Toolpath Planning Methodology for Multi-Gantry Fused Filament Fabrication 3D Printing
Total Page:16
File Type:pdf, Size:1020Kb
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2019 Toolpath Planning Methodology for Multi-Gantry Fused Filament Fabrication 3D Printing Hieu Trung Bui University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Industrial Technology Commons, Nanotechnology Fabrication Commons, and the Operational Research Commons Recommended Citation Bui, Hieu Trung, "Toolpath Planning Methodology for Multi-Gantry Fused Filament Fabrication 3D Printing" (2019). Theses and Dissertations. 3374. https://scholarworks.uark.edu/etd/3374 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Toolpath Planning Methodology for Multi-Gantry Fused Filament Fabrication 3D Printing A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Industrial Engineering by Hieu Bui University of Arkansas Bachelor of Science in Industrial Engineering, 2015 University of Arkansas Master of Science in Operations Management, 2017 August 2019 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ____________________ Harry Pierson, Ph.D. Thesis Director ____________________ ____________________ Sarah Nurre, Ph.D. Kelly Sullivan, Ph.D. Committee member Committee member Abstract Additive manufacturing (AM) has revolutionized the way industries manufacture and prototype products. Fused filament fabrication (FFF) is one of the most popular processes in AM as it is inexpensive, requires low maintenance, and has high material utilization. However, the biggest draWback that prevents FFF printing from being Widely implemented in large-scale production is the cycle time. The most practical approach is to allow multiple collaborating printheads to work simultaneously on different parts of the same object. However, little research has been introduced to support the aforementioned approach. Hence a neW toolpath planning methodology is proposed in this paper. The objectives are to create a collision-free toolpath for each printhead while maintaining the mechanical performance of the printed model. The proposed method utilizes the Tabu Search heuristic and a combination of tWo subroutines: collision checking and collision resolution (TS-CCR). A computer simulation was used to compare the performance of the proposed method with the industry-standard approach in terms of cycle time. Physical experimentation is conducted to validate the mechanical strength of the TS-CCR specimens. The experiment also validated that the proposed toolpath can be executed on a custom multi-gantry setup Without a collision. Experimental results indicated that the proposed TS-CCR can create toolpaths with shorter makespans than the current standard approach while achieving better ultimate tensile strength (UTS). This research represents opportunities for developing general toolpath planning for concurrent 3D printing. Acknowledgements I am grateful to my advisor, Dr. Harry Pierson, for his continuous support and guidance. His expertise has helped me explore neW objectives for this research. I would like to thank Dr. Sarah Nurre, and Dr. Kelly Sullivan for their valuable time and support throughout the research. I also want to thank Mr. Mark Kuss for his help in using the machine to measure the tensile strength. Table of Contents 1. Introduction ............................................................................................................................. 1 2. Literature revieW ..................................................................................................................... 3 2.1. Toolpath planning optimization for FFF ...................................................................................... 3 2.2. Concurrent 3D printing ................................................................................................................ 4 2.3. Multi-object motion planning ...................................................................................................... 4 2.4. Summary ...................................................................................................................................... 5 3. Methods ................................................................................................................................... 6 3.1. OvervieW ...................................................................................................................................... 6 3.2. Tabu search heuristic .................................................................................................................... 7 3.3. CCR subroutines ........................................................................................................................ 11 3.3.1. Collision checking subroutine .............................................................................................................. 14 3.3.2. Collision resolution subroutine ............................................................................................................. 15 3.4. Closed-loop control and resynchronization process. ................................................................. 17 3.5. Experimentation ......................................................................................................................... 20 3.5.1. Simulation setup ................................................................................................................................... 20 3.5.2. Custom multi-gantry printer’s setup ..................................................................................................... 22 3.5.3. Tensile specimen design ....................................................................................................................... 23 3.5.4. Tensile testing procedures .................................................................................................................... 25 4. Results ................................................................................................................................... 26 4.1. Simulation results ....................................................................................................................... 26 4.2. Physical experiment results ........................................................................................................ 27 4.2.1. Results from tensile test ........................................................................................................................ 27 4.2.2. TS-CCR and closed-loop control validation ........................................................................................ 29 5. Discussions ............................................................................................................................ 31 5.1. Performance of TS-CCR ............................................................................................................ 31 5.2. Physical test ................................................................................................................................ 34 6. Conclusions ........................................................................................................................... 35 7. References: ............................................................................................................................ 36 8. AppendiX ............................................................................................................................... 38 8.1. Collision resolution subroutine illustration. ............................................................................... 38 List of Tables Table 3.1. Process Parameters for 3D printed parts ..................................................................... 24 Table 4.1. Results from tensile testing. ........................................................................................ 28 List of Figures Figure 1.1. Toolpath illustrations of applying OSA and the proposed method on “IE Hog” layer on 2-gantry 3D printer. .................................................................................................................... 2 Figure 3.1 Raster segments with identification number of IE Hog layer (2% infill was used for demonstration purpose) ................................................................................................................... 7 Figure 3.2. Illustration of the three operators used to generate neW solutions ............................... 8 Figure 3.3. Flowchart of the tabu search algorithm ....................................................................... 9 Figure 3.4. Flowchart of the solution evaluation with the help of CCR ...................................... 11 Figure 3.5. Toolpath representation of a potential solution. ........................................................ 12 Figure 3.6. Illustration of the calculation of the x-coordinate of each gantry. ............................. 14 Figure 3.7. Trajectory plot of the toolpath in Figure 3.5, collision checking subroutine identified 6 potential collisions ...................................................................................................................... 15 Figure 3.8. Trajectory plot result from the CCR. Several delays were added to solve