US3123626.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US3123626.Pdf 3,123,626 United States Patent Office Fatented Mar. 3, 1964 2 contrary, generally have a broader plastic range and re 3,123,626 quire temperatures above 104 F. to effect complete lique SELECTWE HYDROGENATECBN OF FATS AND faction. The factors of considerable importance in the FATTY OLS control of these physical attributes in decreasing order Francis William Kirsch, Wilmington, Del, assignor to 5 are: first, the relationship of the unsaturates, mono-, di-, Air Products and Chericais, Inc., a corporation of and tri-forms, to the completely saturated forms inasmuch Delaware as the hardness increases with a decrease in unsaturation Fied Sept. 30, 1960, Ser. No. 59,613 and particularly with an increase in saturates; secondly, 9 Claims. (C. 269-409) the double bond characteristics in the trans- and cis-forms This invention concerns fat hydrogenation. It is more 0. (for example, the trans-form triolein (or trielaidin) has a particularly concerned with the selective hydrogenation melting point of approximately 42 C. whereas the cis of edible fats and oils and with a procedure of the type form material has a melting point of about 5 C.); thirdly, in which hydrogen and fatty charge are passed continu the position of the double bonds with respect to their ously over a fixed bed of catalyst conducive to the satis separation from the carboxyl groups affects the hardness factory production of commercially acceptable, partially 5 in that the melting point decreases with increasing dis hydrogenated fats of the type suitable for use in shorten tance of separation (it is of interest to note that with Ca ings and/or margarine. fatty acids a shift of double bond position of at least 7-8 The preparation and use of hydrogenated vegetable carbon atoms is equivalent in effect on the melting point oils and the like has a respected history of development to one change from the cis- to the trans-position); and covering more than half a century. Many methods of 20 lastly, though somewhat little established by firm informa operation and large numbers of agents for the catalysis tion, is the positioning of fatty acid groups in the alpha, of the hydrogenation to achieve the desired end products beta and alpha prime positions of the glyceride. have been proposed during this period. Naturally only As indicated above, most commercial operation has a relative few of both operational methods and catalysts been limited to the batch type operations, but many seri have proven commercially acceptable and successful. At 25 ous efforts have been made to permit the development of the present time substantially all of the commercial opera Some suitable continuous process in which the charge is tions utilize "batch operation' methods of effecting the introduced, processed, and recovered without discontinu desired type and degree of hydrogenation. In such batch ance such as is necessary in a batch type operation. One operations the customary procedure involves the admix variation, of Such systems, which has probably come the ture with the fat of a reasonably small quantity of hydro 30 closest to commercial usage is that in which catalyst is genation catalyst which may or may not be supported and circulated through the system with and suspended in the which may or may not be associated with a type of ab fats, and the catalyst is continuously recycled through the sorbent material, such as natural earths and clays includ System after being separated from hydrogenated product ing diatomaceous earth and kieselguhr, which act more as by final filtration. Filtration problems, however, are or less entirely as filter aids. 35 of considerable magnitude because of the extremely fine Inasmuch as nickel is one of the most widely used cata size of the catalyst and the necessity of removing sub lytic agents and in its commercially effective state is of stantially all of the catalyst from the product. Substan practically colloidal nature, the absorbent filter aid mate tially all of the known catalysts have been tried in at rial is a necessary adjunct in aiding in the flocculation tempts to develop a continuous process without, however, and congolomeration of such nickel for its necessary re 40 reaching the final state of a really acceptable commercial moval, usually by filtration, from the final hydrogenation method equalling or supplanting batch type operation. product. It appears that the associated absorbent mate The reasons in back of the drive to develop a suitable rial or support agents usually have little effect on the continuous process of the kind represented by this inven catalytic nature of the nickel or other catalystic agent tion included substantial labor savings, space and time associated therewith or carried therein and that the main 45 savings, simplified equipment and operating conditions, purpose therefore is that of a filter aid and flocculation the avoidance of the need to filter the catalyst out of the agent. final product and perhaps some saving in the catalyst Typical catalysts employed in such systems are usually quantity requirements per unit amount of fat and oil available in a form prepared by suspending the active treated. catalytic agents in a relative small amount of a suitable 50 It has now been found that a continuous process for oil which is hardened to protect the catalyst from deac selective hydrogenation of edible fats and oils is possible tivants before and during storage, transportation and in with all of the attendant benefits mentioned above, and troduction to the hydrogenation system. As is readily with the attainment of at least the quality of product here understood, the batch operation is of the unitary operation tofore known to be available only in batch type operation. type wherein the batch of ingredients is introduced into 55 One of the chief requirements of a hydrogenation proc a confined zone, reacted therein, and then removed. In ess applicable to edible oils is “selectivity” of reaction. such batch operations the controllable variables are gen Selectivity concerns and depends on the conversion of erally limited to the pressure, temperature, time, and the poly-unsaturate groups within the glyceride molecule degree of agitation. A factor of somewhat less appreci to a lower degree of unsaturation without producing any able control as a variable is the kind and quantity of the 60 Substantial amount of attendant total hydrogenation. catalytic agents employed in the system. For example, a linoleate (C18, with two double bonds) Edible oils must meet certain rather stringent specifica may be said to be selectively hydrogenated when the chief tions in their hydrogenated form and included in those product is an oleate (C18, with one double bond) rather specifications are certain physical attributes which are than a stearate (C8, with no double bonds). It is now demanded by the trade. Of these the melting point and 65 possible with this invention to continuously hydrogenate plastic range are of considerable importance. In general, edible fats and oils to products of acceptable partial satu it may be said that the margarines have a relatively high ration and of commercially desirable iodine value without melting point in order to maintain shape and consistency substantial increase in the amount of total saturates in at normal room temperatures and must have a relatively the product. One of the reasons making this process pos short plastic range before they become liquid. Mar 0 sible resides in the discovery of a nickel-containing cat garines generally melt completely by or preferably below alyst of unique form and preparation as well as composi a temperature of 104 F. The shortening agents, on the tion. 3,123,626 g s In accordance with this invention continuous hydro well established in that with the use thereof continuous genation with improved selectivity, including the capacity operation is now possible in hydrogenation of edible fats to selectively conjugate the polyethenoid bonds to Se and oils. lectively hydrogenate edible fats and oils, is obtained un In an earlier filed co-pending application, Serial No. der closely controlled conditions and in the presence of 812,138, filed May 11, 1959, the description of the manu a unique hydrogenation catalyst. The contacting con facture and use of a superior fat hydrogenation catalyst ditions include temperatures in the range of 100-400 is set forth. In such identified application it is shown F.; pressures, measured as free hydrogen, in the range of that nickel, obtained from nickel formate impregnating 10 to 150 lbs./sq. in... gauge (p.s.i.g.); contact time in the solution, supported on a powder-included silica gel of order of 0.25 to 10 hours controlled by liquid hourly large pore size is superior to previously available ma space velocity in the range of 0.1 to 4.00 (LHSV). The terials in certain aspects in the provision of a highly ac charge at these conditions is contacted with a fixed bad ceptable catalyst material for the hydrogenation of cer of catalyst which comprises a powder-included macro tain fats and oils. However, the present catalyst is su porous silica support associated with an active hydro perior in its particular field even to this material. Where genation component obtained from nickel sulfate con the nickel formate catalyst is used in a continuous sys prising nickel with anionic sulphur present in a ratio of tem for the hydrogenation of edible fats and oils with 5 to 30 parts by weight nickel to one of sulfur (i.e., 0.13 their strict product specifications, such catalyst is found to 4.99% by weight of sulfur based on the final catalyst) to be relatively non-selective and indiscriminate in the and further characterized in that the pore structure of reactions therein promoted so that the product which be the catalyst contains at least 15% of its pores with an 20 comes hydrogenated contains a substantially larger average diameter in the order of at least 100 A.
Recommended publications
  • Modern Fat Technology: What Is the Potential for Heart Health?
    Proceedings of the Nutrition Society (2005), 64, 379–386 DOI:10.1079/PNS2005446 g The Authors 2005 Modern fat technology: what is the potential for heart health? J. E. Upritchard*, M. J. Zeelenberg, H. Huizinga, P. M. Verschuren and E. A. Trautwein Unilever Health Institute, Unilever Research and Development, PO Box 114, 3130 AC Vlaardingen, The Netherlands Saturated and trans-fatty acids raise total cholesterol and LDL-cholesterol and are known to increase the risk of CHD, while dietary unsaturated fatty acids play important roles in maintaining cardiovascular health. Replacing saturated fats with unsaturated fats in the diet often involves many complex dietary changes. Modifying the composition of foods high in saturated fat, particularly those foods that are consumed daily, can help individuals to meet the nutritional targets for reducing the risk of CHD. In the 1960s the Dutch medical community approached Unilever about the technical feasibility of producing margarine with a high-PUFA and low-saturated fatty acid composition. Margarine is an emulsion of water in liquid oil that is stabilised by a network of fat crystals. In-depth expertise of fat crystallisation processes allowed Unilever scientists to use a minimum of solid fat (saturated fatty acids) to structure a maximum level of PUFA-rich liquid oil, thus developing the first blood-cholesterol-lowering product, Becel. Over the years the composition of this spread has been modified to reflect new scientific findings and recommendations. The present paper will briefly review the developments in fat technology that have made these improvements possible. Unilever produces spreads that are low in total fat and saturated fat, virtually free of trans-fatty acids and with levels of n-3 and n-6 PUFA that are in line with the latest dietary recommendations for the prevention of CHD.
    [Show full text]
  • Alinorm 03/17 Joint Fao/Who Food Standards Programme Codex
    ALINORM 03/17 JOINT FAO/WHO FOOD STANDARDS PROGRAMME CODEX ALIMENTARIUS COMMISSION Twenty-sixth Session Rome, Italy, 30 June -7 July 2003 REPORT OF THE EIGHTEENTH SESSION OF THE CODEX COMMITTEE ON FATS AND OILS London, United Kingdom 3 – 7 February 2003 Note: This document incorporates Codex Circular Letter 2003/7-FO CX 5/15.2 CL 2003/7-FO March 2003 TO: - Codex Contact Points - Interested International Organizations FROM: -Secretary, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, FAO, 00100 Rome, Italy SUBJECT: Distribution of the Report of the 18th Session of the Codex Committee on Fats and Oils (ALINORM 03/17) A. MATTERS FOR ADOPTION BY THE 26th SESSION OF THE CODEX ALIMENTARIUS COMMISSION Draft Standard and Code at Step 8 of the Procedure Draft Revised Standard for Olive Oils and Olive Pomace Oils (para. 31, Appendix II) Proposed Draft Standard and Code at Step 5/8 of the Procedure Proposed Draft Amendments to the Standard for Named Vegetable Oils (para. 65, 67, 69 Appendix III) - Inclusion of Palm Superolein to the Standard - Inclusion of Mid-Oleic Sunflower Oil to the Standard - Inclusion of the data on Palm Olein and Palm Stearin in Tables 3 and 4 Governments wishing to propose amendments or comments on the above documents should do so in writing in conformity with the Guide to the Consideration of Standards at Step 8 (see Procedural Manual of the Codex Alimentarius Commission) to the Secretary, Joint FAO/WHO Food Standards Programme, FAO, via delle Terme di Caracalla, 00100 Rome, Italy before 1 May 2003. B.
    [Show full text]
  • University of Groningen Hydrogenation of Edible Oils And
    University of Groningen Hydrogenation of edible oils and fats Jonker, Geert Hilbertus IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1999 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Jonker, G. H. (1999). Hydrogenation of edible oils and fats. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 28-09-2021 literature cited Literature Cited Albright, L. F. Mechanism of hydrogenation of triglycerides. J. Am. Oil Chem. Soc. 1963, 40, 16–17, 26, 28–29. Albright, L. F. Partial hydrogenation of triglycerides-Current status and recommendations relative to the mechanism and processes. Fette, Seifen, Anstrichm. 1985, 87, 140–146. Albright, L. F.; Wisniak, J. Selecitivity and isomerization during partial hydrogenation of cottonseed oil and methyl oleate: Effect of operating variables.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7820,841 B2 Van Toor Et Al
    USOO782O841B2 (12) United States Patent (10) Patent No.: US 7820,841 B2 Van Toor et al. (45) Date of Patent: Oct. 26, 2010 (54) LOW TRANS-FATTY ACID FAT (52) U.S. Cl. ........................ 554/141; 554/227: 502/159 COMPOSITIONS: LOW-TEMPERATURE (58) Field of Classification Search ................. 554/141, HYDROGENATION, E.G., OF EDIBLE OILS 554/227: 502/159 See application file for complete search history. (75) Inventors: N. Hans Van Toor, Zoetermeer (NL); Gijsbertus Johannes Van Rossum, (56) References Cited Hoogvliet (NL); Marco B. Kruidenberg, Oostvoorne (NL) U.S. PATENT DOCUMENTS 3,856,710 A 12/1974 Moulton et al. (73) Assignee: Cargill, Incorporated, Wayzata, MN 4,088,603 A 5, 1978 Carter et al. (US) 4,134.905 A 1/1979 Hasman 4,184,982 A 1/1980 Schroeder et al. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 894 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 10/567,727 EP O O21,528 B1 3, 1983 (22) PCT Filed: Jul. 30, 2004 (Continued) OTHER PUBLICATIONS (86). PCT No.: PCT/US2OO4/O2.4955 Maskaev et al., Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. S371 (c)(1), 19-20, 1973.* (2), (4) Date: Jan. 3, 2007 (Continued) (87) PCT Pub. No.: WO2005/012471 Primary Examiner Deborah D Carr PCT Pub. Date: Feb. 10, 2005 (57) ABSTRACT (65) Prior Publication Data The present disclosure provides low trans-fatty acid fat com positions, methods of hydrogenating unsaturated feed-stocks US 2007/01793.05 A1 Aug.
    [Show full text]
  • Catalysis Science & Technology
    Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/catalysis Page 1 of 63 Catalysis Science & Technology Catalytic hydrogenation of C=C and C=O in unsaturated fatty acid methyl esters Chaoquan Hu a,b , Derek Creaser b,* , Samira Siahrostami a,c , Henrik Grönbeck a,c , Houman Ojagh a,b , Magnus Skoglundh a,d a Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. Manuscript b Division of Chemical Engineering, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden. c Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. d Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    [Show full text]
  • Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Assistant Prof
    Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Assistant Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 06 Lipids In my earlier classes, I have already mentioned you about some of the macromolecules molecules present in the cell. Those macromolecules are either protein or carbohydrates or nucleic acids. Most of these macromolecules were soluble in nature. Today, I will be taking about a new molecule which are there in the cell but, it has got little different behavioral or different properties. Those types of macromolecules are called lipid. (Refer Slide Time: 01:02) Now, if you see the lipids, then lipids are the nonpolar molecules that include fats, cholesterol, fatty acids, lipid-soluble vitamins, waxes, soaps and so on. Lipids consist of a broad group of compounds that are generally soluble in organic solvents and only sparingly soluble in water. Now, when we are taking about this lipid, this lipid molecule is present in every cell irrespective of microbial plants and animals. So, if you want to extract this lipid molecule, being nonpolar in nature, we have to use some solvent like chloroform benzene and so on, to extract this lipid molecule from the cell. (Refer Slide Time: 02:03) Now obviously, when I am taking about this particular macromolecule, so if we classify this lipid, entire lipid molecules, then we will find that the entire lipid molecule can be divided into two broad pairs like saponifiable lipid and nonsaponifiable lipid. That means, one type of lipid has some characteristics of soap formation and this type of lipids are further divided into simple lipid and complex lipid.
    [Show full text]
  • Healthier Fats. Healthier You. FAQ Make Them,Necessitating Intakebydietarychoices
    Q: What types of fats are consumed in the human diet? A: Foods contain two types of fats: saturated and unsaturated fats. Saturated fats contain long-chain fatty acid molecules that have single bonds between carbon atoms. This structure makes the molecules rigid and helps them pack close together; these fats are generally solid at room temperature as a result. Saturated fats occur in nature in coconut and meat, for example. Saturated medium chain triglycerides (MCTs), which are found in coconut, palm kernel and dairy fats, can be metabolized into ketones that can fuel brain cells in the absence of glucose, i.e. on lower carbohydrate diets. Naturally- occurring saturated fats are viewed more favorably by consumers than those chemically produced by hydrogenation of unsaturated fat. Hydrogenation may produce undesirable by-products such as trans fat, which has been linked to cardiovascular disease risk. Healthier Fats. You. FAQ Unsaturated fats have one or more double bonds in their molecular structure. The kinks produced in the fatty acid chain by the double bond prevent the molecules from packing closely; these fats are generally soft solids or liquid oil. • Monounsaturated fats have a single double bond in their fatty acids. The discovery that monounsaturated fat could be healthful came from the Seven Countries Study during the 1960s. It revealed that people in the Mediterranean region seemed to have a low rate of heart disease despite a high-fat diet rich in foods such as olive oil, nuts and sesame seeds. • Polyunsaturated fats have more than one double bond that are staggered along the length of their fatty acids.
    [Show full text]
  • Ingredients for Margarine and Spreads
    Ingredients for margarine and spreads Miroslav Buchmet Application Specialist DANISCO A/S World wide production of margarine 10100 220 Estimated 10000 WW 215 T Egypt T 9900 210 9800 205 9700 200 9600 195 Production in Egypt, 1000 in Egypt, Production World wide production, 1000 wideWorld production, 9500 190 9400 185 1999 2000 2001 2002 2003 2004 Source: Oil World Annual 2005 2 Total global oils & yellow fats market, MUSD, by region 25000 2003 20000 2004 2005 15000 10000 5000 0 Western Asia Pacific Latin America Eastern North Africa and Australasia Europe Europe Ame r ica Middle East Oils & fats global retail value 2005 in bn USD Source: EUROMONITOR 3 Consumer lifestyle trends Health & wellness Common trends all around the world Food is not only fuel but evolving to fulfil consumers’ desire to live a longer, healthier life Emerging preference for prevention rather than cure Increasing consumer awareness of the nutritional qualities and health benefits of food products Sources: Human Nutrition Research UK, World of Food Ingredients Dec 04 4 Consumer responsibility for own health What do consumers look for on a food label? Amount of fat 2004 2003 Amount of sugar Amount of salt Health claims 0 102030405060 % of consumers (who look at nutritional facts) Sources: MORI, Human Nutrition Research UK 5 Reduction in trans fat/hydrogenation - market examples Unilever, USA Buttery spread with omega-3 and vitamins B6 and B12 for cardiovascular health, and vitamin E, which helps protect cells and tissues in the heart. Free of trans-fat and cholesterol Loblaws, Canada Non-hydrogenated margarine, low in saturated fat Source: GNPD Mintel.
    [Show full text]
  • A Catalysis-Engineering Approach to Selective
    ‘‘thesis’’ --- 2007/1/31 22:24 --- page i (#1) A CATALYSIS-ENGINEERING APPROACH TO SELECTIVE HYDROGENATION ‘‘thesis’’ --- 2007/1/31 22:24 --- page ii (#2) ii ‘‘thesis’’ --- 2007/1/31 22:24 --- page iii (#3) A CATALYSIS-ENGINEERING APPROACH TO SELECTIVE HYDROGENATION PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 13 maart 2007 te 12:30 uur door Martinus Mathilda Pieter Zieverink scheikundig ingenieur geboren te Sittard ‘‘thesis’’ --- 2007/1/31 22:24 --- page iv (#4) Dit proefschrift is goedgekeurd door de promotoren: Prof. dr. J.A. Moulijn Prof. dr. F. Kapteijn Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. J.A. Moulijn Technische Universiteit Delft, promotor Prof. dr. F. Kapteijn Technische Universiteit Delft, promotor Prof. dr. W. Buijs Technische Universiteit Delft Dr. T. Boger Corning, Inc. Dr. E. Schwab BASF A.G. Prof. dr. J.M. Winterbottom University of Birmingham Dr. ir. M.T. Kreutzer Technische Universiteit Delft Dr. ir. M.T. Kreutzer heeft als begeleider in belangrijke mate aan de totstandkoming van het proefschrift bijgedragen. This research was financially supported by BASF A.G. and Corning, Inc. c 2007 by M.M.P. Zieverink All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilised in any form or by any means, electronic or mechanical, including protocopying, recording or any information storage and retrieval system, without written permission of the author. ISBN: 978-90-5335-113-0 Keywords: Heterogeneous Catalysis / Hydrogenation / Isomerization / Edible oil ‘‘thesis’’ --- 2007/1/31 22:24 --- page v (#5) Ter nagedachtenis aan Frans Otten en Tinus Zieverink ‘‘thesis’’ --- 2007/1/31 22:24 --- page vi (#6) vi ‘‘thesis’’ --- 2007/1/31 22:24 --- page vii (#7) CONTENTS 1 Introduction 1 1.1 Catalytic hydrogenation and diffusion effects .
    [Show full text]
  • Tailoring the Structure of Lipids, Oleogels and Fat Replacers by Different Approaches for Solving the Trans-Fat Issue—A Review
    foods Review Tailoring the Structure of Lipids, Oleogels and Fat Replacers by Different Approaches for Solving the Trans-Fat Issue—A Review 1, 2, Mishela Temkov * and Vlad Mures, an * 1 Department of Food Technology and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Rudjer Boskovic 16, 1000 Skopje, North Macedonia 2 Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj Napoca, 3-5 Manăs, tur st., 400372 Cluj Napoca, Romania * Correspondence: [email protected] (M.T.); [email protected] (V.M.); Tel.: +38-970-324-952 (M.T.); +40-264-596-384 (V.M.) Abstract: The issue of the adverse effects of trans-fatty acids has become more transparent in recent years due to researched evidence of their link with coronary diseases, obesity or type 2 diabetes. Apart from conventional techniques for lipid structuring, novel nonconventional approaches for the same matter, such as enzymatic interesterification, genetic modification, oleogelation or using components from nonlipid origins such as fat replacers have been proposed, leading to a product with a healthier nutritional profile (low in saturated fats, zero trans fats and high in polyunsaturated fats). However, replacing conventional fat with a structured lipid or with a fat mimetic can alternate some of the technological operations or the food quality impeding consumers’ acceptance. In this review, we summarize the research of the different existing methods (including conventional and nonconventional) for tailoring lipids in order to give a concise and critical overview in the field. Citation: Temkov, M.; Mures, an, V.
    [Show full text]
  • Final Products
    Environmental, Health, and Safety Guidelines OLEOCHEMICALS MANUFACTURING WORLD BANK GROUP Environmental, Health and Safety Guidelines for Oleochemicals Manufacturing Introduction capacity of the environment, and other project factors, are taken into account. The applicability of specific technical The Environmental, Health, and Safety (EHS) Guidelines are recommendations should be based on the professional opinion technical reference documents with general and industry- of qualified and experienced persons. specific examples of Good International Industry Practice (GIIP) 1. When one or more members of the World Bank Group When host country regulations differ from the levels and are involved in a project, these EHS Guidelines are applied as measures presented in the EHS Guidelines, projects are required by their respective policies and standards. These expected to achieve whichever is more stringent. If less industry sector EHS guidelines are designed to be used stringent levels or measures than those provided in these EHS together with the General EHS Guidelines document, which Guidelines are appropriate, in view of specific project provides guidance to users on common EHS issues potentially circumstances, a full and detailed justification for any proposed applicable to all industry sectors. For complex projects, use of alternatives is needed as part of the site-specific environmental multiple industry-sector guidelines may be necessary. A assessment. This justification should demonstrate that the complete list of industry-sector guidelines can be found at: choice for any alternate performance levels is protective of www.ifc.org/ifcext/enviro.nsf/Content/EnvironmentalGuidelines human health and the environment. The EHS Guidelines contain the performance levels and Applicability measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs.
    [Show full text]
  • Trans Fatty Acids and Human Health
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,400 133,000 165M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com 3 Trans Fatty Acids and Human Health Sebastjan Filip and Rajko Vidrih Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Slovenia 1. Introduction According to various studies, fats of animal and vegetable origins satisfy 22% to 42% of the daily energy demands of human beings (Srinivasan et al., 2006; Wagner et al., 2008; Willet, 2006). Some fats, and especially those that are hydrogenated, contain trans fatty acids (TFAs), i.e. unsaturated fatty acids with at least one double bond in a trans configuration (Craig-Schmidt, 2006). This trans-double-bond configuration results in a greater bond angle than for the cis configuration, thus producing a more extended fatty-acid carbon chain that is more similar to that of the saturated fatty acids (SFAs), rather than to that of the cis- unsaturated double-bond-containing fatty acids (Fig. 1) (Moss, 2006; Oomen et al., 2001). Fig. 1. Structure of different isomers of C16 (Willett, 2006) www.intechopen.com 44 The Cardiovascular System – Physiology, Diagnostics and Clinical Implications Fat is a thus major source of energy for the body, and it also aids in the absorption of vitamins A, D, E and K, and of the carotenoids.
    [Show full text]