Topography of Visual Cortex Connections with Frontal Eye Field in Macaque: Convergence and Segregation of Processing Streams

Total Page:16

File Type:pdf, Size:1020Kb

Topography of Visual Cortex Connections with Frontal Eye Field in Macaque: Convergence and Segregation of Processing Streams The Journal of Neuroscience, June 1995. 15(6): 4464-44137 Topography of Visual Cortex Connections with Frontal Eye Field in Macaque: Convergence and Segregation of Processing Streams Jeffrey D. Schall,’ Anne Morel,* Dana J. King,’ and Jean Bullier3 ‘Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, *Laboratory for Functional Neurosurgery, University Hospital, CH-8091 Zurich, Switzerland, and 3Cerveau et Vision, INSERM 371, 69500 Bron, France The primate visual system consists of at least two pro- (Ungerleider and Mishkin, 1982; Morel and Bullier, IWO; Baiz- cessing streams, one passing ventrally into temporal cor- er et al., I99 I ; Young, 1992). How information from the various tex that is responsible for object vision, and the other run- cortical areas is combined to generate perception and action is ning dorsally into parietal cortex that is responsible for not known. The investigation of visually guided eye movements spatial vision. How information from these two streams is may be a domain in which this issue can be examined effectively combined for perception and action is not understood. Vi- because information about both object identity and spatial lo- sually guided eye movements require information about cation must be combined to produce accurate eye movements. both feature identity and location, so we investigated the During natural viewing, saccades of less than IO” amplitude, topographic organization of visual cortex connections with which are by far the most common (Bahill et al., 1975), direct frontal eye field (FEF), the final stage of cortical processing gaze to conspicuous and informative features in the scene (re- for saccadic eye movements. Multiple anatomical tracers viewed by Viviani, 1990; Rayner, 1992). Thus, both object vi- were placed either in parietal and temporal cortex or in dif- sion and spatial vision are needed for these saccades. Larger ferent parts of FEF in individual macaque monkeys. Con- amplitude saccades, however, being guided less by object rec- vergence from the dorsal and ventral processing streams ognition processes because of reduced peripheral visual acuity, occurred in lateral FEF but not in medial FEF. Certain ex- are involved in orienting responses to peripheral visual as well trastriate areas with retinotopic visual field organizations as to acoustic stimuli and therefore are more closely related to projected topographically onto FEF. The dorsal bank of the spatial vision. This study examined the pattern of connections superior temporal sulcus projected to medial FEF; the ven- tral bank, to lateral FEF, and the fundus, throughout FEF. of frontal eye field (FEF) and surrounding prefrontal cortex with Thus, lateral FEF, which is responsible for generating short extrastriate visual areas and other postcentral cortical areas be- saccades, receives visual afferents from the fovea1 repre- cause FEF represents a final stage of cortical processing for vi- sentation in retinotopically organized areas, from areas sually guided, purposive saccades (Bruce and Goldberg, 1985: that represent central vision in inferotemporal cortex and Segraves and Goldberg, 1987; Schall, 1991 b; Dassonville et al., from other areas having no retinotopic order. In contrast, 1992; Segraves, 1992). medial FEF, which is responsible for generating longer A number of studies have investigated FEF connectivity (re- saccades, is innervated by the peripheral representation of viewed by Leichnetz and Goldberg, 1988). This study departs retinotopically organized areas, from areas that emphasize from previous work in several ways. First. two or three tracers peripheral vision or are multimodal and from other areas were injected simultaneously in the same animal. The tracers that have no retinotopic order or are auditory. were placed either within functionally distinct areas-posterior [Key words: frontal eye field, saccade, eye movement, parietal and inferior temporal cortex-or within different zones visual system, extrastriate cortex, oculomotor system, vi- of one functionally identified area-the frontal eye tield. This sual cortex, parallel pathways, frontal cortex] method makes it possible for the first time to examine directly the convergence and segregation of visual processing streams in Visual processing in the cerebral cortex proceeds through mul- tiple visual areas into a dorsal pathway responsible for spatial frontal cortex. Second, the description of architectonic and func- vision and into a ventral pathway responsible for object vision tional areas in prearcuate cortex (Bruce et al., 1985; Stanton et al., 1989: Preuss and Goldman-Rakic, 1991) and in extrastriate visual cortex has become more refined (reviewed by Colby and Rrccivcd July 20. lYY3: r&ml Jan. IY. IYYS: accepted Jan. 23. lYY5. We thallh Sandrinc Bcnumont, Noelle Bayer. Judy Ives. Lmrn Trite, and Duhamel, 1991; Fellernan and Van Essen, 1991). The locations Rcnw Wall l)r skilled technicnl ahsistancc. S;mh Adcrholt. Sarah Laborde, of tracer injections and the spatial distribution of labeled ter- Frmk Tu. ;ml Chl-i\ty Whalley for a\~\tnnce with data acquisition and nnnl- minals and neurons were analyzed in relation to these improved ysis, md the rcvicwcr~ lor helpful comments. J. Scholl wx suppwtetl by ROI EYOXXYO. il t’cllmvship l’rm~ the Alfred P Sloan Fwndation, :I grmt f’nm the architectonic descriptions. Finally, prearcuate cortex has a rough McDonnell-Pew Prqr;m it1 Cognitivr Neuroscience, P30-EYOX 126 to the retinotopic organization of saccade amplitude and visual tield Vanderhllt Vision Rewarch Center. and PX-HDlSOS2 to the John E Kennedy Ccntel- lx Rewarch 011 Educntim and Humun Development. A. Morel was eccentricity. Shorter saccades are generated by lateral FEE and wpportcd hy the Fmtkltion pwr la Recherchc h4Gtlic;dc and by ROI -EYO26Xh longer saccades, by medial FEF (Robinson and Fuchs, 1969; to J. KxI\. Bruce et al., 1985). Also, the receptive fields of visual cells in C~rrc\p~ndence hhoultl hr xldre\sed to Dr. Jcfltey D. Schnll. Department 01 Psychology, Wilwn Hall, Vmderbilt IJniverGty, Nashville. TN 37240. lateral prearcuate cortex represent the central visual tield. and Copyright 0 I YY5 Society for Neuroscience 0270-6474/%/l 54464-24%05.00/0 dorsomedial cells, the peripheral visual tield (Suzuki and Azu- The Journal of Neuroscience, June 1995, 15(6) 4465 ma, 1983). There is little information about the topography of rescent dyes were injected in 3% aqueous solution. WGA-HRP was visual afferents to FEE For example, it is not known whether injected in 2% saline. The injections were made with a I or S PI Han- ilton syringe onto which a pulled micropipette was attached. Injections retinotopically organized visual areas such as MT project topo- were placed at a rate of 0.1 ~I/20 min/mm along 4-6 mm long pene- graphically onto FEE Nor is it known whether areas that have trations into the rostra1 bank of the arcuate sulcus. an overrepresentation of the central or of the peripheral visual Hisfologicd prowssing. Conventional histological procedures were tield project differentially onto medial or lateral FEE The results used (Huerta et al., 1987; Morel and Bullier, 1990; Schall et al., 1993b). of this investigation provide information that is necessary for Animals that received only fluorescent dyes recovered for a period of IO-IS d, and animals that received WGA-HRP + NY or WGA-HRP interpreting the functional properties of neurons in FEF in re- + tritiated amino acids survived 3 d. In one case (AM8). Huorescent lation to saccades guided by different kinds of visual informa- dyes were injected IO d before the injection of WGA-HRI? After per- tion. fusion, the brains were removed, photographed, and separated into two Preliminary reports of these data have appeared (Morel and blocks by a coronal section rostra1 to the central sulcus. Only the hem- Bullier, 1987; Schall et al., 1991, 1993a). sphere ipsilateral to the injections was studied. The rostra1 blocks were sectioned coronally in all cases except AM5.5 in which parasagittal sec- tions were used. The caudal blocks were sectioned coronally except for Materials and Methods AM4, which was cut instead horizontally. Sections were 40 or SO km thick, and those containing Huorescent material were immediately Three Mrrcrrccr rnulutttr and four Mucwrr ,firsciculuris monkeys, weigh- mounted, coverslipped, and stored at 4°C. An alternate series of sections ing 2-8 kg. provided the data for this study. All animals were cared for were stained for Nissl (cresyl violet or thionin) or myelin (GaIlyas, in accordance with the National Institutes of Health Guide for the Care 1979). In cases with WGA-HRP injections (e.g.. AM8 and AM2S), a and Use of Laboratory Animals. Data from the four cynomolgus mon- series of sections was processed for HRP histochemistry with the low keys were collected at Vision et Motricite, INSERM 94, where multiple artifact tetramethyl benzidine (TMB) method (Gibson et al.. 1984). In tracer injections were made into posterior parietal and inferior temporal AM2, a series was processed for autoradiography; sections were mount- cortex; we have already described the organization of connectivity ed and dipped in Ilford emulsion, exposed at 4°C for l&24 weeks, and among prestriate visual areas (Morel and Bullier, 1990). Data from the developed in Kodak PLl2, fixed, and counterstained with cresyl violet. three rhesus monkeys in which multiple tracer injections were made Sections containing fluorescent labeling were observed under ultra- into FEF were collected
Recommended publications
  • Structure and Function of Visual Area MT
    AR245-NE28-07 ARI 16 March 2005 1:3 V I E E W R S First published online as a Review in Advance on March 17, 2005 I E N C N A D V A Structure and Function of Visual Area MT Richard T. Born1 and David C. Bradley2 1Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115-5701; email: [email protected] 2Department of Psychology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Annu. Rev. Neurosci. Key Words 2005. 28:157–89 extrastriate, motion perception, center-surround antagonism, doi: 10.1146/ magnocellular, structure-from-motion, aperture problem by HARVARD COLLEGE on 04/14/05. For personal use only. annurev.neuro.26.041002.131052 Copyright c 2005 by Abstract Annual Reviews. All rights reserved The small visual area known as MT or V5 has played a major role in 0147-006X/05/0721- our understanding of the primate cerebral cortex. This area has been 0157$20.00 historically important in the concept of cortical processing streams and the idea that different visual areas constitute highly specialized Annu. Rev. Neurosci. 0.0:${article.fPage}-${article.lPage}. Downloaded from arjournals.annualreviews.org representations of visual information. MT has also proven to be a fer- tile culture dish—full of direction- and disparity-selective neurons— exploited by many labs to study the neural circuits underlying com- putations of motion and depth and to examine the relationship be- tween neural activity and perception. Here we attempt a synthetic overview of the rich literature on MT with the goal of answering the question, What does MT do? www.annualreviews.org · Structure and Function of Area MT 157 AR245-NE28-07 ARI 16 March 2005 1:3 pathway.
    [Show full text]
  • Visual Cortex in Humans 251
    Author's personal copy Visual Cortex in Humans 251 Visual Cortex in Humans B A Wandell, S O Dumoulin, and A A Brewer, using fMRI, and we discuss the main features of the Stanford University, Stanford, CA, USA V1 map. We then summarize the positions and proper- ties of ten additional visual field maps. This represents ã 2009 Elsevier Ltd. All rights reserved. our current understanding of human visual field maps, although this remains an active field of investigation, with more maps likely to be discovered. Finally, we Human visua l cortex comprises 4–6 billion neurons that are organ ized into more than a dozen distinct describe theories about the functional purpose and functional areas. These areas include the gray matter organizing principles of these maps. in the occi pital lobe and extend into the temporal and parietal lobes . The locations of these areas in the The Size and Location of Human Visual intact human cortex can be identified by measuring Cortex visual field maps. The neurons within these areas have a variety of different stimulus response proper- The entirety of human cortex occupies a surface area 2 ties. We descr ibe how to measure these visual field on the order of 1000 cm and ranges between 2 and maps, their locations, and their overall organization. 4 mm in thickness. Each cubic millimeter of cortex contains approximately 50 000 neurons so that neo- We then consider how information about patterns, objects, color s, and motion is analyzed and repre- cortex in the two hemispheres contain on the order of sented in these maps.
    [Show full text]
  • Network Centrality in Patients with Acute Unilateral Open Globe Injury: a Voxel‑Wise Degree Centrality Study
    MOLECULAR MEDICINE REPORTS 16: 8295-8300, 2017 Network centrality in patients with acute unilateral open globe injury: A voxel‑wise degree centrality study HUA WANG1, TING CHEN1, LEI YE2, QI-CHEN YANG3, RONG WEI2, YING ZHANG2, NAN JIANG2 and YI SHAO1,2 1Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008; 2Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi 330006; 3Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, P.R. China Received January 12, 2017; Accepted August 1, 2017 DOI: 10.3892/mmr.2017.7635 Abstract. The present study aimed to investigate functional Introduction networks underlying brain-activity alterations in patients with acute unilateral open globe injury (OGI) and associations with Open globe injury (OGI) is a severe eye disease that frequently their clinical features using the voxel-wise degree centrality causes unilateral visual loss. Ocular trauma is a public health (DC) method. In total, 18 patients with acute OGI (16 males and problem in developing countries (1,2). A previous study indicated 2 females), and 18 healthy subjects (16 males and 2 females), that the annual prevalence of ocular trauma was 4.9 per 100,000 closely matched in age, sex and education, participated in the in the Western Sicily Mediterranean area, which investigated a present study. Each subject underwent a resting-state functional 5 year period from January 2001 to December 2005 (3). In addi- magnetic resonance imaging scan. The DC method was used tion, the incidence of OGI is increased in men compared with to assess local features of spontaneous brain activity.
    [Show full text]
  • Eye Fields in the Frontal Lobes of Primates
    Brain Research Reviews 32Ž. 2000 413±448 www.elsevier.comrlocaterbres Full-length review Eye fields in the frontal lobes of primates Edward J. Tehovnik ), Marc A. Sommer, I-Han Chou, Warren M. Slocum, Peter H. Schiller Department of Brain and CognitiÕe Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA Accepted 19 October 1999 Abstract Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortexŽ. DMFC ; the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye fieldŽ. FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only.
    [Show full text]
  • Study of Extra-Visual Resting-State Networks in Pituitary Adenoma Patients with Vision Restoration
    Study of Extra-visual Resting-state Networks in Pituitary Adenoma Patients With Vision Restoration Fuyu Wang ( [email protected] ) Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China https://orcid.org/0000- 0003-2232-5423 Peng Wang PLAGH: Chinese PLA General Hospital Ze Li PLAGH: Chinese PLA General Hospital Tao Zhou Chinese PLA General Hospital Xianghui Meng Chinese PLA General Hospital Jinli Jiang Chinese PLA General Hospital Research article Keywords: cross-modal plasticity, default mode network, resting-state functional magnetic resonance imaging, salience network, visual improvement Posted Date: December 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133978/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: Pituitary adenoma(PA) may compress the optic apparatus and cause impaired vision. Some patients can get improved vision rapidly after surgery. During the early time after surgery, however, the change of neurofunction in extra-visual cortex and higher cognitive cortex is still yet to be explored so far. Objective: Our study is focused on the changes in the extra-visual resting-state networks in PA patients after vision restoration. Methods:We recruited 14 PA patients with visual improvement after surgery. The functional connectivity (FC) of 6 seeds (auditory cortex (A1), Broca's area, posterior cingulate cortex (PCC)for default mode network (DMN), right caudal anterior cingulate cortex for salience network(SN) and left dorsolateral prefrontal cortex for excecutive control network (ECN)) were evaluated. A paired t-test was conducted to identify the differences between two groups.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • A Direct Demonstration of Functional Specialization in Human Visual Cortex
    The Journal of Neuroscience, March 1991, 17(3): 641-649 A Direct Demonstration of Functional Specialization in Human Visual Cortex S. Zeki,’ J. D. G. Watson,1r2-3 C. J. Lueck,4 K. J. Friston,* C. Kennard,4 and R. S. J. Frackowiak2,3 ‘Department of Anatomy, University College, London WClE 6BT, United Kingdom, ‘MRC Cyclotron Unit, Hammersmith Hospital, London W12 OHS, United Kingdom, 31nstitute of Neurology, Queen Square, London WClN3BG, United Kingdom, and 4Department of Neurology, The London Hospital, London El lBB, United Kingdom. We have used positron emission tomography (PET), which Fritsch and Hitzig (1870) in Germany firmly established its measures regional cerebral blood flow (rCBF), to demon- foundations by showing that the integrity of specific, separate strate directly the specialization of function in the normal cortical areasis necessaryfor the production of articulate speech human visual cortex. A novel technique, statistical para- and voluntary movement. Subsequentwork charting and defin- metric mapping, was used to detect foci of significant change ing the many cortical areas associatedwith different functions in cerebral blood flow within the prestriate cortex, in order has been a triumph of neurology. By the 1930s Lashley could to localize those parts involved in the perception of color write that “in the field of neurophysiology no fact is more firmly and visual motion. For color, we stimulated the subjects with establishedthan the functional differentiation of various parts a multicolored abstract display containing no recognizable of the cerebral cortex. No one to-day can seriously believe objects (Land color Mondrian) and contrasted the resulting that the different parts of the cerebral cortex all have the same blood flow maps with those obtained when subjects viewed functions or can entertain for a moment the proposition of an identical display consisting of equiluminous shades of Hermann that becausethe mind is a unit the brain must also gray.
    [Show full text]
  • How Are Visual Areas of the Brain Connected to Motor Areas for the Sensory Guidance of Movement?
    R EVIEW How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Mitchell Glickstein Visual areas of the brain must be connected to motor areas for the sensory guidance of movement.The first step in the pathway from the primary visual cortex is by way of the dorsal stream of visual areas in the parietal lobe.The fact that monkeys can still guide their limbs visually after cortico–cortical fibres have been severed suggests that there are subcortical routes that link visual and motor areas of the brain.The pathway that runs from the pons and cerebellum is the largest of these. Pontine cells that receive inputs from visual cortical areas or the superior colliculus respond vigorously to appropriate visual stimuli and project widely on the cerebellar cortex. A challenge for future research is to elucidate the role of these cerebellar target areas in visuo–motor control. Trends Neurosci. (2000) 23, 613–617 OST HUMAN and animal movements are Munk4 discovered that unilateral lesions of the stri- Munder continual sensory guidance. In humans ate cortex of the occipital lobe in monkeys produced and the higher primates, the dominant sense that hemianopia, that is, the monkey became blind in controls movement is vision. One of the central the visual field on the opposite side to the lesion. problems in neuroscience is to understand how the Munk’s identification of the visual functions of the brain uses visual input to control whole body move- occipital lobe was confirmed in humans by ments, such as walking through a crowded railroad Henschen5.
    [Show full text]
  • Improved Visual Function in a Case of Ultra-Low Vision Following Ischemic
    Improved visual function in a case of ultra-low vision following ischemic encephalopathy following transcranial electrical stimulation; A case study Ali-Mohammad Kamali1,2,3,4, Mohammad Javad Gholamzadeh 3,4, Seyedeh Zahra Mousavi3,4, Maryam Vasaghi Gharamaleki 3,4, Mohammad Nami 1,2,3,5* 1Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran 2DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran. 3Neuroscience Laboratory, NSL (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran 4Students’ Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran 5Academy of Health, Senses Cultural Foundation, Sacramento, CA, USA Corresponding author *Mohammad Nami. Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. [email protected] Abstract Objectives: Cortical visual impairment is amongst the key pathological causes of pediatric visual abnormalities predominantly resulting from hypoxic-ischemic brain injury. Such an injury results in profound visual impairments which severely impairs patients’ quality of life. Given the nature of the pathology, treatments are mostly limited to rehabilitation strategies such as transcranial electrical stimulation and visual rehabilitation therapy. Case description: Here, we discussed an 11 year-old
    [Show full text]
  • Visual Field Map Clusters in Human Frontoparietal Cortex Wayne E Mackey1, Jonathan Winawer1,2, Clayton E Curtis1,2*
    RESEARCH ARTICLE Visual field map clusters in human frontoparietal cortex Wayne E Mackey1, Jonathan Winawer1,2, Clayton E Curtis1,2* 1Center for Neural Science, New York University, New York, United States; 2Department of Psychology, New York University, New York, United States Abstract The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher- order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field modeling, we map and characterize the topographic organization of several regions in human frontoparietal cortex. We discover representations of both polar angle and eccentricity that are organized into clusters, similar to visual cortex, where multiple gradients of polar angle of the contralateral visual field share a confluent fovea. This is striking because neural activity in frontoparietal cortex is believed to reflect higher-order cognitive functions rather than external sensory processing. Perhaps the spatial topography in frontoparietal cortex parallels the retinotopic organization of sensory cortex to enable an efficient interface between perception and higher-order cognitive processes. Critically, these visual maps constitute well-defined anatomical units that future studies of frontoparietal cortex can reliably target. DOI: 10.7554/eLife.22974.001 Introduction A fundamental organizing principle of sensory cortex is the topographic mapping of stimulus dimen- *For correspondence: clayton. sions (Mountcastle, 1957; Kaas, 1997). For instance, visual areas contain maps of the visual field, [email protected] wherein the spatial arrangement of an image is preserved such that nearby neurons represent adja- Competing interests: The cent points in the visual field (Inouye, 1909; Holmes, 1918).
    [Show full text]
  • Connections of Inferior Temporal Areas TE and TEO with Medial Temporal-Lobe Structures in Infant and Adult Monkeys
    The Journal of Neuroscience, April 1991, 17(4): 1095-I 116 Connections of Inferior Temporal Areas TE and TEO with Medial Temporal-Lobe Structures in Infant and Adult Monkeys M. J. Webster, L. G. Ungerleider, and J. Bachevalier Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892 As part of a long-term study designed to examine the on- tion. Both elimination and refinement of projections thus ap- togeny of visual memory in monkeys and its underlying neu- pear to characterize the maturation of axonal pathways be- ral circuitry, we have examined the connections between tween the inferior temporal cortex and medial temporal-lobe inferior temporal cortex and medial temporal-lobe structures structures in monkeys. in infant and adult monkeys. Inferior temporal cortical areas TEO and TE were injected with WGA conjugated to HRP and In the course of neural development, numerous mechanisms tritiated amino acids, respectively, or vice versa, in 1 -week- are at play to achieve the final configuration of the mature brain. old and 3-4-yr-old Macaca mulatta, and the distributions of These mechanismsinclude cell death, the growth of dendritic labeled cells and terminals were examined in both limbic spines,and the remodeling of connections. Such remodeling can structures and temporal-lobe cortical areas. In adult mon- take 2 forms. In the first instance, projections become more keys, inferior temporal-limbic connections included projec- restricted. That is, they initially terminate in the appropriate tions from area TEO to the dorsal portion of the lateral nu- area of the brain, but their target fields are considerably more cleus of the amygdala and from area TE to the lateral and widespreadin infancy than they will be later in adulthood.
    [Show full text]
  • Early Visual Cortex Tai Sing Lee *
    Journal of Physiology - Paris 97 (2003) 121–139 www.elsevier.com/locate/jphysparis Computations in the early visual cortex Tai Sing Lee * Center for the Neural Basis of Cognition and Department of Computer Science, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA Abstract This paper reviews some of the recent neurophysiological studies that explore the variety of visual computations in the early visual cortex in relation to geometric inference, i.e. the inference of contours, surfaces and shapes. It attempts to draw connections between ideas from computational vision and findings from awake primate electrophysiology. In the classical feed-forward, modular view of visual processing, the early visual areas (LGN, V1 and V2) are modules that serve to extract local features, while higher extrastriate areas are responsible for shape inference and invariant object recognition. However, recent findings in primate early visual systems reveal that the computations in the early visual cortex are rather complex and dynamic, as well as interactive and plastic, subject to influence from global context, higher order perceptual inference, taskrequirement and behavioral experience. The evidence argues that the early visual cortex does not merely participate in the first stage of visual processing, but is involved in many levels of visual computation. Ó 2003 Elsevier Ltd. All rights reserved. Keywords: Primate electrophysiology; Vision; Saliency; Segmentation; Symmetry; Shape 1. Introduction crystallize in their minds. The spots and dots are trans- formed into the surface markings of the dog’s body. 1.1. The interactive nature of perceptual computation Furthermore, if the same image is presented again to the same viewers in the future, they will be able to see the dog Visual processing may be conceptualized as what instantly.
    [Show full text]