Developing Molecular Tools to Investigate Genetic Exchange Within
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rediscovery of Tetratheca Nuda Var. Spartea (Elaeocarpaceae) in South-West Western Australia and Elevation to Specific Rank Astetratheca Spartea
Nuytsia WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Butcher, R. Rediscovery of Tetratheca nuda var. spartea (Elaeocarpaceae) in south-west Western Australia and elevation to specific rank asTetratheca spartea Nuytsia 18: 39–47 (2008) All enquiries and manuscripts should be directed to: The Managing Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation R.Nuytsia Butcher, 18: Rediscovery39–47 (2008) of Tetratheca nuda var. spartea 39 Rediscovery of Tetratheca nuda var. spartea (Elaeocarpaceae) in south-west Western Australia and elevation to specific rank as Tetratheca spartea Ryonen Butcher Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Abstract Butcher, R. Rediscovery of Tetratheca nuda var. spartea (Elaeocarpaceae) in south-west Western Australia and elevation to specific rank asTetratheca spartea. Nuytsia 18: 39–47 (2008). Tetratheca nuda Lindl. var. spartea Planch. ex Benth. was named by Bentham in 1863 from material collected from an unspecified locality by Drummond in 1843. Mueller placed the name in synonymy under T. virgata Steetz in 1882, but Thompson recognised and lectotypified the name in 1976, reiterating the close affinity with T. nuda but querying the status of the taxon. The taxon was known only from the type material until a 2005 collection from near Toodyay was confirmed as comparable with the type. -
Australia's Biodiversity and Climate Change
Australia’s Biodiversity and Climate Change A strategic assessment of the vulnerability of Australia’s biodiversity to climate change A report to the Natural Resource Management Ministerial Council commissioned by the Australian Government. Prepared by the Biodiversity and Climate Change Expert Advisory Group: Will Steffen, Andrew A Burbidge, Lesley Hughes, Roger Kitching, David Lindenmayer, Warren Musgrave, Mark Stafford Smith and Patricia A Werner © Commonwealth of Australia 2009 ISBN 978-1-921298-67-7 Published in pre-publication form as a non-printable PDF at www.climatechange.gov.au by the Department of Climate Change. It will be published in hard copy by CSIRO publishing. For more information please email [email protected] This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the: Commonwealth Copyright Administration Attorney-General's Department 3-5 National Circuit BARTON ACT 2600 Email: [email protected] Or online at: http://www.ag.gov.au Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Climate Change and Water and the Minister for the Environment, Heritage and the Arts. Citation The book should be cited as: Steffen W, Burbidge AA, Hughes L, Kitching R, Lindenmayer D, Musgrave W, Stafford Smith M and Werner PA (2009) Australia’s biodiversity and climate change: a strategic assessment of the vulnerability of Australia’s biodiversity to climate change. -
Association of Societies for Growing Australian Plants
Association of Societies for Growing Australian Plants Ref No. ISSN 0725-8755 July 2003 GSG Victoria Chapter NSW Programme 2003 Leader: Neil Marriott (03) 5356 2404 Wednesday July 23 [email protected] TIME: 9.30 a.m Morning Tea for 10.00am start VENUE: Grevillea Park Convener: Max McDowall (03) 9850 3411 SUBJECT: Plant labelling ideas - discussion group [email protected] Wednesday August 13 Meeting cancelled VIC Programme 2003 Sunday October 12 TIME: 10.00 a.m. Sunday August 17 To Drummond & Fryers Range and Elphinstone VENUE: Home of Mark Ross,107 Pitt Town Road, McGraths Hill 2756 LEADERS: John & Sue Walter and Ian Evans Ph: 02) 4577 2831 E: [email protected] TIME: 10.30 a.m. SUBJECT: Grafting Workshop VENUE: 249 Pudding Bag Road, Drummond Melbourne Cup Weekend Fri Oct 31-Tues Nov 4 (VicRoads 59 G5-F5) on left 2.49 km from the CONTACT : Bruce Wallace, [email protected] intersection with Daylesford-Malmsbury Road, between MEETING PLACE: 10.00am at McDonalds, Sth Nowra creek and intersection with Scobles Road. Land for Wildlife and Malmsbury Landcare signs on Field trip south to view G. linearifolia (Dolphin Point, gate. Enlarged scan of VicRoads map will be sent to Ulladulla & Bendalong-Manyana), G. arenaria & G. scabrifolia those who register with Max. (near Nowra), G. buxifolia (Pigeon House), G. epicroca, G. victoriae ssp. nivalis (Brown Mountain), G. johnsonii BYO lunch and thermoses for lunch and afternoon tea, and some goodies to share. Meet at the new home of and many other exciting localities & plant populations. GSG members John and Sue Walter ph. -
View PDF for This Newsletter
Newsletter No. 160 September 2014 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Bill Barker Mike Bayly State Herbarium of South Australia School of Botany PO Box 2732, Kent Town, SA 5071 University of Melbourne, Vic. 3010 Australia Australia Tel: (+61)/(0) 427 427 538 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Secretary Treasurer Frank Zich John Clarkson Australian Tropical Herbarium Queensland Parks and Wildlife Service E2 Building, J.C.U. Cairns Campus PO Box 156 PO Box 6811 Mareeba, Qld 4880 Cairns, Qld 4870 Australia Australia Tel: (+61)/(0) 7 4048 4745 Tel: (+61)/(0) 7 4059 5014 Mobile: (+61)/(0) 437 732 487 Fax: (+61)/(0) 7 4232 1842 Fax: (+61)/(0) 7 4092 2366 Email: [email protected] Email: [email protected] Councillor Councillor Ilse Breitwieser Leon Perrie Allan Herbarium Museum of New Zealand Te Papa Tongarewa Landcare Research New Zealand Ltd PO Box 467 PO Box 69040 Wellington 6011 Lincoln 7640 New Zealand New Zealand Tel: (+64)/(0) 4 381 7261 Tel: (+64)/(0) 3 321 9621 Fax: (+64)/(0) 4 381 7070 Fax: (+64)/(0) 3 321 9998 Email: [email protected] Email: [email protected] Other Constitutional Bodies Public Officer Affiliate Society Anna Monro Papua New Guinea Botanical Society Australian National Botanic Gardens GPO Box 1777 Canberra, ACT 2601 Australia Hansjörg Eichler Research Committee Tel: +61 (0)2 6250 9530 Philip Garnock-Jones Email: [email protected] David Glenny Betsy Jackes Greg Leach ASBS Website Nathalie Nagalingum www.asbs.org.au Christopher Quinn Chair: Mike Bayly, Vice President Webmasters Grant application closing dates: Anna Monro Hansjörg Eichler Research Fund: Australian National Botanic Gardens on March 14th and September 14th each year. -
Life-Forms of Terrestrial 'Flowering Plants
ACTA PHYTOGEOGRAPHICA SUECICA EDIDJT SVENSKA VAXTGEOGRAFISKA SALLSKAPET m:1 LIFE-FORMS OF TERRESTRIAL ' FLOWERING PLANTS I BY G. EINAR Du RIETZ UPPSALA 1931 ALMQVIST & WIKSELLS BOKTRYCKERI AB ' ACTA PHYTOGEOGRAPHICA SUECICA. III. LIFE-FORMS OF TERRESTRIAL FLOWERING PLANTS BY G. EINAR DU RIETZ PRINTED WITH CONTRIBUTION FH.OM LA :\GMAN S KA I{ U LTU HFON DEN UPPSALA 193 1 ALMQVIST & WIKSELLS BOK'l'RYCKERI-A.-B. Preface. This work is the result of studies carried out during the last twelve years. The field-studies have been made partly in various parts of Scandinavia (Sweden and Norway), partly during a year's work in New Zealand and .Australia in 1926-1927 as well as during shorter visits to various parts of Central and Western Europe, North America, and Java. The material collected in the field has been worked up in the Plant-Biological Institution of Upsala Uni versity. The rich life-form collections of this institution have also been utilized as much as possible. I wish to express my deep gratitude to all those frien�s in various countries who have supported my work in one way or another - they are too many to be enumerated here. l have tried to bring the names of the plants mentioned as much as possible into accordance with the following generally known :florjstic handbooks : For Scandinavia Ho LMBERG 1922-1926, and, for the groups not treated there, LIND- 1\IAN 1926, for Central Europe HEGI 1908--1931, for the eastern part of North .America RoBINSON and FF.RNALD 1908, for Java KooR DERS 191 1-1912, for N�w South Wales MooRE and BE T C H E 1893, for the rest of Australia BENTHAM 1863- 1878, and for New Zealand CHEESEMAN 1925. -
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia)
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia) Alison Kellow Michael Bayly Pauline Ladiges School of Botany, The University of Melbourne July, 2007 THE GRIMWADE PLANT COLLECTION, MT BUFFALO Contents Summary ...........................................................................................................................3 Mt Buffalo and its flora.....................................................................................................4 History of botanical exploration........................................................................................5 The Grimwade plant collection of Percival St John..........................................................8 A new collection of plants from Mt Buffalo - The Miegunyah Plant Collection (2006/2007) ....................................................................................................................................13 Plant species list for Mt Buffalo National Park...............................................................18 Conclusion.......................................................................................................................19 Acknowledgments...........................................................................................................19 References .......................................................................................................................20 Appendix 1 Details of specimens in the Grimwade Plant Collection.............................22 -
South West Slopes Revegetation Guide
ot etSoe Rvgtto Guide South West Slopes Revegetation ot etSoe Rvgtto Guide South West Slopes Revegetation from little things big things grow... SouthSouth WestWest SlopesSlopes RevegetationRevegetation GuideGuide (south of the Murrumbidgee River) 1998 from little things big things grow... South West Slopes Revegetation Guide (SOUTH OF THE MURRUMBIDGEE RIVER) Edited by Fleur Stelling Murray Catchment Management Committee & Department of Land & Water Conservation Albury, NSW March 1998. With a major contribution by Karen Walker Greening Australia, Wagga Wagga, NSW. foreword John Landy he South West Slopes region of New South introduced species of plants and animals and grazing T Wales runs from the Riverina plains to the have all played a part in the decline in biodiversity of mountains in the east, with an elevation of up to native vegetation. This book provides useful material 600 metres. It is one of the most extensively altered for those seeking to control weeds, attract wildlife to landscapes in this country. The most radical the farm dam, or reintroduce native grasses and modification has been on the lower slopes and plains, pasture. The practical information sheets will also be where the establishment of pastures and crops was valuable in many aspects of land management. most easily achieved. Clearing of the catchments in the rising country, mainly during the last century — has Many farmers in the South West Slopes region (and resulted in eroded streams and silt deposition, the latter elsewhere in the country) have struggled under encouraged by the widespread growing of willows. increasingly adverse conditions. My family has a property in the south-east, near Tooma, and we have Preserving the remaining areas of bushland that have had to step up our fight against weeds (notably the so far escaped a significant decline in biodiversity is blackberry), which infests pasture and modified clearly a priority, and several chapters in this Guide bushland alike. -
On the Flora of Australia
L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3. -
Biome Shifts and Niche Evolution in Plants
ES45CH24-Donoghue ARI 31 October 2014 15:49 Biome Shifts and Niche Evolution in Plants Michael J. Donoghue1 and Erika J. Edwards2 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520; email: [email protected] 2Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2014. 45:547–72 Keywords First published online as a Review in Advance on adaptation, biogeography, climate change, niche conservatism, phylogeny October 6, 2014 The Annual Review of Ecology, Evolution, and Abstract Systematics is online at ecolsys.annualreviews.org What factors influence whether a lineage can successfully transition into a This article’s doi: new biome, and why have some biome shifts been more frequent than others? Access provided by Yale University - Law Library on 12/15/14. For personal use only. 10.1146/annurev-ecolsys-120213-091905 Annu. Rev. Ecol. Evol. Syst. 2014.45:547-572. Downloaded from www.annualreviews.org To orient this line of research we develop a conceptual framework in which Copyright c 2014 by Annual Reviews. the likelihood of a biome shift is a function of (a) exposure to contrasting All rights reserved environments over time, (b) the evolutionary accessibility of relevant adap- tations, and (c) changing biotic interactions. We evaluate the literature on biome shifts in plants in relation to a set of hypotheses on the size, connect- edness, and absolute age of biomes, as well as on the adaptability of particular lineages and ecological interactions over time. We also critique the phylo- genetic inference of past biomes and a “global” model-based approach to biome evolution. -
The Emergence of Core Eudicots: New Floral Evidence from the Earliest
Downloaded from http://rspb.royalsocietypublishing.org/ on January 18, 2017 The emergence of core eudicots: rspb.royalsocietypublishing.org new floral evidence from the earliest Late Cretaceous Else Marie Friis1, Kaj Raunsgaard Pedersen2 and Peter R. Crane3,4 Research 1Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden 2 Cite this article: Friis EM, Pedersen KR, Crane Department of Geoscience, University of Aarhus, Aarhus, Denmark 3Yale School of Forestry and Environmental Studies, New Haven, CT, USA PR. 2016 The emergence of core eudicots: 4Oak Spring Garden Foundation, Upperville, VA, USA new floral evidence from the earliest EMF, 0000-0003-2936-2761 Late Cretaceous. Proc. R. Soc. B 283: 20161325. http://dx.doi.org/10.1098/rspb.2016.1325 Eudicots, the most diverse of the three major clades of living angiosperms, are first recognized in the latest Barremian–earliest Aptian. All Early Cretaceous forms appear to be related to species-poor lineages that diverged before the rise of core eudicots, which today comprise more than 70% of angiosperm Received: 11 June 2016 species. Here, we report the discovery of a well-preserved flower, Caliciflora Accepted: 14 November 2016 mauldinensis, from the earliest Late Cretaceous, with unequivocal core eudicot features, including five sepals, five petals and two whorls of stamens borne on the rim of a floral cup containing three free carpels. Pollen is tricolporate. Carpels mature into follicular fruitlets. This character combination suggests a phylogenetic position among rosids, but more specific assignment is Subject Areas: precluded by complex patterns of character evolution among the very large evolution, palaeontology, structural biology number of potentially relevant extant taxa. -
Elaeocarpaceae1
Flora of South Australia 5th Edition | Edited by Jürgen Kellermann ELAEOCARPACEAE1 H. McPherson2 & L. Murray2 Shrubs (sometimes ericoid) and trees (not in S.A.); bark without exudate, indumentum of simple hairs, sometimes gland-tipped or stellate; leaves spirally arranged, distichous, opposite or rarely whorled, simple, entire to serrate; stipules either present or none when colleters may occur. Flowers bisexual, solitary and axillary, in fascicles or terminal, or axillary simple or compound; inflorescence cymose or racemose; sepals usually free, variously toothed or lobed, sometimes entire; stamens 4–300, free; anthers basifixed, opening at apex by 1 or 2 pores; loculi 2–8 (9); ovules 1–30 per loculus, pendulous, anatropous, attached to axis in 1–2 series; style simple or apically branched. Fruit indehiscent (drupe or berry) or dehiscent. Seeds 1–many, up to about 15 per loculus. A family comprising 12 genera and c. 550 species, widely distributed in tropical and warm temperate southern regions. In Australia 9 genera and c. 100 species. The genera Tremandra R.Br. ex DC., Platytheca Steez and Tetratheca traditionally comprised the Australian endemic family Tremandraceae (Thompson 1976). Recent molecular phylogenetic research (e.g. Savolainen et al. 2000, Bradford & Barnes 2001, Crayn et. al. 2006) confirms that these three genera form a clade within Elaeocarpaceae, a family of mostly rainforest trees and shrubs widespread in tropical and subtropical regions and extending into temperate areas. Placement within Elaeocarpaceae has been formalised by APGII (2003) and Coode (2004). A specimen of Platytheca galioides Steetz was collected reportedly from Mount Rescue National Park in 1975. It has not been found again in this area despite further searches. -
Trichome Morphology Provides Phylogenetically Informative Characters for Tremandra, Platytheca and Tetratheca (Former Tremandraceae)
Trichome morphology provides phylogenetically informative characters for Tremandra, Platytheca and Tetratheca (former Tremandraceae) Trisha L. DowningAC, Pauline Y. LadigesA, and Marco F. DurettoBD ASchool of Botany, The University of Melbourne, Parkville, Vic. 3010, Australia BTasmanian Herbarium, Tasmanian Museum and Art Gallery, Private Bag 4, Hobart, Tas. 7001, Australia C National Herbarium of Victoria, Royal Botanic Gardens Melbourne, Birdwood Ave., South Yarra, Vic. 3141, Australia. DCorresponding author: [email protected] This paper was published in Plant Systematics and Evolution 271: 199-221 (2008) (published online 21 March 2008). Abstract. Trichomes of Tremandra R.Br. ex DC., Platytheca Steetz and Tetratheca Sm. (Elaeocarpaceae, former Tremandraceae), together with two outgroup species of Elaeocarpus L., are illustrated using Scanning Electron Microscopy, and their distribution on various plant organs is documented. Various trichomes types were identified that relate taxa: simple hairs, stellate hairs, short glandular trichomes, long glandular trichomes, and three forms of tubercules. Both outgroup and ingroup taxa have simple hairs. Stellate hairs are confirmed as unique to Tremandra. Prominent and sculptured multi-celled tubercules, some bearing a stout hair, are characteristic of Platytheca. Smaller multicelled tubercules occur in both Platytheca and Tetratheca, except for the Western Australian taxon Te. filiformis (possibly plesiomorphic). Unicellular tubercules (papilla) characterise two species of Tetratheca.