Aethesolithon, and 20 species are described as new. report unless they show additional features. Remains of calcareous algae occur in all the Cenozoic lime­ stones of Guam. Locally the algae are sufficiently abundant to ACKNOWLEDGMENTS be considered as rock builders. Each formation has a distinctive flora. The algal floras are similar to those found in beds of similar Mr. A. P. Bronson, manager of "Shells of Micro­ age on Saipan. nesia," the aquarium and curio store on Guam, greatly The evidence indicates that fossil algae are useful as environ­ mental indicators and also for dating the strata. assisted the author in excursions to the modern reef and helped him obtain many excellent specimens. H. S. INTRODUCTION Ladd made valuable suggestions on the arrangement The term "calcareous algae" has been applied to and preparation of the manuscript. The Colorado those algae that have developed the ability to secrete or School of Mines supplied the laboratory and photo­ deposit calcium carbonate within or around their tissues. graphic studies for the work. Remains of such algae have been found in appreciable numbers in most of the limestones of Cenozoic age that CLASSIFICATION OF CALCAREOUS ALGAE' have been studied on Guam. At some localities, algae Recent algae are classified into several broad groups occur in sufficient abundance to be important contribu­ on the basis of the structure and physiology of the tors to the building of the limestones. plants and the basic chemical ingredients of their The geological work on Guam furnished an oppor­ normal pigments. Only four of these contain mem­ tunity to study a large series of specimens of algae from bers that have developed the ability to secrete or deposit rocks that have been dated by means of Foraminifera, calcium carbonate. These are the Rhodophyta or red which increases our knowledge of the stratigraphic algae, the Phaeophyta or brown algae, the Chlorophyta distribution of these fossils. or green algae, and the Cyanophyta or blue-green This study is based on a collection of large thin sec­ algae. The Rhodophyta and Chlorophyta include tions of limestone obtained from localities on Guam, most of the lime-secreting and lime-depositing algae representing material collected by the various members which form readily identifiable fossils. They include of the Guam field party from June 1952 to October 1954, all the forms discussed from Guam. Table 1 shows the as part of the Pacific Geological Mapping Program of classification used in this report. A previous report the U.S. Geological Survey and Corps of Engineers discusses terminology, structure, and a key for identi­ of the U.S. Army. Additional material was obtained fication of fossil algae (Johnson, 1957, p. 210, 216). by the author on visits made to the island in 1949, 1951, and 1952. The thin sections have an average area of STRATIGRAPHIC DISTRIBUTION OF GUAM ALGAE 3 square inches and show many unoriented sections of The characteristic features of each formation are fragments of fossil algae. Selected specimens exhibit­ summarized in the following paragraphs followed by a ing the structure necessary for identification were photo­ list showing the algal flora of each. Table 2 shows the graphed and studied. stratigraphic distribution of the various species. Gl G2 GEOLOGY AND HYDROLOGY OF GUAM, MARIANA ISLANDS TABLE 1. Genera of calcareous algae found in the Cenozoic fragments in the breccia contain calcareous algae and deposits of Guam Foraminifera. Although a part of the formation con­ Phylum Family Subfamily Genera tains Foraminifera 01 Tertiary c age, the limestone fragments contained a fauna of Tertiary b age only Archaeolithotham­ nium (Cole, 1963). Rhodophyta (red Corallinaceae __ Melobesioideae Lithothamnium algae). (crustose coral­ Mesophyllum Algal flora of the Alutom Formation lines). Lithophyllum Porolithon Archaeolithothamnium saipanense Johnson Otmiolithon Aethesolithon Lithothamnium cf. L. aggregatum Lemoine n. gen. Lithoporella crispithallus Johnson Dermatolithon marianae Johnson Melobesia Corallinoideae Calliarthron tagpotchaenses Johnson (articulate cor­ Amphiroa allines) . Corallina sp. A Johnson Arthrocardia Lithophyllum sp. A Johnson Jania Chlorophyta Dasycladaceae Cymopolia Lithoporella melobesioides Foslie (green algae) . Codlaceae Halimeda Dermatolithon niiida Johnson Arihrocardial sp. EOCENE AND OLIGOCENE, TERTIARY b Corallina matansa Johnson prisca Johnson Alutom Formation. This formation is a series of Janial sp. volcanic lava flows, reworked tuffaceous sandstone and Cymopolia cf. C. pacifica Johnson shale, and volcanic breccia. Scarce limestone beds in Perforating algae the formation and abundant limestone pebbles and Halimedal sp. TABLE 2. Stratigraphic distribution of the fossil algae of Guam Formation or member Eocene and Miocene Miocene and Pliocene Pliocene and Recent Oligocene Pleistocene
Recommended publications
  • Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1997 Taxonomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta) Bethany Ann Griffin College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Systems Biology Commons Recommended Citation Griffin, Bethany Ann, ax"T onomic Implications of Sporanglial Ultrastructure Within the Subfamily Melobesioideae Corallinales, Rhodophyta)" (1997). Dissertations, Theses, and Masters Projects. Paper 1539626098. https://dx.doi.org/doi:10.21220/s2-pnjz-de41 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. TAXONOMIC IMPLICATIONS OF SPORANGIAL ULTRASTRUCTURE WITHIN THE SUBFAMILY MELOBESIOIDEAE (CORALLINALES, RHODOPHYTA) A Thesis Presented to The Faculty of the Department of Biology The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts By Bethany Ann Griffin 1997 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Bethany Ann Griffin Approved, April 1997 Sharon T. Broadwater A ^ Scott I\$artha A. Case DEDICATION To Jon, for giving new meaning to
    [Show full text]
  • Rhodolith Forming Coralline Algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a Critical Evaluation
    Phytotaxa 190 (1): 370–382 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.190.1.22 Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation ANA CRISTINA REBELO1,2,3,4*, MICHAEL W. RASSER4, RAFAEL RIOSMENA-RODRÍGUEZ5, ANA ISABEL NETO1,6,7 & SÉRGIO P. ÁVILA1,2,3,8 1 Departamento de Biologia, Universidade dos Açores, Campus de Ponta Delgada, Apartado 1422-801 Ponta Delgada, Açores, Portugal 2 CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia da Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal 3 MPB - Marine Palaeobiogeography Working group, University of Azores, Portugal 4 SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 5 Programa de Investigación en Botánica Marina, Departamento de Biologia Marina, Universidad Autónoma de Baja California Sur, Km 5.5 Carretera al Sur, Col. Mezquitito, La Paz BCS 23080 México 6 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal 7 CIRN - University of the Azores, Portugal 8 Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal * Corresponding author, email: [email protected] ABSTRACT The Late Miocene Malbusca outcrop is located in the southeastern coast of Santa Maria Island (Azores, NE Atlantic), interspersed in volcanic formations. At ~20 meters above present sea level, a prominent discontinuous layer of rhodoliths seizes with an extension of ~250 meters.
    [Show full text]
  • Skye: a Landscape Fashioned by Geology
    SCOTTISH NATURAL SKYE HERITAGE A LANDSCAPE FASHIONED BY GEOLOGY SKYE A LANDSCAPE FASHIONED BY GEOLOGY SCOTTISH NATURAL HERITAGE Scottish Natural Heritage 2006 ISBN 1 85397 026 3 A CIP record is held at the British Library Acknowledgements Authors: David Stephenson, Jon Merritt, BGS Series editor: Alan McKirdy, SNH. Photography BGS 7, 8 bottom, 10 top left, 10 bottom right, 15 right, 17 top right,19 bottom right, C.H. Emeleus 12 bottom, L. Gill/SNH 4, 6 bottom, 11 bottom, 12 top left, 18, J.G. Hudson 9 top left, 9 top right, back cover P&A Macdonald 12 top right, A.A. McMillan 14 middle, 15 left, 19 bottom left, J.W.Merritt 6 top, 11 top, 16, 17 top left, 17 bottom, 17 middle, 19 top, S. Robertson 8 top, I. Sarjeant 9 bottom, D.Stephenson front cover, 5, 14 top, 14 bottom. Photographs by Photographic Unit, BGS Edinburgh may be purchased from Murchison House. Diagrams and other information on glacial and post-glacial features are reproduced from published work by C.K. Ballantyne (p18), D.I. Benn (p16), J.J. Lowe and M.J.C. Walker. Further copies of this booklet and other publications can be obtained from: The Publications Section, Cover image: Scottish Natural Heritage, Pinnacle Ridge, Sgurr Nan Gillean, Cullin; gabbro carved by glaciers. Battleby, Redgorton, Perth PH1 3EW Back page image: Tel: 01783 444177 Fax: 01783 827411 Cannonball concretions in Mid Jurassic age sandstone, Valtos. SKYE A Landscape Fashioned by Geology by David Stephenson and Jon Merritt Trotternish from the south; trap landscape due to lavas dipping gently to the west Contents 1.
    [Show full text]
  • Calcification of the Arctic Coralline Red Algae Lithothamnion Glaciale in Response to Elevated CO2
    Vol. 441: 79–87, 2011 MARINE ECOLOGY PROGRESS SERIES Published November 15 doi: 10.3354/meps09405 Mar Ecol Prog Ser OPENPEN ACCESSCCESS Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2 Jan Büdenbender*, Ulf Riebesell, Armin Form Leibniz Institute of Marine Sciences (IFM-GEOMAR), University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany ABSTRACT: Rising atmospheric CO2 concentrations could cause a calcium carbonate subsatura- tion of Arctic surface waters in the next 20 yr, making these waters corrosive for calcareous organ- isms. It is presently unknown what effects this will have on Arctic calcifying organisms and the ecosystems of which they are integral components. So far, acidification effects on crustose coralline red algae (CCA) have only been studied in tropical and Mediterranean species. In this work, we investigated calcification rates of the CCA Lithothamnion glaciale collected in northwest Svalbard in laboratory experiments under future atmospheric CO2 concentrations. The algae were exposed to simulated Arctic summer and winter light conditions in 2 separate experiments at opti- mum growth temperatures. We found a significant negative effect of increased CO2 levels on the net calcification rates of L. glaciale in both experiments. Annual mean net dissolution of L. glaciale was estimated to start at an aragonite saturation state between 1.1 and 0.9 which is projected to occur in parts of the Arctic surface ocean between 2030 and 2050 if emissions follow ‘business as usual’ scenarios (SRES A2; IPCC 2007). The massive skeleton of CCA, which consist of more than 80% calcium carbonate, is considered crucial to withstanding natural stresses such as water move- ment, overgrowth or grazing.
    [Show full text]
  • Tropical Coralline Algae (Diurnal Response)
    Burdett, Heidi L. (2013) DMSP dynamics in marine coralline algal habitats. PhD thesis. http://theses.gla.ac.uk/4108/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] DMSP Dynamics in Marine Coralline Algal Habitats Heidi L. Burdett MSc BSc (Hons) University of Plymouth Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Geographical and Earth Sciences College of Science and Engineering University of Glasgow March 2013 © Heidi L. Burdett, 2013 ii Dedication In loving memory of my Grandads; you may not get to see this in person, but I hope it makes you proud nonetheless. John Hewitson Burdett 1917 – 2012 and Denis McCarthy 1923 - 1998 Heidi L. Burdett March 2013 iii Abstract Dimethylsulphoniopropionate (DMSP) is a dimethylated sulphur compound that appears to be produced by most marine algae and is a major component of the marine sulphur cycle. The majority of research to date has focused on the production of DMSP and its major breakdown product, the climatically important gas dimethylsulphide (DMS) (collectively DMS/P), by phytoplankton in the open ocean.
    [Show full text]
  • Morphology-Anatomy of Mesophyllum Macroblastum (Hapalidiaceae, Corallinales, Rhodophyta) in the Northern Adriatic Sea and a Key to Mediterranean Species of the Genus
    Cryptogamie, Algologie, 2011, 32 (3): 223-242 © 2011 Adac. Tous droits réservés Morphology-anatomy of Mesophyllum macroblastum (Hapalidiaceae, Corallinales, Rhodophyta) in the Northern Adriatic Sea and a key to Mediterranean species of the genus Sara KALEB a, Annalisa FALACE a*, Gianfranco SARTONI b & William WOELKERLING c a Department of Life Science, University of Trieste, Italy b Department of Vegetal Biology, University of Florence, Italy c Department of Botany, La Trobe University, Bundoora, Victoria, Australia (Received 13 May 2010, accepted 15 October 2010) Abstract – The coralline red alga Mesophyllum (Hapalidiaceae) is recorded for the first time from the Gulf of Trieste (Northern Adriatic Sea) and gametangial plants of M. macro- blastum are recorded for the first time from the Mediterranean Sea. A morphological- anatomical account is provided, including comparisons with specimens from the western coast of Italy and with published data. Distribution and habitat information, comparison with Mediterranean species of Mesophyllum, and a dichotomous key to Mediterranean spe- cies are included along with brief comments on other species in the genus known to produce volcano-like tetrasporangial conceptacles. Corallinales / Hapalidiaceae / Mediterranean Sea / Mesophyllum macroblastum / Northern Adriatic / taxonomy Résumé – Le genre Mesophyllum (Hapalidiaceae), est signalé pour la première signali- sation pour le Gulf de Trieste (Nord Adriatique) et un pied gamétangial de Mesophyllum macroblastum (Foslie) Adey est observé pour la première fois en Méditerranée. M. macro- blastum est décrit et comparé avec des spécimens récoltés sur le littoral occidental de l’Italie. La distribution et des informations sur l’habitat, autant que la comparaison avec les espèces Méditerranéen de Mesophyllum sont reportées.
    [Show full text]
  • Sequencing Type Material Resolves the Identity and Distribution of the Generitype Lithophyllum Incrustans, and Related European Species L
    J. Phycol. 51, 791–807 (2015) © 2015 Phycological Society of America DOI: 10.1111/jpy.12319 SEQUENCING TYPE MATERIAL RESOLVES THE IDENTITY AND DISTRIBUTION OF THE GENERITYPE LITHOPHYLLUM INCRUSTANS, AND RELATED EUROPEAN SPECIES L. HIBERNICUM AND L. BATHYPORUM (CORALLINALES, RHODOPHYTA)1 Jazmin J. Hernandez-Kantun2 Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Fabio Rindi Dipartimento di Scienze della Vita e dell’Ambiente, Universita Politecnica delle Marche, Via Brecce Bianche, Ancona 60131, Italy Walter H. Adey Botany Department, National Museum of Natural History, Smithsonian Institution, MRC 166 PO Box 37012, Washington District of Columbia, USA Svenja Heesch Irish Seaweed Research Group, Ryan Institute, National University of Ireland, University Road, Galway Ireland Viviana Pena~ BIOCOST Research Group, Departamento de Bioloxıa Animal, Bioloxıa Vexetal e Ecoloxıa, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Coruna,~ A Coruna~ 15071, Spain Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, Ghent 9000, Belgium Line Le Gall Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, Paris 75005, France and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, Coker Hall CB 3280, Chapel Hill, North Carolina 27599-3280, USA DNA sequences from type material in the belonging in Lithophyllum.
    [Show full text]
  • Aragonite Infill in Overgrown Conceptacles of Coralline Lithothamnion Spp
    J. Phycol. 52, 161–173 (2016) © 2016 Phycological Society of America DOI: 10.1111/jpy.12392 ARAGONITE INFILL IN OVERGROWN CONCEPTACLES OF CORALLINE LITHOTHAMNION SPP. (HAPALIDIACEAE, HAPALIDIALES, RHODOPHYTA): NEW INSIGHTS IN BIOMINERALIZATION AND PHYLOMINERALOGY1 Sherry Krayesky-Self,2 Joseph L. Richards University of Louisiana at Lafayette, Lafayette, Louisiana 70504-3602, USA Mansour Rahmatian Core Mineralogy Inc., Lafayette, Louisiana 70506, USA and Suzanne Fredericq University of Louisiana at Lafayette, Lafayette, Louisiana 70504-3602, USA New empirical and quantitative data in the study of calcium carbonate biomineralization and an All crustose coralline algae belonging in the Coral- expanded coralline psbA framework for linales, Hapalidiales, and Sporolithales (Rhodo- phylomineralogy are provided for crustose coralline phyta) are characterized by the presence of calcium red algae. Scanning electron microscopy (SEM) and carbonate in their cell walls, which is often in the energy dispersive spectrometry (SEM-EDS) form of highly soluble high-magnesium-calcite (Adey pinpointed the exact location of calcium carbonate 1998, Knoll et al. 2012, Adey et al. 2013, Diaz-Pulido crystals within overgrown reproductive conceptacles et al. 2014, Nelson et al. 2015). Besides the in rhodolith-forming Lithothamnion species from the Rhodogorgonales (Fredericq and Norris 1995), a sis- Gulf of Mexico and Pacific Panama. SEM-EDS and ter group of the coralline algae in the Corallinophy- X-ray diffraction (XRD) analysis confirmed the cidae (Le Gall and Saunders 2007) whose members elemental composition of these calcium carbonate also precipitate calcite, all other calcified red and crystals to be aragonite. After spore release, green macroalgae deposit calcium carbonate in the reproductive conceptacles apparently became form of aragonite (reviewed in Adey 1998, Nelson overgrown by new vegetative growth, a strategy that 2009).
    [Show full text]
  • 2015 Clathromorphum.Pdf
    J. Phycol. 51, 189–203 (2015) © 2014 Phycological Society of America DOI: 10.1111/jpy.12266 DNA SEQUENCING, ANATOMY, AND CALCIFICATION PATTERNS SUPPORT A MONOPHYLETIC, SUBARCTIC, CARBONATE REEF-FORMING CLATHROMORPHUM (HAPALIDIACEAE, CORALLINALES, RHODOPHYTA) Walter H. Adey,2 Jazmin J. Hernandez-Kantun Botany Department, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA Gabriel Johnson Laboratory of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA and Paul W. Gabrielson Department of Biology and Herbarium, University of North Carolina, Chapel Hill, North Carolina, USA For the first time, morpho-anatomical characters under each currently recognized species of that were congruent with DNA sequence data were Clathromorphum and Neopolyporolithon. used to characterize several genera in Hapalidiaceae Key index words: anatomy; Callilithophytum; ecology; — the major eco-engineers of Subarctic carbonate evolution; Leptophytum; Melobesioideae; Neopolypor- ecosystems. DNA sequencing of three genes (SSU, olithon; psbA; rbcL; SSU rbcL, ribulose-1, 5-bisphosphate carboxylase/ oxygenase large subunit gene and psbA, photosystem Abbreviations: BI, Bayesian inference; BP, bootstrap II D1 protein gene), along with patterns of cell value; GTR, general time reversible; MCMC, Mar- division, cell elongation, and calcification supported kov Chain Monte Carlo; ML, maximum likelihood; a monophyletic Clathromorphum. Two characters psbA, Photosystem II D1 protein gene; rbcL, ribu- were diagnostic for this genus: (i) cell division, lose-15-bisphosphate carboxylase/oxygenase large elongation, and primary calcification occurred only subunit gene in intercalary meristematic cells and in a narrow vertical band (1–2 lm wide) resulting in a “meristem split” and (ii) a secondary calcification of interfilament crystals was also produced.
    [Show full text]
  • Geologia Croaticacroatica
    View metadata, citationGeologia and similar Croatica papers at core.ac.uk 61/2–3 333–340 1 Fig. 1 Pl. Zagreb 2008 333brought to you by CORE The coralline fl ora of a Miocene maërl: the Croatian “Litavac” Daniela Basso1, Davor Vrsaljko2 and Tonći Grgasović3 1 Dipartamento di Scienze Geologiche e Geotecnologie, Università degli Studi di Milano – Bicocca, Piazza della Scienza 4, 20126 Milano, Italy; ([email protected]) 2 Croatian Natural History Museum, Demetrova 1, HR-10000 Zagreb, Croatia; ([email protected]) 3 Croatian Geological Survey, Sachsova 2, HR-10000 Zagreb, Croatia; ([email protected]) GeologiaGeologia CroaticaCroatica AB STRA CT The fossil coralline fl ora of the Badenian bioclastic limestone outcropping in Northern Croatia is known by the name “Litavac”, shortened from “Lithothamnium Limestone”. The name was given to indicate that unidentifi ed coralline algae are the major component. In this fi rst contribution to the knowledge of the coralline fl ora of the Litavac, Lithoth- amnion valens seems to be the most common species, with an unattached, branched growth-form. Small rhodoliths composed of Phymatolithon calcareum and Mesophyllum roveretoi also occur. The Badenian benthic association is dominated by melobesioid corallines, thus it can be compared with the modern maërl facies of the Atlantic Ocean and Mediterranean Sea. Since L. valens still survives in the present-day Mediterranean, an analogy between the Badenian Litavac and the living L. valens facies of the Mediterranean is suggested. Keywor ds: calcareous Rhodophyta, Corallinales, rhodoliths, maërl, Badenian, Croatia 1. INTRODUCTION an overlying facies of fi ne-graded clastics: fi ne-graded sands, marls, clayey limestones and calcsiltites (VRSALJKO et al., Since Roman times, a building stone named “Litavac” has 2006, 2007a).
    [Show full text]
  • Some Considerations for Analyzing Biodiversity Using Integrative
    Some considerations for analyzing biodiversity using integrative metagenomics and gene networks Lucie Bittner, Sébastien Halary, Claude Payri, Corinne Cruaud, Bruno de Reviers, Philippe Lopez, Eric Bapteste To cite this version: Lucie Bittner, Sébastien Halary, Claude Payri, Corinne Cruaud, Bruno de Reviers, et al.. Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biology Direct, BioMed Central, 2010, 5 (5), pp.47. 10.1186/1745-6150-5-47. hal-02922363 HAL Id: hal-02922363 https://hal.archives-ouvertes.fr/hal-02922363 Submitted on 26 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bittner et al. Biology Direct 2010, 5:47 http://www.biology-direct.com/content/5/1/47 HYPOTHESIS Open Access Some considerations for analyzing biodiversity using integrative metagenomics and gene networks Lucie Bittner1†, Sébastien Halary2†, Claude Payri3, Corinne Cruaud4, Bruno de Reviers1, Philippe Lopez2, Eric Bapteste2* Abstract Background: Improving knowledge of biodiversity will benefit conservation biology, enhance bioremediation studies, and could lead to new medical treatments. However there is no standard approach to estimate and to compare the diversity of different environments, or to study its past, and possibly, future evolution.
    [Show full text]
  • It Was Recognized During Geological Excursions in the Bükk Mountains
    NEWER LIME-SECRETING ALGAE FROM THE MIDDLE CARBONIFEROUS OF THE BÜKK MOUNTAINS, NORTHERN HUNGARY M. NEMETH INTRODUCTION It was recognized during geological excursions in the Bükk Mountains that certain limestone lenses of the Upper Moscovian shale sequence yield other calcareous algae than those dasycladaceans (Vermiporella sp., Anthracoporella sp., A. spectabilis PIA and Dvinella comata CHVOROVA) described previously by HERAK, M. and Ko- CHANSKY, V. [1963]. From limestone samples came from the No. 1 railway cutting of Nagyvisnyó, from the eastern side of the Bánvölgy (NW to the Dédes Castle), from the southern vicinity of the village Mályinka, from Kapubérc, from western side of the summit of Tarófő and from deeper part of the main lens of Nagyberenás the forms of the genera Archaeolithophyllum, Ivanovia, Oligoporellal and Osagia have been recognized. The first two genera belong into the phylloid algae of PRAY, L, C. and WRAY, J. L. [1963]. The genus Macroporella is classed among the family Dasydadaceae, while the Osagia is a crustose calcareous alga of uncertain systemat- ic position. Most interesting are the phylloid algae, which are similar in shape and size to leaves and are slightly or strongerly wavy, in spite of the morphological similarity that suggested by their common name, these are forms of different groups (e.g. green or red algae). This group was named by American authors, because these phylloid algae are abundant, occasionally in rock-forming quantity in the Middle and Upper Carboniferous (Pennsylvanián) and Lower Permian of the USA. On the other hand, the preservation of the cavities between the wavy plates of these algae pro- motes significantly the formation of hydrocarbon traps within the embedding rocks.
    [Show full text]