University of Groningen Hydrogenation of Edible Oils And
Total Page:16
File Type:pdf, Size:1020Kb
University of Groningen Hydrogenation of edible oils and fats Jonker, Geert Hilbertus IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1999 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Jonker, G. H. (1999). Hydrogenation of edible oils and fats. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 28-09-2021 literature cited Literature Cited Albright, L. F. Mechanism of hydrogenation of triglycerides. J. Am. Oil Chem. Soc. 1963, 40, 16–17, 26, 28–29. Albright, L. F. Partial hydrogenation of triglycerides-Current status and recommendations relative to the mechanism and processes. Fette, Seifen, Anstrichm. 1985, 87, 140–146. Albright, L. F.; Wisniak, J. Selecitivity and isomerization during partial hydrogenation of cottonseed oil and methyl oleate: Effect of operating variables. J. Am. Oil Chem. Soc. 1962, 39, 14–19. Allen, R. R.; Kiess A. A. Isomerization during hydrogenation. I. Oleic acid. J. Am. Oil Chem. Soc. 1955, 32, 400–405. Andersson, K.; Hell, M.; Löwendahl, L.; Schöön, N.-H. Diffusivities of hydrogen and glyceryl trioleate in cottonseed oil at elevated temperature. J. Am. Oil Chem. Soc. 1974, 51, 171–173. Babenkova, L. V.; Naidina, I. N.; Kokh, I. G. Investigation of chemisorption of hydrogen and methyl linoleate on Ni-Ce/kieselgur. Kin. Catal. 1994, 35, 106–110. Beenackers, A. A. C. M.; van Swaaij, W. P. M. Mass transfer in gas–liquid slurry reactors. Chem. Eng. Sci. 1993, 48, 3109–3139. Bern, L.; Hell, M.; Schöön, N.-H. Kinetics of the hydrogenation of rapeseed oil. I. Influence of transport steps in kinetic study. J. Am. Oil Chem. Soc. 1975a, 52, 182–187. Bern, L.; Hell, M.; Schöön, N.-H. Kinetics of the hydrogenation of rapeseed oil. II. Rate equations of chemical reactions. J. Am. Oil Chem. Soc. 1975b, 52, 391–394. Chen, N. Y.; Degnan Jr., T. F.; Morris Smith, C. Molecular transport and reaction in zeolites. Design and application of shape selective catalysts. VCH Publishers, USA, 1994. Coenen, J. W. E. The mechanism of the selective hydrogenation of fatty oils, in J.H. de Boer (ed.), The mechanism of heterogeneous catalysis; Elsevier: Amsterdam, 1960 pp. 126– 158. Coenen, J. W. E. Hydrogenation of edible oils. J. Am. Oil Chem. Soc. 1976, 53, 382–389. Coenen, J. W. E. Catalytic hydrogenation of fatty oils. Ind. Eng. Chem. Fundam. 1986, 25, 43–52. Coenen, J. W. E.; Boerma, H. Absorption der Reaktionspartner am Katalysator bei der Fetthydrierung. Fette, Seifen, Anstrichm. 1968, 70, 8–14. Colen, G. C. M.; Van Duijn, G.; Van Oosten, H. J. Effect of pore diffusion on the triacylglycerol distribution of partially hydrogenated trioleoylglycerol. App. Catal. 1988, 43, 339–350. Cordova., W. A ; Harriott, P. Mass transfer resistances in the palladium-catalyzed hydrogenation of methyl linoleate. Chem. Eng. Sci. 1975, 30, 1201–1206. Cousins, E. R.; Feuge, R. O. Hydrogenation of methyl oleate in solvents. J. Am. Oil Chem. Soc. 1960, 37, 435–438. Cumberland, D. J.; Crawford, R. J., The Packing of Particles. Elsevier Amsterdam, 1987. Dietrich, E.; Mathieu, C.; Delmas, H.; Jenck, J. Raney-nickel catalyzed hydrogenations: gas– liquid mass transfer in gas-induced stirred slurry reactors. Chem. Eng. Sci. 1992, 47, 3597–3604. Drozdowksi, B.; Zajac, M. Kinetics of nickel catalyst poisoning. J. Am. Oil Chem. Soc. 1980, 57, 149–153. Dumez, F. J.; Hosten, L. H.; Froment, G. F. The use of sequential discrimination in the kinetic study of 1-butene dehydrogenation. Ind. Eng. Chem., Fundam. 1977, 16, 298–301. Dutton, H. J. Hydrogenated fats: processing, analysis and biological implications. Chem. Ind. 1982, 2 jan., 9–17. 124 literature cited Dutton, H.; Scholfield, C.; Selke, E.; Rohwedder, W. K. Double bond migration, geometric isomerization, and deuteric distribution during heterogeneous catalytic deuteration of methyl oleate. J. Catal. 1968, 10, 316–327. Edvarsson, J.; Irandoust, S. Poisoning of nickel-based catalyst in fat hydrogenation: a literature review. J. Am. Oil Chem. Soc. 1993, 70, 1149–1156. Eiteman, M. A.; Goodrum, J. W. Density and viscosity of low-molecular weight triglycerides and their mixtures. J. Am. Oil Chem. Soc. 1994, 71, 1261–1265. Eldib, I. A.; Albright, L. F. Operating variables in hydrogenating cottonseed oil. Ind. Eng. Chem. 1957, 49, 825–831. Emig, G.; Hosten, L. H. On the reliability of parameter estimates in a set of simultaneous nonlinear differential equations. Chem. Eng. Sci 1974, 29, 475–483. Emken, E. A. Dispelling misconceptions with stable isotopes. INFORM, 1995, 5, 906-921. Ergun, S. Fluid flow through packed columns. Chem. Eng. Process 1952, 48, 89–94. Everett, D. H. Reporting data on adsorption from solution at the solid/solution interface, Pure and Appl. Chem. 1986, 58, 968–984. Feuge, R. O. Hydrogenation of glyceride oils. pp. 413–451. Catalysis-III: Hydrogenation and dehydrogenation. Reinhold Publishing, 1955. Feuge, R. O.; Pepper Jr., M. B. ; O'Connor, R. T.; Field, E. T. Modification of vegetable oils. XI. The formation of trans isomers during the hydogenation of methyl oleate and triolein. J. Am. Oil Chem. Soc. 1951, 28, 420–426. Fisher, R. A. Statistical methods for research workers, 14th ed., Macmillan: New York, 1970. Fouilloux, P. The nature of Raney nickel, its adsorbed hydrogen and its catalytic activity for hydrogenation reactions (review). App. Catal. 1983, 8, 1–42. Froment, G. F.; Bischoff, K. B. Chemical reactor analysis and design; John Wiley & Sons: New York, 1979. Froment, G. F.; Hosten, L. H. Catalysis kinetics: modelling. Catalysis, Science and technology; vol. 2, edited by Anderson, J. R.; Boudart, M.; Springer-Verlag: Berlin, 1981. Ganguli, K. L. Measurements of H2/edible oil interfacial area in an agitated hydrogenator using a Ziegler–Natta catalyst. PhD thesis. Technical University of Delft, 1975. Ganguli, K. L.; Van den Berg, H. J. Edible oil hydrogenation rates in the presence of a homogeneous Ziegler–Natta catalyst in a film reactor. Chem. Eng. Sci. 1978, 33, 27–34. García-Ochoa, F; Santos, A. Effective diffusivity under inert and reaction conditions. Chem. Eng. Sci. 1994, 49, 3091–3102. Giddings, J. C. Kinetic origin of tailing in chromatography. Anal. Chem. 1963, 35, 1999– 2002. Giddings, J. C.; Eyring, H. A molecular dynamic theory of chromatography. J. Phys. Chem. 1955, 59, 416–421 Graaf, G. H. The synthesis of methanol in gas–solid and gas–slurry reactors. PhD thesis, University of Groningen, 1988. Graaf, G. H.; Winkelman, J. G. M.; Stamhuis, E. J.; Beenackers, A. A. C. M. Kinetics of the three phase methanol synthesis. Chem. Eng. Sci. 1988a, 43, 2161–2168. Graaf, G. H.; Stamhuis., E. J.; Beenackers, A. A. C. M.; Kinetics of low-pressure methanol synthesis. Chem. Eng. Sci. 1988b, 43, 3185–3195. Grau, R. J.; Cassano, A. E.; Baltan«s, M. A. Kinetics of methyl oleate catalytic hydrogenation with quantitative evaluation of cis–trans isomerization equilibrium. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 722–728. Grau, R. J.; Cassano, A. E.; Baltan«s, M. A. The Cup-and-Cap reactor: a device to eliminate induction times in mechanically agitated slurry reactors operated with fine catalyst particles, Ind. Eng. Chem. Res. 1987a., 26, 18–22. Grau, R. J.; Cassano, A. E.; Baltan«s, M. A. Solution of a complex reaction network. The methyl-linoleate catalytic hydrogenation. Chem. Eng. Comm. 1987b, 58, 17–36. 125 literature cited Gut, G.; Kosinka, J.; Prabucki, A.; Schuerch, A Kinetics of the liquid-phase hydrogenation and isomerization of sunflower seed oil with nickel catalysts. Chem. Eng. Sci. 1979, 34, 1051–1056. Hashimoto K.; Muroyama, K.; Nagata, S. Kinetics of the hydrogenation of fatty oils. J. Am. Oil Chem. Soc. 1971, 48, 291–295. Haynes, H. W. The experimental evaluation of catalyst effective diffusivity. Catal. Rev.-Sci. Eng. 1988, 30, 563–627. Haynes Jr., H. W.; Sarma, P. N. A. Model for the application of gas chromatography to measurements of diffusion in bidisperse structured catalysts. AIChE J. 1973, 19, 1043– 1046. Heertje, I; Boerma, H. Selectivity and monoene isomerization in the catalytic hydrogenation of polyenoic fatty acid methyl esters. J. Catal. 1971, 21, 20–26. Heertje, I.; Koch, G. K.; Wösten, W. J. Mechanism of heterogeneous catalytic cis–trans isomerization and double-bond migration of octadecenoates. J. Catal. 1974, 32, 337– 342. Hejtmánek, V.; Schneider, P. Diffusion of large molecules in porous glas. Chem. Eng. Sci. 1994, 49, 2575–2584. Horiuti, J.; Polanyi, M. Exchange reactions of hydrogen on metallic catalysts. Trans. Faraday Soc. 1934, 30, 1164–1172. Johnson, A. D.; Daley, S. P.; Utz, A. L.; Ceyer, S. T. The chemistry of bulk hydrogen: reaction of hydrogen embedded in nickel with adsorbed methyl. Science 1992, 257, 223- 225. Jonker, G. H.; Hoffmann, A. C.; Beenackers, A. A. C. M. Classification mechanism of the chute, a liquid phase removal of fines in the micron range from a batch of particles. Powder Techn. 1997, 90, 251-258. Katan, M. B.; Zoch, P. L.; Mensink, R. P. Trans fatty acids and their effects on lipoproteins in humans.